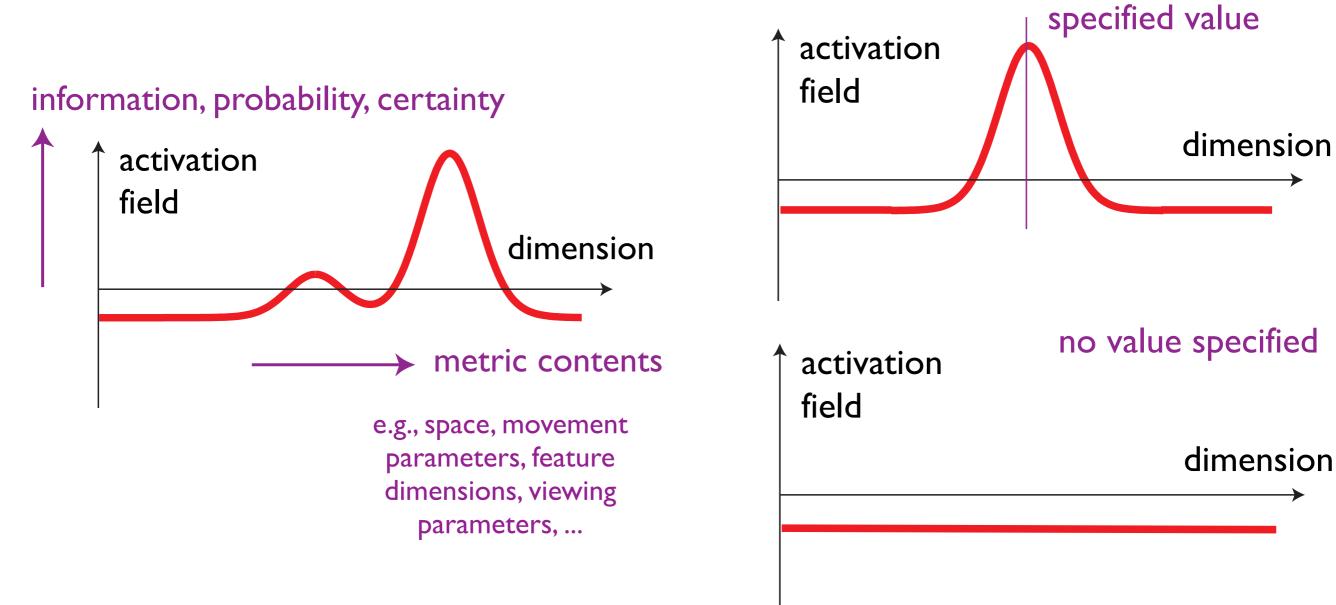
Dynamic Field Theory

Gregor Schöner

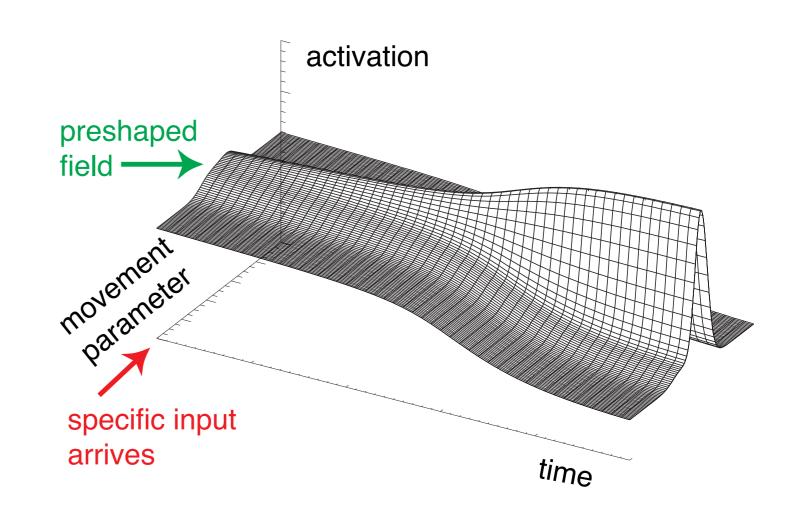
Dynamic Field Theory

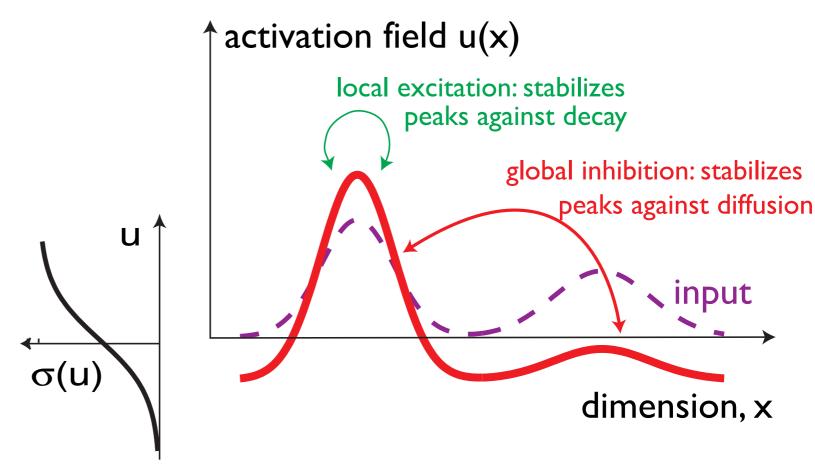
- dimensions
- activation fields
- field dynamics: peaks, instabilities

activation fields



the dynamics such activation fields is structured so that localized peaks emerges as attractor solutions





