10

15

20

25

30

DE GRUYTER OPEN

Paladyn, J. Behav. Robot. 2015; 6:57-70

Research Article

Open Access

Hendrik Reimann, Jonas Lins, and Gregor Schéner

The dynamics of neural activation variables

Abstract: This paper presents a comprehensive and de-
tailed analysis of the elementary building blocks of neu-
rally inspired architectures for cognitive robotics. It pro-
vides a brief outline of the fundamental principles by
which biological nervous systems link to the environment
in terms of perception, cognition, and behavior. We de-
scribe a class of dynamic neural activation variable based
on these principles. We show that these dynamic neurons
have the appropriate stability properties. Adding even sim-
ple connections between a small number of nodes is suf-
ficient to constitute systems that make important deci-
sions. Going through these mechanisms in detail, this pa-
per should facilitate the design of neurally inspired archi-
tectures for behavior generation in robotic agents.
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1 Introduction

Cognitive robotics attempts to endow robotic agents with
the ability to think and reason about the world and be-
have in it. The focus lies on developing cognitive archi-
tectures that are closely coupled to sensory and motor
surfaces. Sensory stimuli from the environment are pro-
cessed and transformed into appropriate actions without
resorting to unnecessary abstractions like symbolic rep-
resentations or artificial discretization [1]. Forming such
symbolic representations of things in the world, and espe-
cially keeping them updated in real time, is computation-
ally costly and often practically infeasible. Remarkably,
humans and other animals manage to process sensory in-
formation and generate appropriate actions at speed and
accuracy levels far surpassing that of any robotic agent,
probably largely relying on non-symbolic representations
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[2]. Cognitive robotics hopes to reproduce this proficiency
by using biologically inspired mechanisms and principles.

One big source of such inspiration are the neural net-
works between the sensors and the effectors in humans
and animals — our brains. Over the decades, neurosci-
entists have made tremendous advances in understand-
ing how brains function to generate the amazing scope
and flexibility of behavior exhibited by humans and ani-
mals. Although we are far from a complete understanding
of human cognition, some overarching principles of neu-
ral information processing have emerged: the neural basis
of cognition is distributed, sub-symbolic, continuous and
noisy [3]. Higher-level functions like discrete symbols and
stable representations of stimuli that are no longer directly
available to the sensory systems, on the other hand, have
to be embedded in and emerge from structures that adhere
to these basic principles.

Dynamic neural activation variables can provide the
elementary building blocks of systems that possess these
desired characteristics. Cognitive architectures based on
dynamic neural activation variables have been success-
fully employed in robotics for a wide variety of applica-
tions, ranging from relatively simple tasks like memoriz-
ing and generating sequences of actions [4] or dynamical
organization of different elementary behaviors [5] to com-
plex architectures performing high-level functions like ob-
ject recognition [6] and scene representation [7].

In this paper, we give a detailed and comprehensive
analysis of dynamic neural activation variables. We start
with a brief review of how real neural systems encode
and process information (Section 2) and how artificial net-
works of static activation variables have been used in artifi-
cial intelligence research (Section 3). Then we endow these
activation variables with dynamics (Section 4) and make a
detailed analysis of how the system behaves in time (Sec-
tion 5) and how it reacts to varying external stimuli (Sec-
tion 6). We finish with a detailed analysis of the simplest
case of a dynamic neural network, two interconnected dy-
namic activation variables (Section 7).

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.
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2 Principles of neural coding

Neural processing is based on the influence of intercon-
nected neurons on each other. Communication between
two connected neurons occurs in the form of action poten-
tials, short bursts of electricity propagated along the nerve
fibers, usually called spikes. As the shape of the voltage
fluctuation is largely identical for each spike, the specifics
of any low level processes can safely be disregarded here
[8].

The stereotypical nature of spikes means that neural
processing must be based on the properties of spike trains
rather than single spikes. Which aspect of the spike trains
is relevant has been discussed controversially. Candidates
based on precise timing, such as the exact length of inter-
spike intervals, are rejected by many researchers, who ar-
gue that the necessary temporal fidelity is ruled out by
the magnitude of random variability in spike timing (e.g.,
[9, 10]; for review see [11]). There is indeed little support
for a constitutive role of spike timing in neural processing
(apart from special cases; e.g., [12]; for review, see [13]). We
therefore adopt the common view that the relevant func-
tional aspect of single neuron activity is spike rate, that
is, the number of spikes per unit of time. This is often re-
ferred to as rate code and is based on the assumption that
there is a consistent relationship between the evolution of
a neuron’s spike rate over time and that of some property
of the sensory environment, motor action, or other men-
tal processes. In other words, spike rate represents certain
aspects of these events or conditions.

Depending on the brain region, spike rate may in fact
be related to all kinds of sensory, motor, or cognitive pa-
rameters. One common case is physical space. The clas-
sical concept of receptive fields [14] captures the fact that
neurons in sensory brain areas only respond to stimuli
within specific spatial regions of the sensory surfaces.
When recording the spiking activity of a neuron in visual
cortex, for instance, it is common to find an increase in
spike rate whenever a dot of light is present within a cer-
tain region of the visual field. Depending on the exact area
of the visual cortex, this region may span less than a de-
gree of visual angle or include half the visual field. If the
association between the presence of the stimulus in this
region and the neuron’s spike rate is consistent over trials,
we may say that the spike rate of this neuron represents
whether there is a visual stimulus present in the cell’s re-
ceptive field.

