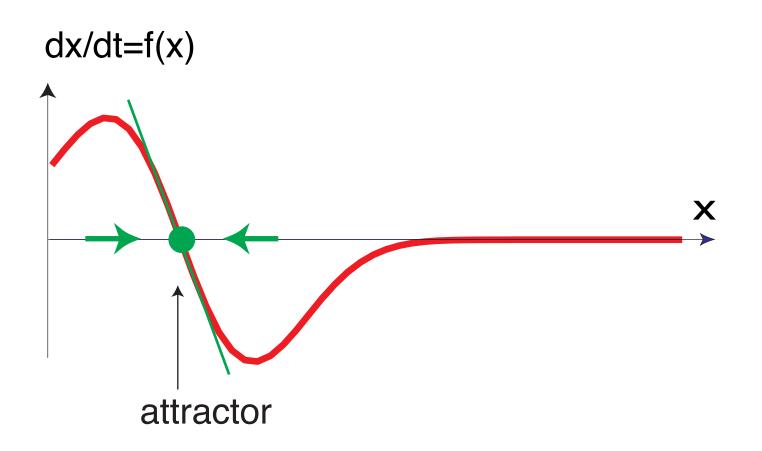
# Dynamical systems tutorial: part 2

Gregor Schöner, INI, RUB

#### attractor

fixed point, to which neighboring initial conditions
converge = attractor



## fixed point

#### is a constant solution of the dynamical system

$$\dot{x} = f(x)$$

$$\dot{x} = 0 \Rightarrow f(x_0) = 0$$

## stability

mathematically really: asymptotic stability

defined: a fixed point is asymptotically stable, when solutions of the dynamical system that start nearby converge in time to the fixed point

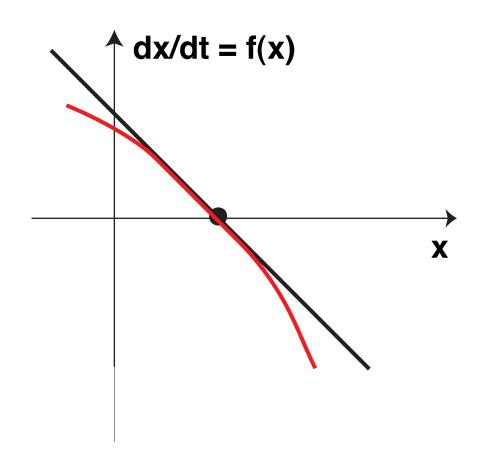
# stability

- the mathematical concept of stability (which we do not use) requires only that nearby solutions stay nearby
- Definition: a fixed point is unstable if it is not stable in that more general sense,
  - that is: if nearby solutions do not necessarily stay nearby (may diverge)

#### linear approximation near attractor

non-linearity as a small perturbation/ deformation of linear system

=> non-essential nonlinearity



#### stability in a linear system

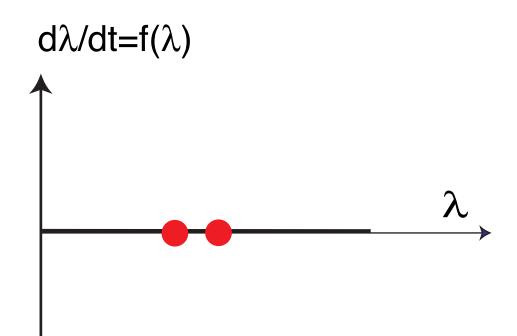
if the slope of the linear system is negative, the fixed point is (asymptotically stable)  $d\lambda/dt=f(\lambda)$ 

#### stability in a linear system

if the slope of the linear system is positive, then the fixed point is unstable  $d\lambda/dt=f(\lambda)$ 

#### stability in a linear system

if the slope of the linear system is zero, then the system is indifferent (marginally stable: stable but not asymptotically stable)



#### stability in linear systems

#### generalization to multiple dimensions

- if the real-parts of all Eigenvalues are negative: stable
- if the real-part of any Eigenvalue is positive: unstable
- if the real-part of any Eigenvalue is zero: marginally stable in that direction (stability depends on other eigenvalues)

#### stability in nonlinear systems

stability is a local property of the fixed point

#### => linear stability theory

the eigenvalues of the linearization around the fixed point determine stability

all real-parts negative: stable

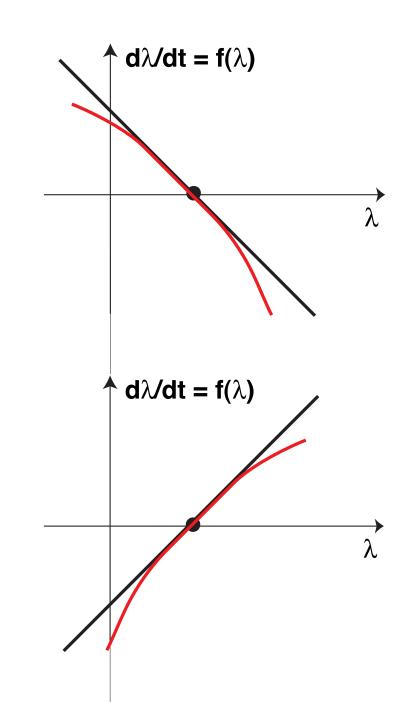
any real-part positive: unstable

any real-part zero: undecided: now nonlinearity decides (nonhyberpolic fixed point)