Amari equation

$$\tau \dot{u}(x,t) = -u(x,t) + h + S(x,t) + \int w(x-x')\sigma(u(x',t)) dx'$$

where

- time scale is τ
- resting level is h < 0
- input is S(x,t)
- interaction kernel is

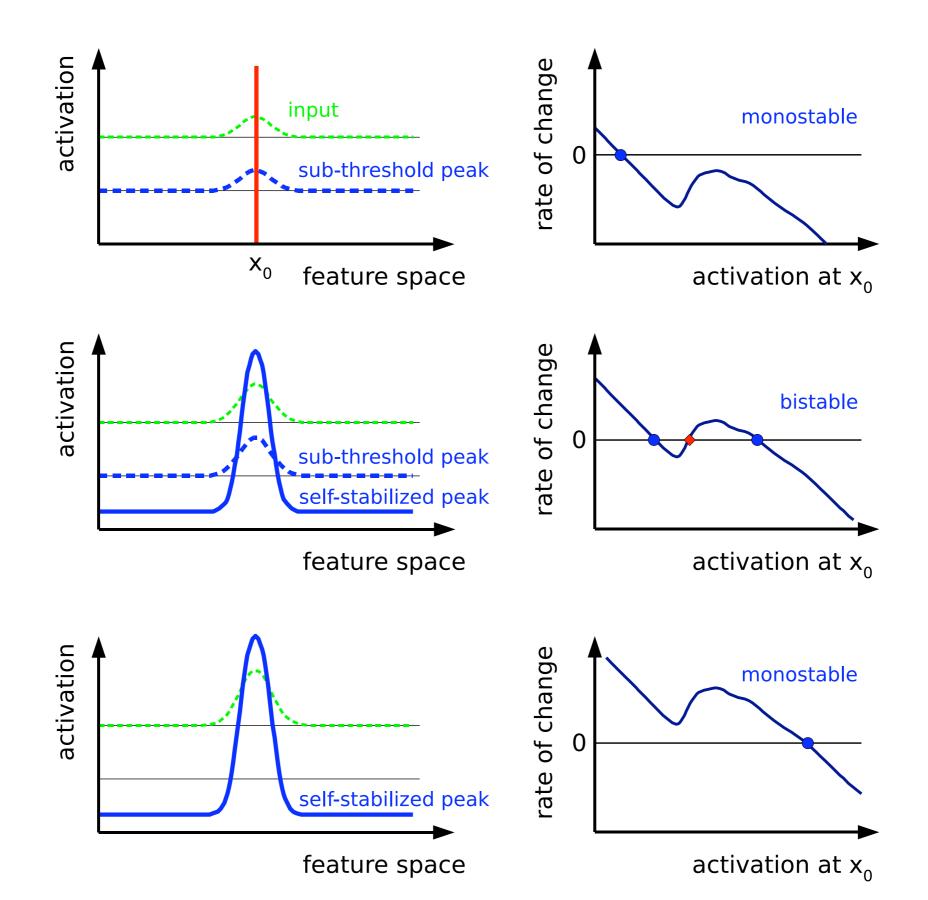
$$w(x - x') = w_i + w_e \exp\left[-\frac{(x - x')^2}{2\sigma_i^2}\right]$$