This statement can be further refined through addi-
tional measurements and experimental conditions. For in-
stance, we may map out a neuron’s spike rate for each stim-
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ulus position, plotting the so called receptive field profile
[15]. Such experiments have shown that receptive fields
have inner structure. For example, a common scheme in
early visual cortex is that a neuron responds with maxi-
mum spike rate for a specific stimulus position and with
lower and lower spike rate as the stimulus is moved away
from that position. In this case, visualizing the receptive
field profile by plotting spike rate against retinal space
will result in a bell curve similar to a Gaussian. Given this
curve, we may say that the neuron’s spike rate does not
simply represent the presence versus absence of a stimu-
lus in its receptive field, but rather that different spike rates
represent different distances of the stimulus from the peak
of the receptive field profile.

Neurons with similar behavior are found throughout
the sensory cortices, such as in the somatosensory cortex,
where neurons have restricted receptive fields on the skin
surface [14]. On the other hand, neural responses in mo-
tor areas are dependent in a similar manner on the spatial
properties of movements. In the motor cortex, for exam-
ple, the spike rate of many neurons is maximal for partic-
ular directions of hand movement and decreases with ris-
ing distance of the current movement angle from that ‘pre-
ferred’ direction [16, 17]. Another example is provided by
the superior colliculus, a subcortical region, where neu-
rons preferably respond to specific spatial targets of sac-
cadic eye movements [18].

The fact that cells associated with motor action show
similar spatial response properties as sensory cells hints
that receptive field profiles are merely a special case of a
more universal response scheme. The more general con-
cept is known as neural tuning and applies to non-spatial
feature dimensions just as it applies to physical space in
the case of receptive fields. The non-spatial analogues to
spatial receptive profiles are called tuning curves, which
also tend to take bell shapes. In visual cortex, for example,
many neurons respond strongly to lines of a particular ori-
entation within their receptive fields, while they spike less
for other orientation angles [19, 20]. Other examples are
color [21] and shape [22] tuning in visual cortex, tuning to
the direction of visual motion [23], pitch tuning in auditory
cortex [24], or tuning to the orientation of tactile objects in
somatosensory cortex [25]. These examples are prototypi-
cal for conditions throughout the brain, in that the basic
principle of restricted sensitivity and preferred values re-
mains unaltered regardless of the domain or brain area.
Note, however, that tuning curves may also take more in-
tricate shapes, such as differences of Gaussians (e.g., in the
case of complex cells in visual cortex; [26]) or even more
complex ones, particularly in ‘higher’ cortical areas. An
additional complication is that neurons are typically sen-
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sitive to and tuned along multiple dimensions at the same
time, such as the two dimensions of retinal space, color,
and orientation.

Finally, there is an additional scheme of neural re-
sponsivity which, confusingly, is often referred to simply
as ‘rate coding’ (disregarding that neural tuning as well
spike rate plays a decisive role). It is characterized by a
simple monotonic mapping between the underlying di-
mension and spike rate, and is more commonly found in
the peripheral nervous system than in the brain. For ex-
ample, the spike rate of pressure sensors in the skin in-
creases with the degree of pressure and decreases as pres-
sure is reduced [27]. A similar relationship holds between
the spike rate of spinal motor neurons and muscle force
[28]. In the brain, this ‘pure’ rate coding is often mixed
with tuning properties in the same neurons (e.g., [29, 30]).
For example, visual neurons tuned to orientation respond
with increased spike rate to increases in stimulus con-
trast, while their orientation tuning properties remain un-
affected by this [30]. Keeping all other parameters constant
while mapping out the spike rate for each contrast value
thus yields a monotonically increasing curve. The funda-
mental difference of this response scheme to neural tuning
is that each value of spike rate represents a different value
of the parameter dimension, so that in principle a single
neuron is capable of signaling any given value along that
dimension. In neural tuning, in contrast, each neuron only
signals the distance of the current value from its preferred
value.

This difference between rate coding neurons and
tuned neurons has important consequences for the nature
of representations supported by each scheme. Disregard-
ing the problem of noise in neural firing, a single rate cod-
ing neuron is sufficient to represent every possible value
along the underlying dimension. In the case of tuned neu-
rons, representing a specific value along the underlying di-
mension rather than only a distance requires multiple neu-
rons, each of them tuned to a different preferred value [31].
In this arrangement, a different subset of cells responds
for each parameter value, determined by the overlap of the
current value with the cells’ tuning curves. Specific param-
eter values are then represented by which neurons are ac-
tive or, in other words, by the location of activity within the
array of neurons, rather than directly by spike rate. For this
reason, the scheme is known as space coding.

The notion of space coding is supported by the fact
that there is typically an abundance of differentially tuned
neurons for each sensory or motor dimension. This is es-
pecially obvious in regions where neurons are spatially
ordered to conform to the structure of the dimensions to
which they are tuned, which is known as topographical
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organization. In primary visual cortex, for instance, neu-
rons at neighboring horizontal positions of the cortical
sheet have systematically displaced receptive fields in reti-
nal space [32, 33]. This map of retinal space is interlaced
with orderly maps of stimulus orientation for each retinal
location [32, 34, 35]. Topography is not strictly necessary
to enable space coding, though, as has been shown in the
motor cortex [17, 29]. This is because a neuron’s position
in the cortex does not necessarily correlate with its con-
nectivity, which is the decisive factor for determining its
role in the larger context of the network. Although topog-
raphy may enable more economic connections, a neuron
may also receive synapses from and send synapses to spa-
tially remote neurons.