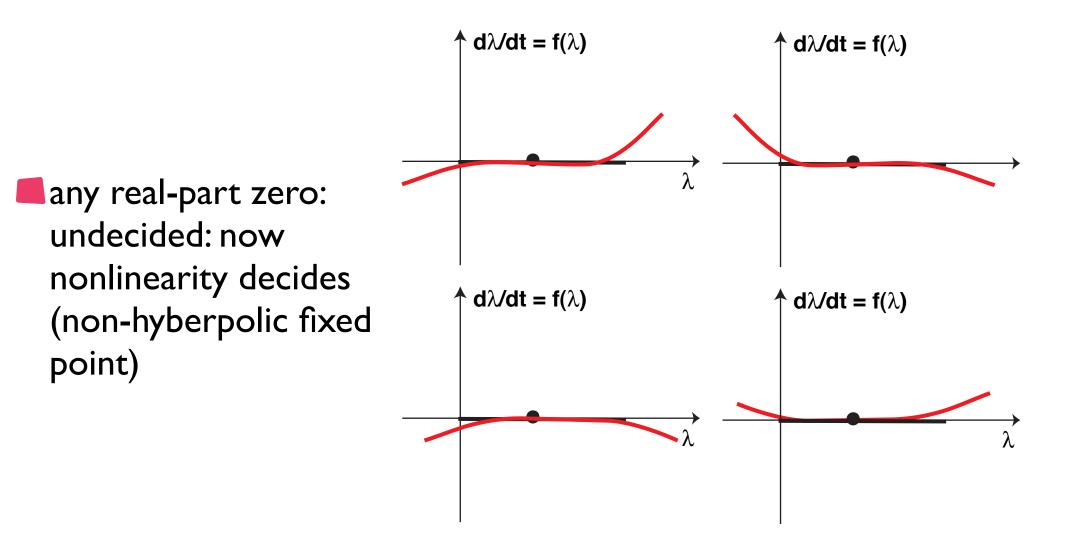
#### stability in nonlinear systems



any real-part positive: unstable



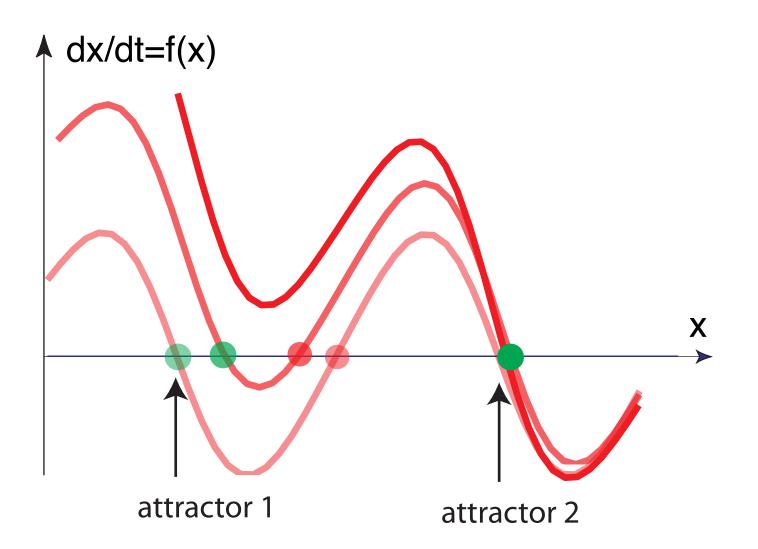
#### stability in nonlinear systems



#### bifurcations

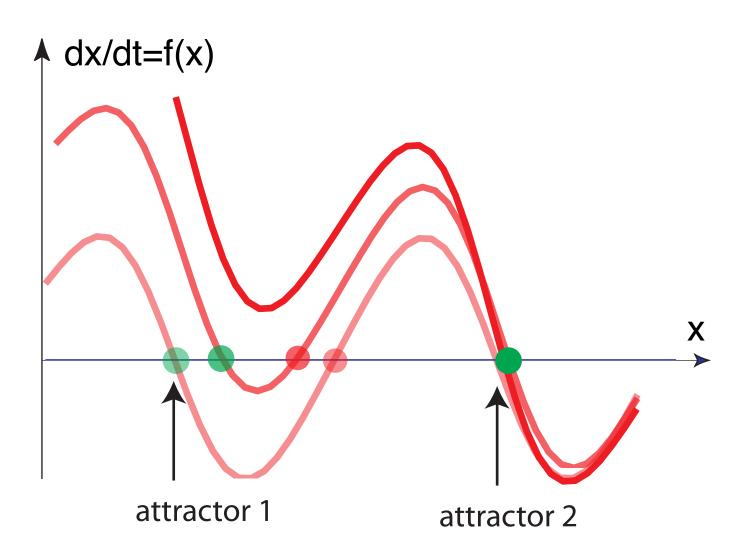
- look now at families of dynamical systems, which depend (smoothly) on parameters
- ask: as the parameters change (smoothly), how do the solutions change (smoothly?)
  - smoothly: topological equivalence of the dynamical systems at neighboring parameter values
  - bifurcation: dynamical systems NOT topological equivalent as parameter changes infinitesimally

#### bifurcation



#### bifurcation

bifurcation=qualitative change of dynamics (change in number, nature, or stability of fixed points) as the dynamics changes smoothly



## tangent bifurcation

the simplest bifurcation (co-dimension 0): an attractor collides with a repellor and the two annihilate