• sigmoidal nonlinearity is

$$\sigma(u) = \frac{1}{1 + \exp[-\beta(u - u_0)]}$$

=> simulations

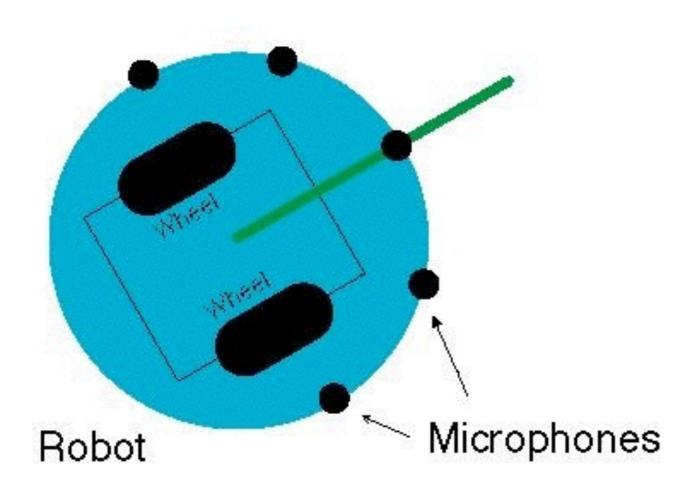
detection instability



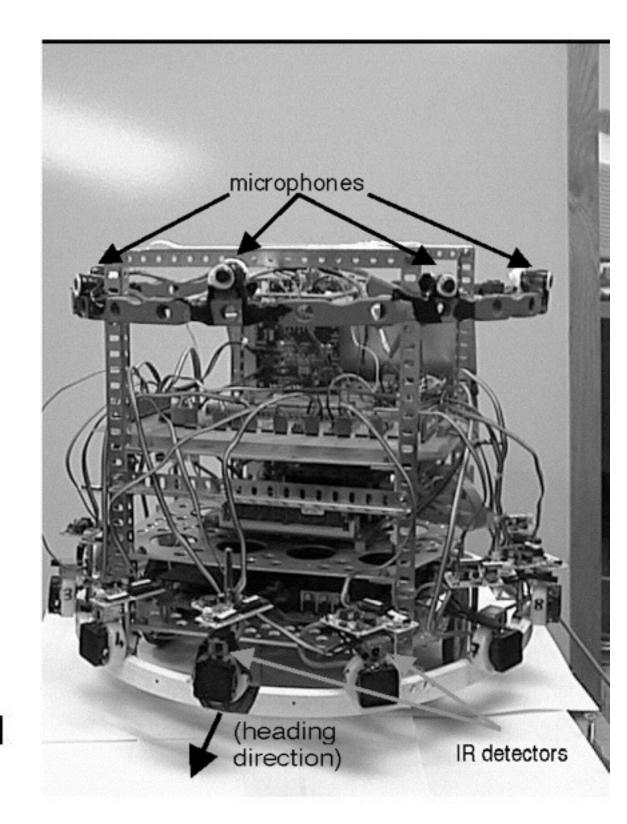
=> the detection instability stabilizes decisions

- self-stabilized peaks are macroscopic neuronal states, capable of impacting on down-stream neuronal systems
- the detection instability also explains how a time-continuous neuronal dynamics may create macroscopic, time-discrete events

Vehicle

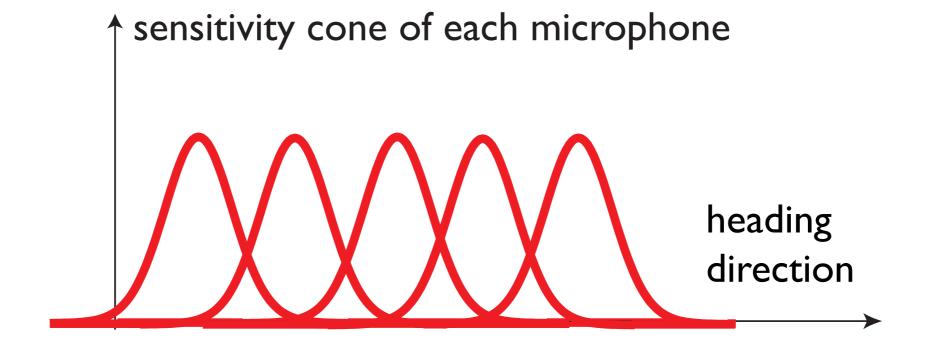


[from Bicho, Mallet, Schöner, Int J Rob Res,2000]

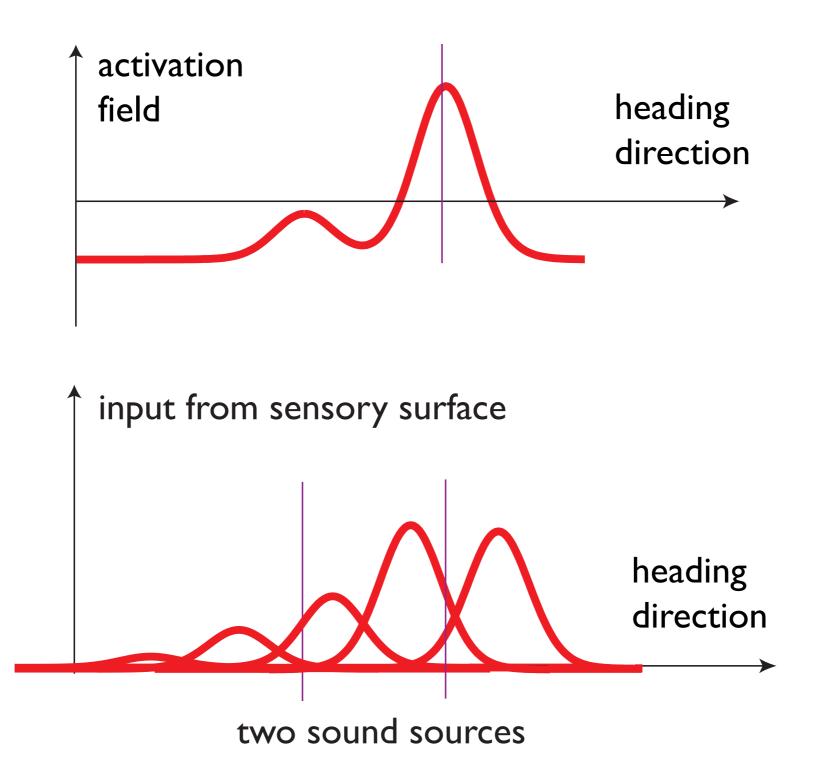


sensory surface

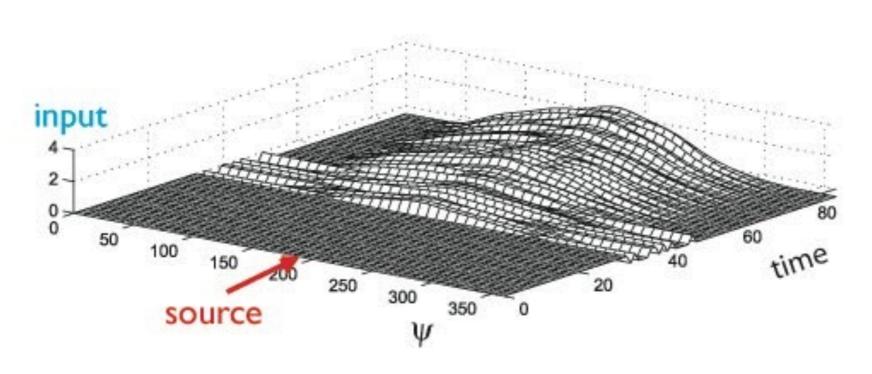
each microphone samples heading direction