Note that the paramount relevance of connectivity is
a general principle of neural organization. What a neuron
‘does’ — which stimuli it responds to, which effectors it af-
fects, and the exact nature of such relationships — depends
solely on its connectivity, say, from which set of retinal re-
ceptors it receives input, or which muscle fibers it is physi-
cally connected to. Even complex response patterns, such
as neural tuning, are brought about by specific patterns
of connectivity (e.g., orientation tuning; see [26]). From
the perspective of an external observer, one might say that
connectivity comes closest to being the one aspect of neu-
ral organization that assigns ‘meaning’ to the activity of
neurons, as it determines the co-variation of neural activ-
ity with other variables in the world.

3 Neural activation patterns

The first step towards analyzing the connectivity struc-
ture in neural networks is descriptive. One lesson from the
body of neurological research is that a wide range of sen-
sory stimulus patterns are related to spatial patterns across
whole regions of neurons rather than activation patterns
of single neurons. Relatively simple features like the red-
ness currently present in some region of the retina can be
directly linked to the firing rate of a single neuron. For
more complex features like color, the only relationships
that have been successfully established are those with ac-
tivation patterns over whole populations of neurons.

How can the structure of the relationship between sen-
sory stimulus patterns and spatial patterns of neural ac-
tivation be analyzed? How is the transformation from fir-
ing of photoreceptors on the retina to localized activation
patterns in topographic color maps in the visual cortex
realized? One attempt to answer these questions has led
to the so-called connectionist models of neural activation.
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Figure 1: Sigmoid function from Equation 2 rising smoothly from 0
to 1as a given threshold ug is approached. The slope at the thresh-
old is defined by the parameter j3, larger -values correspond to
steeper growth.

These models attempt to explain the functional features of
neural networks mathematically. Many neurophysiologi-
cal details, on the other hand, are treated as implementa-
tion quirks and neglected. The following paragraphs pro-
vide a short overview of this approach and what can be
accomplished with connectionist models.

The connectionist approach starts out with a func-
tional description of a single node of activation, often sim-
ply referred to as a neuron. The state of this elementary
unit of computation is expressed by a single parameter
u, called the activation variable. This activation variable
of a connectionist neuron can be loosely interpreted as
the firing rate of a biological neuron. This is dangerous,
though, as such detailed identifications inevitably break
down at some point. For instance, the activation variable
of the connectionist neuron can be negative, while the fir-
ing rate cannot. One should keep in mind that while some
of the main functions of neural substrates in the brain are
captured remarkably well by connectionist models, direct
identifications of mathematical terms with biological im-
plementation details are problematic and bound to break
down at some point.

How can the connectivity patterns in networks of such
nodes represent complex features and perform high-level
tasks such as recognizing objects from a visual input pat-
tern on the retina? Consider neural populations sensitive
to the orientation of edges within their receptive field, sim-
ilar to what has been found in the visual cortex [26]. As
a simple example, take two neurons with preferred di-
rections of 0 and 90°, encoding the presence of horizon-
tal and vertical bars in their common receptive field. Now
add another neuron that receives synaptic input from both
these orientation detectors given by

@)

Here the weight parameters w; represent the strength of
the connection from u; into v. The o is a gating function
that is O for small values, 1 for large values, and rises

v =0o(wiuy + wals).
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Figure 2: Simple example of a connectionist network with two input
neurons u;, i = 1, 2, and one output neuron v. The strength of the
connections are determined by the weight parameters w;.

monotonously in between. This functional shape is called
sigmoid, as it resembles a form of the greek letter sigma
(compare Figure 1). The exact mathematical function used
for this transformation is somewhat arbitrary as long as
the described characteristics are met; a frequently used

form is
1

Tr e @

What kind of features can be encoded by the neuron v,
receiving synaptic input from u; and u,? With the proper
parameter settings, v will be active when both u; and u;
provide input of a certain strength, i.e. when both horizon-
tal and vertical bars are present in the receptive field. If the
size of the receptive field is small enough, then any such
bars will cross and form a corner — the high-level neuron v
is a corner detector. A diagram of this network is shown in
Figure 2.

This network is a simple example of a perceptron and
was first introduced by Rosenblatt [36] as a model of infor-
mation storage in neural systems. Its function is that of a
classifier, as it basically makes one decision: is a certain
pattern present in the input, or not? In our example, the
system decides whether it perceives a corner or not.

The perceptron sparked increased interest and re-
search activity in neural networks. Researchers asked
what kind of classifications could be done by perceptrons,
and how. While the simplistic example shown above can
easily be parameterized by hand to perform a desired func-
tion, this quickly becomes infeasible for more complex
cases. Indeed, perceptrons appealed to many people be-
cause it is possible for them to autonomously learn a given
classification problem [37].

As for the what question, a theoretical analysis
showed that regardless of the number of neurons, percep-
trons are limited to classification problems that are lin-
early separable, i.e. a hyperplane can be found in the input
space such that all members of one class lie on one side

o(u) = 0p,,(u) =
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Figure 3: A connectionist network with three input neurons, two
output neurons and one hidden layer containing five neurons.

and those of the other class lie on the other side [38]. This
limitation can be overcome by endowing the neural net-
work with a richer connectivity structure, like adding lay-
ers between the input and output neurons, usually called
hidden layers. Figure 3 shows a schematic of such a net-
work, often referred to as multi-layer perceptron.

The computation or information processing capabil-
ity of a single neuron is limited to transforming its inner
activation level to an output value. While this may seem
almost simplistic when seen in isolation, the nonlinear-
ity of this transformation is an essential ingredient for the
processing power of the network as a whole. It enables a
perceptron with the appropriate connectivity structure to
make decisions based on features that are present in an
input pattern, but not salient. Artificial neural networks
have been successfully applied to a wide range of different
problems [37].

