Object recognition in Dynamic Field Theory

Oliver Lomp – Institut für Neuroinformatik – 16. 7. 2015

Why we need object recognition

What is difficult about object recognition?

What is difficult about object recognition?

What is difficult about object recognition?

- 2D image of a 3D object
- Infinitely many projections
 - \rightarrow same object never looks the same

Common solution: invariance

- Trade-off: invariance vs. discriminance
- Invariance reduces information
 - \rightarrow Know what, but not necessarily where
 - \rightarrow Category vs. instance

Invariance: example

Predicted Tags

(tags by clarifai.com)

Object pose

• Instead of poseinvariant features: estimate pose, use it

Arathorn's map-seeking circuits

from Arathorn (2004)

(b) source image

(c) input image - blurred

Problem

views in memory (and associated label)

find best-matching view and pose

Subproblem I

view in memory

find transformation parameters

|--|

Subproblem II

find best-matching view

input image

Subproblem III

views in memory

find best-matching view and pose at the same time

Pose parameter encoding

- How can pose be represented?
 - \rightarrow Neural field
- Example: position as 2d peak, rotation as 1d peak

Label encoding

- What is the output of recognition?
 - Categorization decision (binary or graded response)
 - Conflicts with continuous nature of fields
- Categorization in dynamic neural fields (cf. categorical states, DFT core lecture 2)

Label fields

- Discrete nodes
- Only global interaction / no metric
- Supra-threshold activation = detection of label

The principle: 1D shift

view

The principle: matching views

Known objects

Input image

Input image

Input image

Combining the recognition and pose matching

Input image

Input image

View matching Shift matching 1D Shift Input image

Implementation

Transformations

Transformations

Transformations

Matching views

 $match(p_1, p_2) = \int p_1(x) \cdot p_2(x) dx$

Matching poses

$$cross(f,g,x) = \int \overline{f}(y)g(x+y)dy$$

- Similar to transformation, different direction
- Normalized, mean-free
- Requires shunting synapses

Other transformations

- Shift in log-polar space is uniform scaling and rotation
- Log-polar is neurally plausible (retinal space)

Cascading transformations

Pose parameter encoding, continued

- Two layers
 - First layer detects
 - Second one selects
- Pose estimate
 - = layer 2 if above threshold, layer 1 otherwise

Feature channels

- Full system has several feature channels
 - Spatial pattern (shape)
 - Localized histograms
 - Color (hue)
 - Edge orientations

from Faubel, Schöner (2009)

- Shape alone (as presented before) is not very powerful for recognition
- Additional feature channels: localized histograms (color, edge orientations)
- All channels provide information about pose, object
- Scale cannot be estimated

Results

- Recognition rates on COIL (with shape + localized histograms):
 - 85% with one training view
 - 94% with four training views
 - See Faubel, Schöner (2009)

Results II

- Recognition rates on tabletop dataset (with shape + localized histograms):
 - 90% with one training view/single object
 - See also Faubel, Schöner (2009)

Video

Masking: what is it good for?

• Masking input allows to focus on single object

Masking: what (else) is it good for?

(from Faubel, Schöner 2009)

Outlook: attentional control

Thank you for your attention!

Questions?

For more: Faubel, C., & Schöner, G. (2009). *A neuro-dynamic architecture for one shot learning of objects that uses both bottom-up recognition and top-down prediction*. In Proc. of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2009. IEEE Press. (also contains references to other work mentioned here)