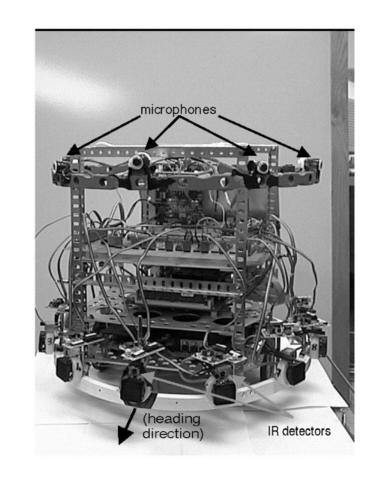


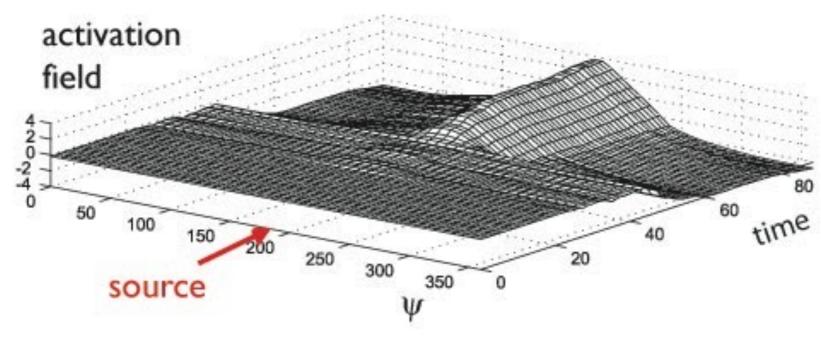
and provides input to the field



detection instability on a phonotaxis robot





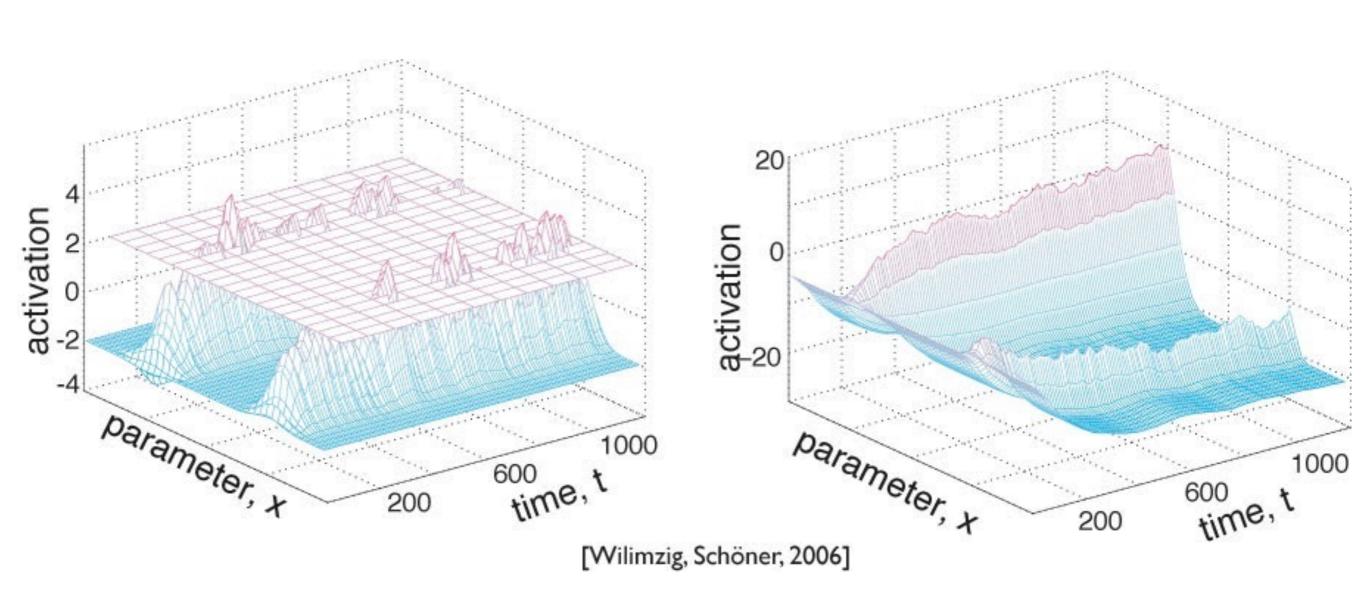


[from Bicho, Mallet, Schöner: Int. J. Rob. Res., 2000]