One defining feature of connectionist networks like
the one shown in Figure 3 is that the neurons are orga-
nized in layers. When an input pattern is chosen for the
lowest layer, the activation values subsequently be com-
puted for the higher layers until the output layer at the
top is reached. The flow of information in this layout is
unidirectional from bottom to top, giving rise to the name
feed-forward network. The output pattern is determined by
a combination of the input pattern and the connectivity
structure within the network. While this is a purely deter-
ministic mapping, it is highly nonlinear due to the gating
sigmoid in the activation function of each single neuron.
The specifics of the mapping from input to output pattern
performed by these networks are encoded in the connec-
tion weights w;;, hence the term connectionist.

In general, feed-forward networks are very good for
tasks that require a direct mapping from an input to a
desired output pattern, like pattern recognition or func-
tion approximation. In the nervous system, though, the as-
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sumption of uni-directional flow of activation is only oc-
casionally satisfied. Most neural systems make decisions
that are not uniquely determined by the input pattern, but
factor in the internal state of the system itself. One obvious
example for this is working memory. If an object is pre-
sented and then hidden in one of two identical contain-
ers in plain sight, we have no problem finding it, because
we saw where it was hidden and remember it. Though
seemingly automatic, this ability is learned in infancy and
can be perturbed in very young babies [39]. This informa-
tion is present neither in the visual input pattern, because
the two containers look the same, nor in the connectivity
structure, as synapses cannot adapt this fast, so it must
be represented in the current pattern of activation of some
sub-network.

In order for models to deal with these phenomena, we
need to give up the feed-forward limitation and introduce
recurrence and feedback into the network. The activation
of a given neuron can in principle depend upon the output
of any other neuron in the network, not only ones that are
located in layers above it. In other words, these networks
contain loops.

Neurologically, this is the normal case. It was esti-
mated by Braitenberg that over 95% of all connections
between cortical neurons are not part of a feed-forward
stream [40]. In the highly interconnected central nervous
system, it takes only between three and five synapses to
get from any neuron to any other neuron. The typical neu-
ron in the cortex receives about 10 000 synaptic inputs and
projects to a similar number of other neurons. It is not sur-
prising that feed-forward networks can model only a small
fraction of the functionality of such a system.

4 A neuron in time

Systems whose state depends not only upon some other
variable but also upon their own past are abundant in na-
ture — indeed the case of a physical system not depending
on time makes sense only as a rare limit case where the
system moves so fast that dependence upon past states are
very hard to measure: the amount of light in a windowless
room directly depends upon the state of the light switch,
but only if the electrodynamics of the power connections
and the time it takes for the filament in the light bulb to
heat up and start glowing are neglected.

How can the dependence of a system upon the past be
represented in a functional description? How can the ac-
tivation level of a neuron be affected by the state of other
neurons and its own history? One way to do this is to in-
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Figure 4: Example trajectories for neural activation variables with
two different categories of change rate. The system with a constant
rate of change from Equation 5 grows in a straight line (red). The
system with only random fluctuations from Equation 6 grows in the
pattern of a random walk (green and blue for two different noise
parameter settings).

troduce a functional dependence of the change of a neural
activation variable upon its current state. The change of
the activation is expressed by its temporal derivative

o) )
The dependence of the change of neural activation on a
synaptic input is then simply written as

v(t) = wo (u(t)), (4)

where as before u, v are the activation variables of two
neurons and the weight parameter w gives the synaptic
strength.

How does the activation level of such a dynamic neu-
ron develop in time? Assume the simple case of a constant
stimulus. For the neural activation variable u that changes
according to

u(t) =C, (5)

with some constant C, the time course of the activation
variable u(t) will grow unchecked, as shown in Figure 4
(red line).

As another example, assume the case of a neuron that
does not receive input with a well-defined structure over
time, but is subject to random activations

u(t) = ¢, (6)

where ¢ is gaussian white noise. Two example time courses
of this system are shown in Figure 4 (green and blue).
These trajectories also tend away from the initial state. It
can be shown that for longer periods of time, the expected
distance from the initial state grows larger.
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It is obvious how this is problematic: for the not un-
usual case of a constant synaptic input and given enough
time, the activation of the receiving neuron would grow in-
finitely large. Even in the absence of constant input, the ac-
tivation of neurons that are only subject to random fluctu-
ations would also tend towards infinity. From a dynamical
systems perspective, this kind of behavior is called unsta-
ble. Obviously this is at odds with the actual dynamics of
neural activation variables: in the absence of constant in-
put, a neuron is usually at a resting level. Driven out of this
state by transient random perturbations, the neural activa-
tion relaxes back towards the resting level very soon.

This resetting force that drives the neural activation
towards the resting level can be modeled as a factor that
depends upon the current activation relative to the resting
level h

u() = —(u(t) - h) = @

where h is usually negative. The rate of change u(t) is pro-
portional to the difference u(t) - h between the activation
and the resting level, but points in the the opposite direc-
tion: when the activation is larger than the resting level,
the rate of change is negative, and vice versa, so the rate
of change will always drive the system back towards h. The
dynamics of this system are illustrated Figure 5.

—-u(t) + h,

5 Stability and relaxation time

Points to which the activation variable will always return
after small perturbations are called stable fixed points, or
attractors of a system. For a noisy information processing
system like the brain, stability is a very important feature:
to be used reliably in mental operations, an internal state
must be reasonably stable — otherwise the whole system
would fluctuate and lead to erratic behavior.

Things can be more stable or less stable. Take a person
standing upright upon a support surface of varying size:
the mechanical system of the body in space is in an attrac-
tor that is maintained by coordinated muscle forces coun-
teracting the pull of gravity. Now assume that the support
surface is subjected to small perturbations, e.g. abrupt
movements with fixed amplitude in a random direction. If
the support surface is large, the subject will have no trou-
bleretaining balance after a medium-sized perturbation. If
the support surface is very small, though, the same pertur-
bation might be sufficient to make the subject fall, and if
he does remain standing, he will have much more trouble
recovering from the movement.

Let us take a closer look at the recovery process after
a perturbation. The three example trajectories of the lin-
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Figure 5: Dynamics of a single neural activation variable (Equation 7). Panel (a) shows the phase plot (blue), the grey arrows sketch the vec-
tor field over u. Note how the length of the arrows corresponds to the value of the plotted function at that point; both vanish at the resting
level h. Panel (b) shows three example trajectories relaxing to the resting level h from different initial values. The time interval 7 after which
all trajectories have reduced the initial distance to the attractor h by 36.8% is marked by a dashed vertical line.

ear system (7) shown in Figure 5 can be interpreted as re-
laxation to the attractor at h after perturbations of varying
size. Note that the shape of the curve is similar for all three
trajectories — it has the same shape, only scaled. This scale
solely depends on the size of the initial perturbation. For
a general linear system of the form

(8)

the relationship between time and distance to the attractor
can be described by the exponential function

u=a(-u+h)),

u(t) = e (uo - h) +h, 9)

where ug is the initial state at t = O [41]. The time it takes
for the system to reduce the perturbation by a fixed ratio r,
say half of the initial distance from the attractor (r = 0.5),
is the same in all three cases. It can be shown that this time
only depends upon the parameter a. As a convention, this
ratio is taken to be r = e™! ~ 0.368, and it can be shown
that the time needed for a system of the form (8) to reduce
a perturbation to r = 36.8% of the initial value is exactly
1. This is called the relaxation time of a system.

These notions about relaxation time allow us to take
a more formal look at the stability of a state like upright
stance on a narrow support platform or the resting level
of a neural activation variable. Intuitively we called a state
more stable if the system returns to it faster after a pertur-
bation. Defined this way, a measure of stability is given by
the reciprocal of the relaxation time. For the linear system
in Equation 8, the stability of the attractorat his (%) Toa

It is important to note that for the system in Equation
8, the parameter a corresponds to the slope of the phase
plot in Figure 5a. A higher a-value means that the same
perturbation will elicit a larger change back towards the
attractor. The state changes faster, so relaxation time is

shorter and the system is more stable. The slope of the
phase plot is a good way to quickly asses the stability of
an attractor.

This formal notion of stability even allows us to gen-
eralize the notion of an attractor by considering attrac-
tors with negative stability. Such a point corresponds to a
zero crossing of the phase plot with positive slope. If the
variable is exactly at that point, the rate of change is zero
and the system will stay there indefinitely. Once it deviates
slightly to one side, say becomes slightly larger, the rate of
change becomes positive. This means that the activation
will grow further, resulting in still further deviation, and so
on — the state will grow with increasing speed. Such points
are called repellors, because the activation tends to move
away from them.

For the relaxation time of neural activation variables,
we use the convention of always moving the parameter
that determines it to the left side of the equation

Tu(t) = —(u + h). (10)

Comparing Equation 10 with Equation 8, we see that in this
form the relaxation time of the neural activation variable
u is given by 7, as indicated in Figure 5b.

6 Varying inputs

Usually the input that a neuron receives is not constant but
has a distinct time structure. Any external stimulus can
be written as an additional term s(t) adding to the rate of
change of the neural activation

Tu(t) = —u(t) + h + s(t). (11)
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As a simple first case, consider a stimulus that is constant
at first, then abruptly changes to a different value - for in-
stance a photoreceptor when the room light is switched on.
Figure 6b shows the trajectory of the activation variable u
in these conditions. After the stimulus appears, u leaves
the resting level h and relaxes to a new stable state h + s;.
A hit later, the stimulus is slightly reduced, and again the
activation variable relaxes to the new attractor h + s,. The
phase plot in Figure 6a provides more insight into these
dynamics. Before the stimulus is presented, the system is
the same one as before, corresponding to the dotted line.
Turning on the stimulus adds a constant term to the rate of
change i1 everywhere, essentially shifting the phase plot
upwards. This results in the zero-crossing moving to the
right along the u-axis from h to h + s;. This new fixed point
has the same stability characteristics as the old fixed point
at h. Reducing the stimulus results in a downward shift of
the phase plot, the zero-crossing moves to the left to the
new value h + s5.

Note from the point of view of other neurons receiving
activation from this one, only the first change is relevant.
The blue line in Figure 6b shows the gated output o (u(t))
of the neuron. It switches from O to 1 after the stimulus is
presented initially. Although the stimulus is reduced later,
it is still sufficiently strong for the attractor to remain in
the positive region of the activation variable, so the neuron
remains in the on-state.

This system concludes what can be called the dynamic
version of the feed-forward networks. While the systems
presented so far have temporal structures that are distinct
from the stimulus pattern, this difference is limited to a cer-
tain sluggishness in tracking the stimuli: the output pat-
tern takes some time to emerge, but it is still uniquely de-
termined by the input pattern. To loosen this bond and al-
low internal states to play a role, we need to introduce re-
current connections and feedback effects.