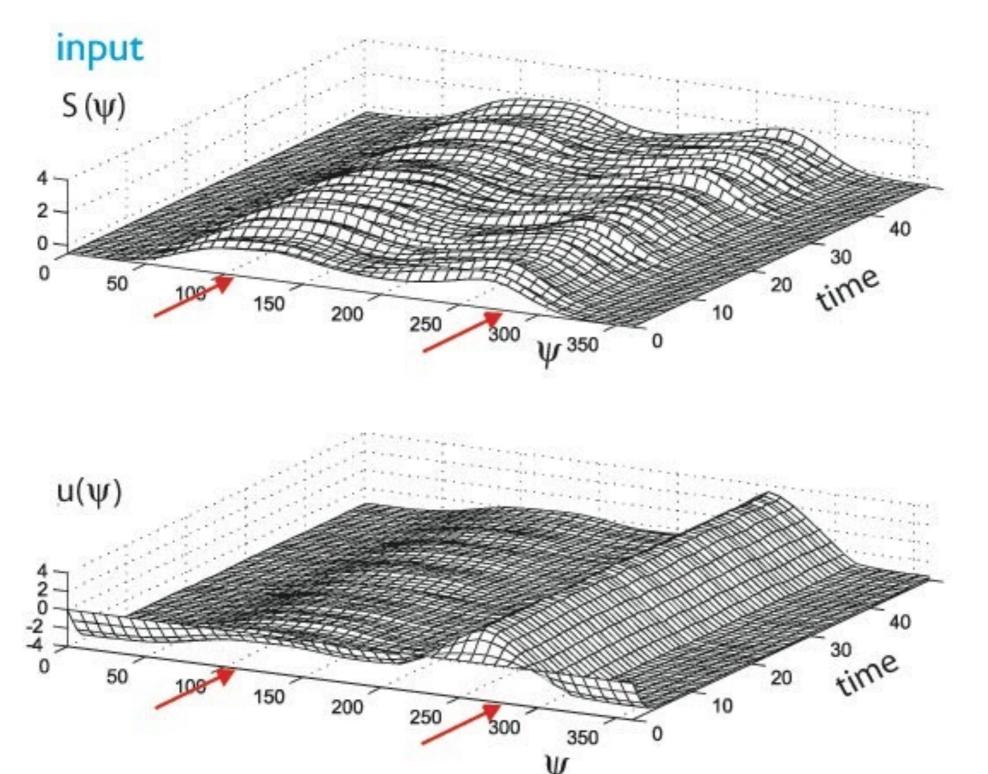
emergence of time-discrete events

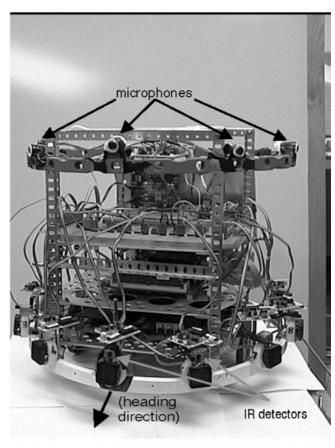
the detection instability also explains how a time-continuous neuronal dynamics may create macroscopic, time-discrete events

the selection instability stabilizes selection decisions

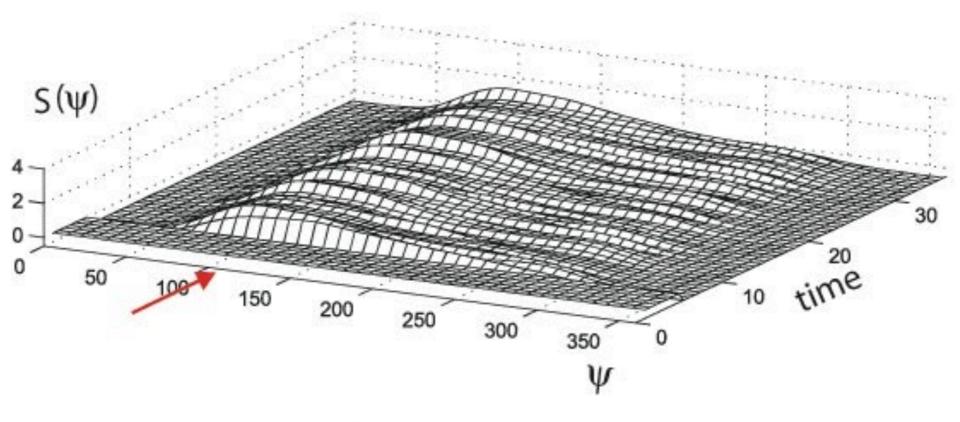


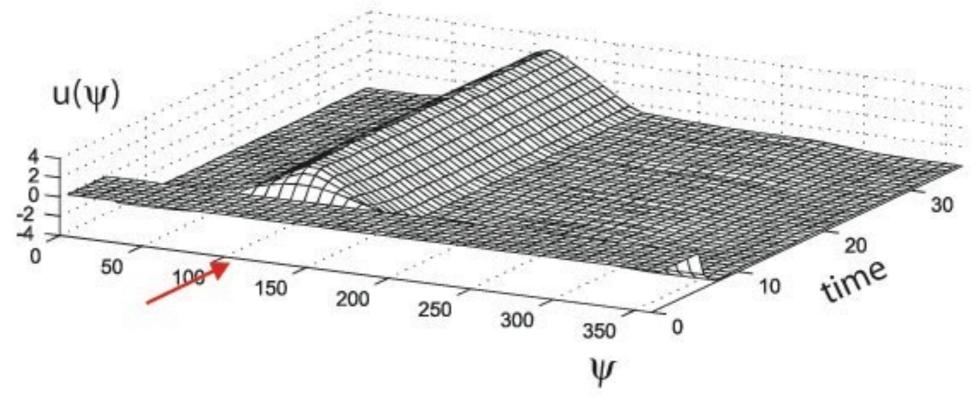
target selection on phonotaxis vehicle



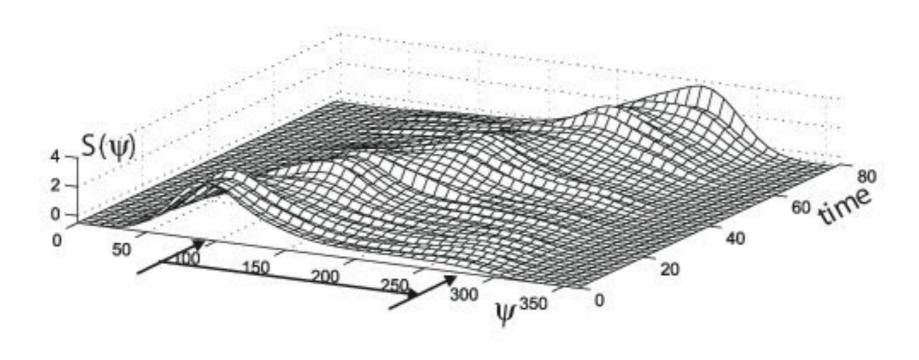


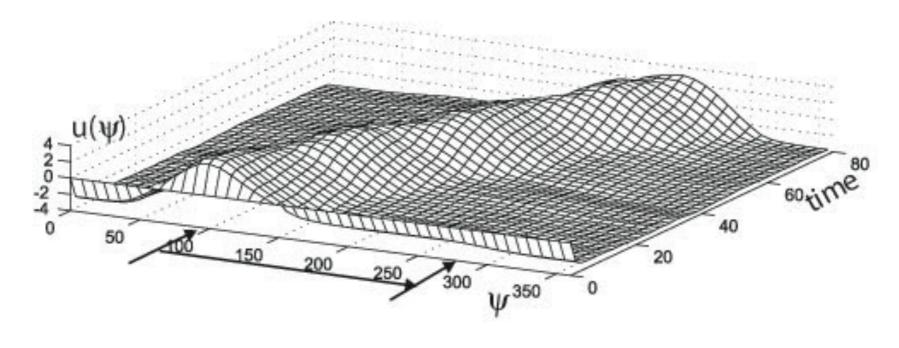
robust estimation





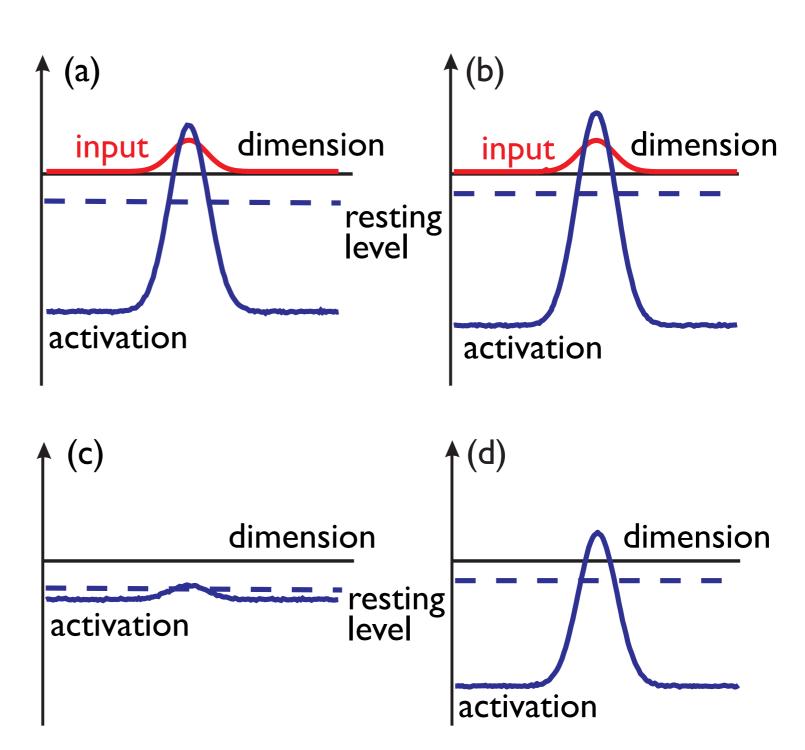
tracking



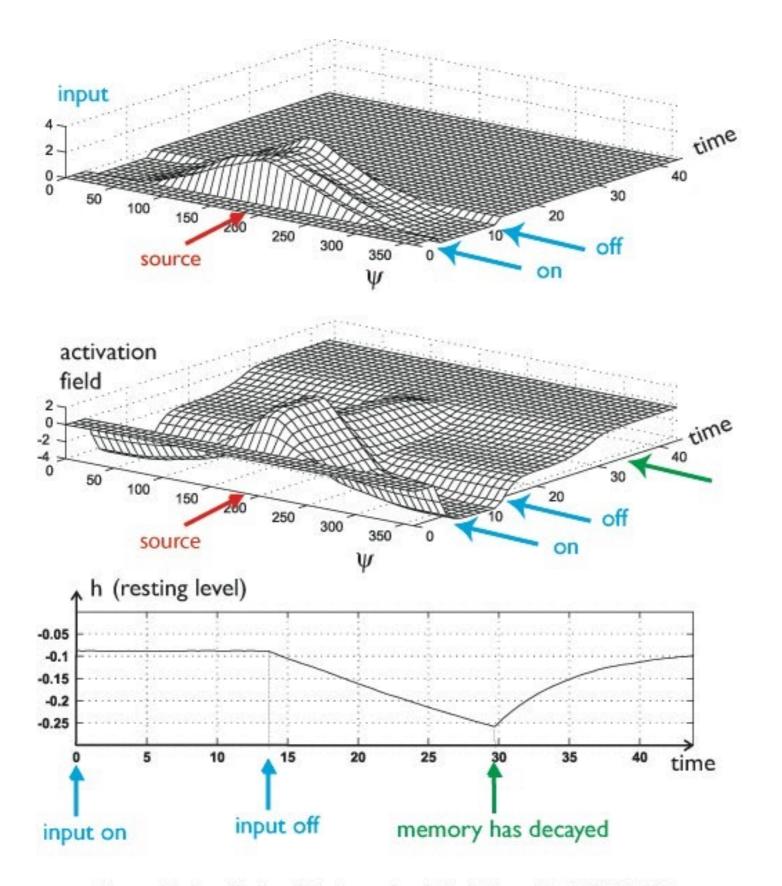


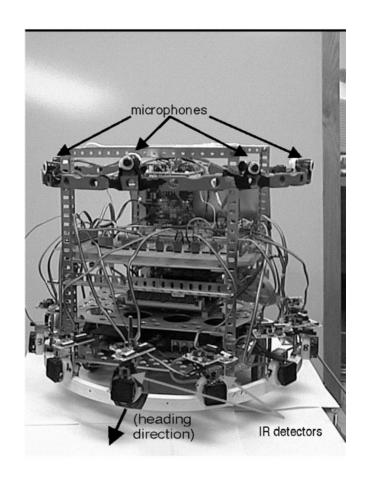
memory instability