The simplest possible recurrent network is a single
neuron whose activity feeds back to itself, called self-
excitation. Figure 7 shows a diagram of this system with
added input. The dynamics of the activation variable u of
this single neuron are given by

Tu(t) = —u(t) + h+ s(t) + wo (u(t)), (12)

where the last term represents the self-excitatory input
with weight w. Figure 8a shows a phase plot of this sys-
tem for a medium-strength stimulus. The phase plot shows
clearly that this system is not linear, due to the nonlinear
gating function o(u). In most regions of the u-line, though,
where the sigmoid is almost constant, the phase plot is ap-
proximately linear. In these cases where the self-excitatory
term is either negligible because the neuron is inactive,
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or resembles a constant input because the neuron is ac-
tive, the dynamics of this system are very similar to the dy-
namics of a neuron with constant input that we analyzed
above. For values significantly below zero, the dynamics
are similar to the case without input, while for values sig-
nificantly above zero it resembles the case with input — the
dynamics of both these cases are sketched again as dotted
lines in Figure 8a. Around zero, where the sigmoid is nei-
ther clearly on or off, the dynamics are different from these
linear cases.

Several example trajectories are shown in Figure 8b.
We can see that for initial values significantly below zero,
the activation variable relaxes to h + s, while for the values
significantly above zero, it relaxes towards h + s + w. These
two values are both attractors of the self-exciting neuron
with the given stimulus s. Which attractor the system re-
laxes to is determined by the initial state: if the neuron is
active, it will stay active, if it is inactive, it will also remain
so. A system like this with two attractors is called bistable.
This bistable dynamic neuron is a first example of a sys-
tem that can account for hysteresis effects: the stable state
that the neuron relaxes to depends upon the history of the
activation state.

How does this single neuron with self-excitation react
to varying input? There are two other distinct situations: a
very strong input, and no input at all. Exemplary phase
plots for these cases are shown in Figure 9a (solid blue
lines). The phase plots reveal that in these cases of no stim-
ulus and strong stimulus, the stable states of the single
neuron with self-excitation are similar to those of a single
neuron without self-excitation. In both cases, there is ex-
actly one stable state, which is significantly above thresh-
old in the presence of stimulus and significantly below
threshold with no stimulus. The exact position of the sta-
ble state in the presence of input might be different, but re-
member that the activation gets transformed by a sigmoid,
so from a functional perspective this difference is irrele-
vant.

Depending on different stimulus strength, we have de-
termined three cases in which the dynamics of the neural
activation variable is significantly different: two monos-
table cases for no (or very weak) stimulus and strong stim-
ulus, and the bistable case for medium-strength stimuli.
Let us now consider a stimulus that is not constant, but
starts very weak and only slowly gains strength over time.
In the phase plot, this corresponds to the whole curve
slowly shifting upward, as sketched by the dashed blue
lines in Figure 9a. At first, nothing much happens, the sys-
tem is monostable. As the stimulus gets stronger, the apex
in the positive region crosses the u-axis (orange dot), cre-
ating two new zero crossings that did not exist before: a
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Figure 6: Dynamics of a single neural activation variable with stimulus (Equation 11). Panel (a) shows the phase plot for two different stim-
ulus strengths s; (solid) and s, (dashed). The grey arrows indicate how the attractor is shifted from the dynamics without stimulus (dotted
line) to new values determined by the stimulus strength. The example trajectory plotted in panel (b) shows how the activation variable u
(red) tracks the stimulus by relaxing to the new attractor after each shift. The blue line shows the profile of the gated output o(u).

Figure 7: Connectivity diagram for a single dynamic neuron with
self-excitation strength w and external stimulus s (Equation 12).

second attractor appears, the system is now bistable. As
the stimulus gains more strength, the apex in the nega-
tive region also crosses the u-axis (magenta dot), and two
zero-crossings disappear, the system is monostable again.
These different cases that depend upon values of the stim-
ulus parameter are called regimes of the system. The single
neuron with self-excitation has two monostable regimes
and one bistable regime.

What happens to the state of the neural activation
variable as the stimulus strength increases and the system
moves through these regimes? When the stimulus is ab-
sent, the neuron is inactive, as that is the only stable state.
As the system enters the bistable regime, the second attrac-
tor appearing in the positive region, the activation variable
still remains at the first attractor in the negative range: this
is still a stable state and small perturbations due to noise
are resisted by the system. Only after the stimulus gains
sufficient strength for the first attractor to disappear will
the activation variable leave the negative region: the rate of
change 1 over this range is consistently positive in that re-
gion, so u will grow until it relaxes to the attractor. The tra-
jectory shown in Figure 9b (solid line) illustrates this pro-

cess. First the activation variable increases smoothly along
with the simulus. Then the attractor in the negative region
disappears and the state rapidly relaxes to the attractor in 25
the positive region. When the stimulus pattern is reversed
in time, i.e. the stimulus decreases, the activation variable
follows a markedly different pattern: it stays on over the
bistable regime and only turns off when the attractor in
the positive region disappears, as indicated by the dashed 30
line in Figure 9b.

The appearance of new stable states as system param-
eters change, or the disappearance of old ones, is called
a bifurcation of the system. The appearance of new attrac-
tors is usually a quiet process, because the system is al- 35
ways in different attractors and will only relax to the newly
created one when it is driven out of the current state by a
strong perturbation or when that state becomes unstable.
In contrast to the appearance of an attractor, the loss of sta-
bility of a previously attractive state (as happened to the off 40
state in the example above) has observable signatures.

The process described in the example above, where
a stimulus gains strength until the off-state of the neu-
ral activation variable becomes unstable and the system
relaxes to the stable on-state, is called the detection in- 45
stability. The stimulus has been there for a while, slowly
and continuously gaining in strength. The loss of stabil-
ity of the off-state and subsequent relaxation to the on-
state marks a quasi-discrete event in time that corresponds
to the detection of the stimulus by the neural activation 50
variable. It is important to note that this detection event
is brought about by the nonlinear dynamics of the acti-
vation variable, transforming the continuously changing
stimulus parameter into a discrete categorization of there
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Figure 8: Dynamics of a single neural activation variable with self-excitation (Equation 12) under a medium stimulus. Panel (a) shows the
phase plot (solid) and as a reference the phase plots for the system without self-excitation, with and without stimulus (dashed). The grey
arrows sketching the vector field show how the direction of the rate of change switches between negative and positive at the repellor 0.
Panel (b) illustrates how several example trajectories starting above (green) and below zero (red) relax to different attractors.
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Figure 9: Dynamics of a single self-exciting neuron with systematically increasing stimulus strengths. The phase plot (a) is given for the
limit cases of no stimulus and a strong stimulus (solid lines) and three intermediate values (dashed). The attractors and repellors are in-
dicated by the green and red dots for each case, the magenta and orange dots are a pair of attracting/repelling fixed points that are on
the verge of appearing (or disappearing) in a bifurcation. Panel (b) shows two example trajectories for increasing (solid) and decreasing

(dashed) stimulus, the latter plotted reversed in time.

and not there. For this reason, we also say that the system
makes a detection decision.

We have seen that for medium-strength stimuli, the
state of the single self-exciting neuron depends upon the
activation history, active neurons remain active, and vice
versa. This implies that the direction in which the stim-
ulus parameter moves through the bistable regime deter-
mines the state of the activation variable. Indeed, looking
at Figure 9b, we can compare the time profiles of the acti-
vation variable for two different cases: one where the stim-
ulus was absent and then slowly turned on, and the op-
posite case where it was present and then slowly turned
off. In the monostable regimes, the trajectories are approx-
imately equal, because the stable state is uniquely deter-

15 mined by the stimulus strength. In the bistable regime,

though, this resemblance is broken by the dependency of
the state upon the history of the activation variable. For
the increasing stimulus, the activation variable is in the
off -state in the bistable regime, while for the decreasing
stimulus, it is in the on-state. As the stimulus decreases,
the on-state loses stability as the attractor in the positive
region disappears, the state relaxes to the off-state in the
now monostable system.

Analyzing the dynamics of the neural activation sys-
tem with self-excitation given in Equation 11, we have
systematically varied the input parameter s(t), while as-
suming the self-excitation parameter w is fixed at a
medium value. What happens if that value is much
larger or smaller? For small self-excitation strengths, the
system is barely different from the case without self-
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Figure 10: Dynamics of a single neuron with strong self-excitation (Equation 12). Panel (a) shows the phase plot (solid) without external
stimulus, for comparison the phase plot of the same system with medium self-excitation is repeated (dashed). Panel (b) shows an example

trajectory for a case in which the stimulus is turned on and off again.
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Figure 11: Connectivity diagram for two dynamic neurons with mu-
tual inhibition receiving the same stimulus (Equation 13).

excitation, which we analyzed in detail above. For strong
self-excitation, the system behaves differently. Figure 10a
shows the phase plot for the system with strong self-
excitation with and without a stimulus. When a stimulus
is present, the system has one attractor in the positive re-
gion of the activation variable, where the neuron is active.
If no stimulus is present, though, the picture is changed:
the self-excitation alone is sufficiently strong to create a
second zero crossing of the phase plot in the positive re-
gion of u, making the system bistable with one on-state
and one off -state.

Even in the absence of input, this system with strong
self-excitation has a stable state in which the neuron is ac-
tive. The implications of this are shown by the example
trajectory given in Figure 10b. As before, the neuron is in-
active at first, then the stimulus is turned on for a short
while, activating it. Note the sharp increase in the slope
of the trajectory as it crosses the zero-line: this is where
self-excitation kicks in, adding a large term to the rate of
change of u, so it rises faster than before. When the stimu-
lus is removed, the attractor in the positive region does not
disappear — the strong self-excitation is sufficient to keep
the neural activation positive even without the presence of

a stimulus. This effect can be seen as a basic form of mem-
ory, the neural activation generated by a stimulus that was 25
there in the past but not any longer. This is another, even
stronger example of a dynamic neural system that is not
purely input driven but capable of sustaining stable repre-
sentations of stimuli that are no longer present.

7 Connected dynamic neurons 30

In the last section we introduced self-excitation as the sim-
plest form of feedback. By adding this connection, single
activation variables can already model systems that are ca-
pable of making rudimentary decisions driven by a combi-
nation of internal and external states. In this section, we 35
make another step towards a connected system of dynamic
neural activation variables by taking the simple case of
two connected neurons and analyzing the patterns gener-
ated by this system in detail.