monostable "off" regime vs. bistable regime in which sustained activation provides working memory



memory & forgetting on phonotaxis vehicle



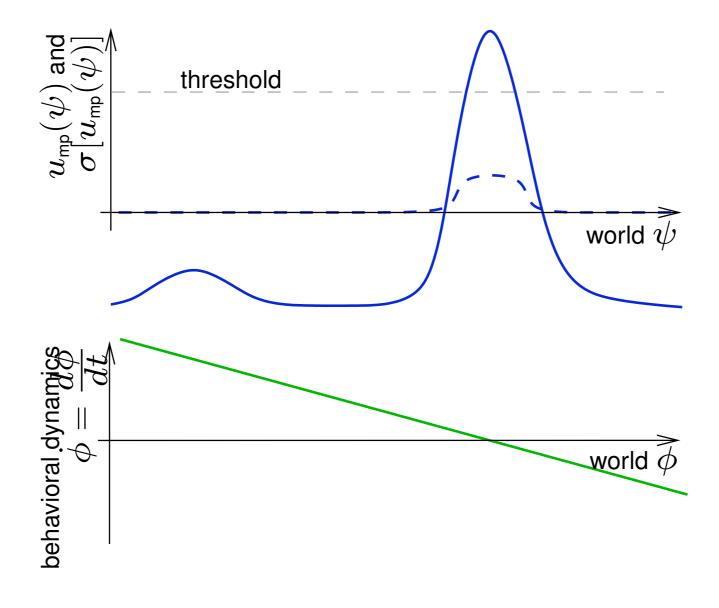


[from Bicho, Mallet, Schöner: Int J Rob Res 19:424(2000)]

a robotic demo of all of instabilities

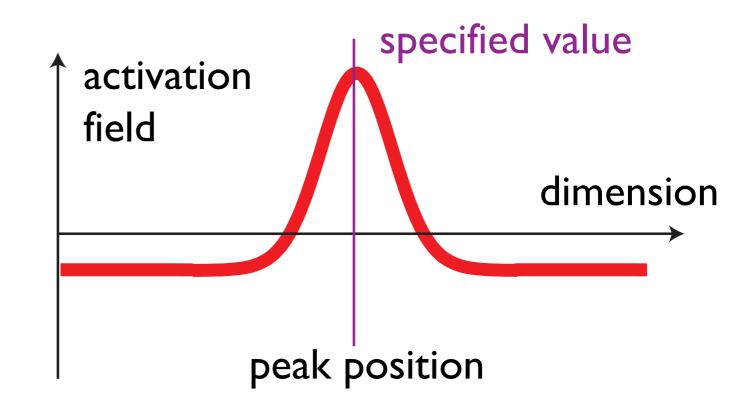
motor dynamics

couple peak in direction field into dynamics of heading direction as an attractor



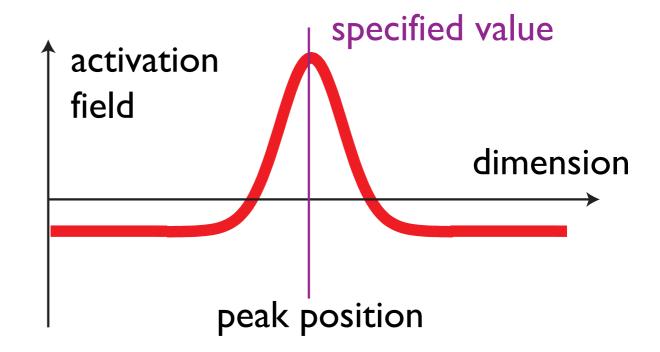
=> transition from DFT to DST

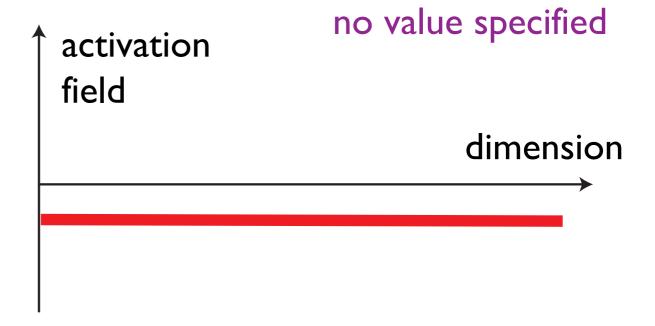
peak specifies value for a dynamical variable that is congruent to the field dimension



from DFT to DST

- treating sigmoided field as probability: need to normalize
 - => problem when there is no peak: devide by zero!





from DFT to DST

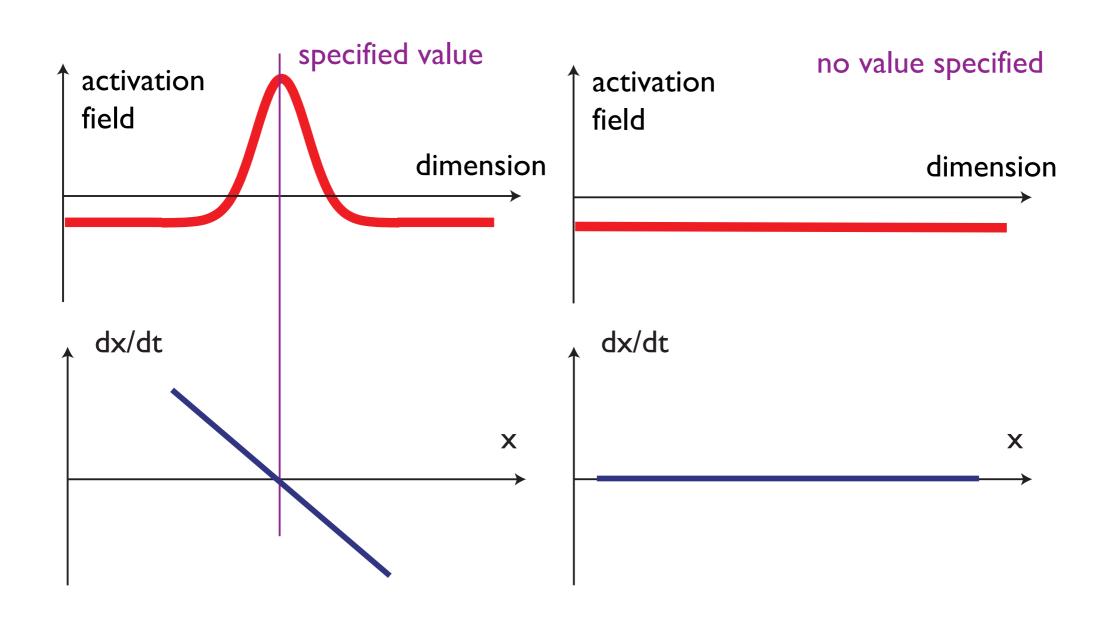
- solution: peak sets attractor
 - location of attractor: peak location
 - strength of attractor: summed supra-threshold activation

$$x_{\text{peak}} = \frac{\int dx \ x \ \sigma(u(x,t))}{\int dx \ \sigma(u(x,t))}$$

$$\dot{x} = -\left[\int dx \ \sigma(u(x,t))\right] (x - x_{\text{peak}})$$

$$\Rightarrow \dot{x} = -\left[\int dx \ \sigma(u(x,t))\right] \ x + \left[\int dx \ x \ \sigma(u(x,t))\right]$$

from DFT to DST



=> Bicho, Mallet, Schöner (2000)

this is how target acquisition is integrated into obstacle avoidance on the robot

$$\frac{d\phi}{dt} = \sum_{i=1}^{7} f_{\text{obs},i} + f_{\text{tar}}.$$

$$\psi_{\text{tar}} = \int_{0}^{2\pi} \psi H(u(\psi)) d\psi/N_{u}$$

$$|\psi_{\text{tar}}| = \int_{0}^{7} \psi H(u(\psi)) d\psi/N_{u}$$

$$f_{\text{tar}} = \begin{cases} -\lambda'_{\text{tar}}(N_{u}\phi - \int_{0}^{2\pi} (H(u(\psi))\psi)d\psi) \\ \text{for } \psi_{\text{tar}} - \pi/2 < \phi \le \psi_{\text{tar}} + \pi/2 \\ \lambda'_{\text{tar}}(N_{u}(\phi - \pi) - \int_{0}^{2\pi} (H(u(\psi))\psi)d\psi) \\ \text{for } \psi_{\text{tar}} + \pi/2 < \phi \le \psi_{\text{tar}} + 3\pi/2 \end{cases}$$

The conceptual framework of DFT