A connection between two neurons is always directed, 40
the activation of one neuron is used as a stimulus for the
second neuron. As before, the stimulus strength is the
activation of the neuron transformed by a sigmoid and
multiplied by a parameter representing the connection
strength. This system is represented by 45

Tll:ll(t) = —ul(t) +h+ S(t) + W120'(U2(t)) + {1:

(13)
ToUr () = —ux () + h + s(t) + W210'(U1(t)) + &,

where we use two activation variables u; and u; receiv-
ing the same stimulus s. The second term from the right
in each equation corresponds to the connection from the
other neuron, the indices of the weight parameter w;, in-
dicates that u; is receiving a stimulus from u, with this 50
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strength, and respectively u, is receiving input from u,
with connection strength w,; — the index of the receiving
neuron comes first, the index of the stimulating neuron
second. In the example we discuss, these parameters will
be negative, meaning the neurons inhibit each other. We
refer to these as interaction terms. The rightmost terms ¢;
represent Gaussian white noise.

To understand the dynamics of this system of two neu-
ral activation variables with mutual inhibition, we start
by looking at one variable alone. For u;, excitation com-
ing from u; is indistinguishable from excitation by an ex-
ternal stimulus — what matters is the total strength of the
input. If we treat this ‘total stimulus strength’ as one pa-
rameter, this is the same system as the one given by Equa-
tion 11, illustrated in Figure 6. By the detailed analysis
above, this system has a single attractor at h + s;, where
s1 = s(t) + w120 (ux(t)) is the total stimulus strength.

The important thing to note here is that the location of
the attractor for u; depends upon the state of u,. Because
the connection between the neurons is gated by the sig-
moid, there are essentially two distinct cases to consider:
the other neuron is on, or it is off. In the latter case, the
interaction term will be approximately zero. If u, is on,
though, the inhibition it generates will cancel out the exci-
tation from the external stimulus, pushing the fixed point
of u; down below zero. So if u, is on, the only stable state
for u; is off. As the connections are symmetric, the same
holds for u,. Because of the strong mutual inhibition be-
tween them, u; and u, cannot be on at the same time.

The dynamics of this system are illustrated in Figure
12 by plotting vector fields of the direction and magnitude
of the rate of change at possible states (u1, u) of the sys-
tem. Panel (a) shows the case where no external stimulus
is presented. The system has a single attractor in which
both neurons are off (green dot). If a sufficiently strong ex-
ternal stimulus is given, this picture changes to the case
described in the previous paragraph: due to the mutual in-
hibition, there are two stable states, in each of which one
neuron is on and the other one is off.

What kind of trajectories arise from this system? Con-
sider the usual case where both activation variables are
off when a stimulus appears. Figure 13b shows trajecto-
ries from this setup for both neurons. After the stimulus is
switched on, both activation variables rise at first. In this
period, both systems get excitation from the stimulus, but
no inhibition from the other neuron yet, corresponding to
the dashed line in Figure 13a. As the activation variables
approach the threshold of the sigmoid, though, the picture
changes: both neurons are switching to the on state and
start to inhibit each other. From the phase plot in Figure 12
we know that this state cannot be stable, though.

DE GRUYTER OPEN

How is this symmetric stand-off between the two acti-
vation variables resolved? The simple solution is that who-
ever falters first will lose. A slight difference in activation,
say u, slightly lower than u;, translates into a difference
in inhibition of the other neuron. Note that in this transi-
tory region the sigmoid is approximately linear and neu-
rons are neither on nor off. Less inhibited than u,, the acti-
vation of u; will decrease slower than u,, which increases
the difference in activation. After a short time, u, drops be-
low threshold, reducing the inhibition of u; to almost zero.
Now with only excitation from the positive external stim-
ulus, u; relaxes to its stable on-state. This is exactly what
happened in the example trajectory shown in Figure 13b.
With inhibitive connections of equal strength, which neu-
ron turns out to be active and which passive is essentially
down to random chance from noise.

This system of two neurons with mutual inhibition
is another example where the state is not purely input-
driven. Presenting a stimulus moves the system into a
bistable regime, random fluctuations determine which at-
tractor the state variable relaxes to. Once it has relaxed,
though, the system dynamics stabilize the state variable
at that value against further perturbations. We say that the
system makes a stable selection decision.

With different parameter settings, this same system of
two interconnected neurons can generate oscillatory solu-
tions [42]. This is a simple model of a central pattern gen-
erator (CPG), which have been widely used to generate lo-
comotor patterns for legged robots [43].

8 Conclusions

We have presented a detailed analysis of dynamic neu-
ral activation variables. For a single neural node, we dis-
cussed the stability properties and analyzed the depen-
dency upon the external stimulus parameter. In the case of
self-excitation, we identified the bifurcation between the
mono-stable and the bistable regimes and discussed how
these bifurcations correspond to detection decisions. The
fundamental characteristics and properties of networks of
neural nodes were demonstrated using the simple exam-
ple of two interconnected neurons with mutual inhibition
and showed how increasing stimulus leads this system
through a bifurcation from one to two stable states, the
choice between which corresponds to a selection decision.
These features provide the elementary building blocks to
design cognitive architectures for robotic systems that con-
nect the available sensory systems to the effectors with
which the agent acts upon the world.
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Figure 12: Phase plot of two activation variables in a two-dimensional state space. The vectors indicate the direction and magnitude of the
rate of change at the state where they start. Panel (a) shows the case without external stimulus with one fixed point attractor (green dot),
while in panel (b) the external stimulus is active, resulting in two fixed point attractors.
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Figure 13: Panel (a) shows example phase plots of one out of two neurons with mutual inhibition (Equation 13) for three different parameter
settings. With no stimulus and no inhibition from the other neuron (solid line) the attractor is at the resting level. Presenting a stimulus
(dashed line) shifts the attractor to the positive region. Inhibition from the other neuron (dash-dotted line) shifts it back to the negative
region again, as indicated by the grey arrows. Example trajectories for both neurons are shown in panel (b).
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