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What comes to your mind when
you hear the word “robot”

B Google search



Go 816 roboter +Gregor
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B => Humanoids (or anthropomorphic) robots



QASIMO




industrial robots are actually
more common today

B fundamentally, all factory automization is a
form or robotics today: “programmable”
machines...



examples of robots

B other than humanoid or industrial



simple, single-task
autonomous vehicles

Tennisball collector (GER)  Security (US)  Auto Mower (SWE) Electrolux (SWE)

Window
claanar

Pool cleanar (SWE) (GER) WaReS (Vi) [phOtO credits:WTEC
Figure 5.5. Examples of service robots. final report 2006]



some of our own

autonomous
vehicles




outdoor vehicles
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Figure 2.1. NASA Mars Rover (NASA Jet Propulsion Laboratory (JPL)).



cars: autonomous driving




legged robots
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Panter (2001-2004) Tobieas (2005)
Figure C.58. The walking machines built by Dillmann’s group.
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snakes, crawlers, climbers

Figure C.57. Inspection robot.

Figure 7.2. Robotic modules can be reconfigured to “morph” into different locomotion systems including
wheel-like rolling system (left), a snake-like undulatory locomotion system (right), a four-legged
walking system (bottom).



underwater vehicles, ships

Figure 2.2. IFREMER ASTER autonomous underwater vehicle.

Figure 2.11. HROV (Hybrid ROV)
project (Johns Hopkins University
(JHU) and Woods Hole
(WHOL), U.S.).



airborne robots




robotic manipulators, hands
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Figure 4.10. Dexterous arms at DLR, NASA and UMASS.



some of our own
robotic manipulators
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mobile robot
manipulators

Figure C.28. Dexterous arm on mobile base, opening door (left), robot passing through doorway (right).



our own mobile
robot manipulator

[Arnold: 1998-2000]



autonomous robotics

® auto-nomos: giving laws to oneself

B minimally: autonomous robots generate
behavior based on sensory information
obtained from their own on-board sensors

Min contrast to industrial robots that are
programmed in a fixed and detailed way



autonomous robotics

B but: even an industrial robot uses
autonomous control to reach its
programmed goals...

B => autonomy is expected to go beyond
control, include decisions=qualitative change
of behavior

M e g. avoid obstacle to the left vs. to the right

B e.g, reach for one object rather than another



autonomous robotics

M but: we do not expect autonomous robots
to just do whatever “they want”... we
expect to give them “order”



autonomous robotics

BMautonomy as a
“programming interface:

M sive instructions to a robot at a
high level, in regular human
language and gesture in a
shared environment...

B ... and let the autonomous
robot deal with the “details” of
how to achieve goals




why autonomous robots!



why autonomous robots!?

Masked my 18 year old son...
M to clean up, to serve drinks
M but they are just generally cool too..

B .. (after some hesitation)... in the military



assistance robotics

Mat home, in the work place

M collaborate with human users




toy/entertainment/animation




military, fire fighting, rescue

Bthe “ideal” application because
desire to remove human agent
from the scene is consensual ...

B much US research

L= LY P

Uwzvetal Dinasies, FEA

Figure B.11. Military Robot.



(robot ethics...interesting topic)

B may a military robot decide autonomously
to shoot

M .... navy ships do that already...

B may a autonomous car decide between
avoiding a pedestrian and preventing danger
for car occupants!

B fundamental problem: off-loading decisions from user to
designer ...



autonomous robotics as a
“playground” of research




autonomous robotics as a
“playground” of research

B modern engineering: model systems, treat
remainder stochastically....

B autonomous robotics: natural environments are difficult
to model

B modern engineering: disciplinary
M autonomous robotics: highly interdisciplinary

B modern engineering: compartmentalized

B autonomous robotics: requires system integration



what is entailed in designing an
autonomous robot!?

B sensors

world

Msignal processing, digitization I

B estimation, detection, classification

M planning, programming, reasoning

B communcation, data security l

® optimal control, control l

B mechanics, actuators

=> interdisciplinarity



biologically
inspired

robotics




state of the art: current explosion

B through maturation of technology

M fast computation makes approach real-time
that used to be not viable

M laser range finder

B modern software engineering facilitates
programming

M... many detailed and specific improvements



4 core problems/challenges

B perception
Minteracting with humans
M background knowledge

B movement generation



(1) perception

B no autonomy without perception

B main channel: visual perception



what is perception?












what is perception?

B we do not perceive the stimulus but the
world and meaning

B seeing is active:

B bring objects into the attentional foreground

M see to answer questions



what is perception!

Mattention
Bsegment
M recognize (invariantly)

M estimate (pose)
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robot vision

B or computer vision or “artificial perception”

M... image/movie understanding rather than
Image processing

BMperception is currently the key bottleneck of
autonomous robotics



computer vision entails

M detection




computer vision entails

Bsegmentation
[segmentation s e |
based on
template, e | e
Arathorn, 2006] |
_ _ Standard Model
[segmentation Input image ngent image classification
based on pixel-
wise '
classification,

Serre et al.,
2007]




computer vision entails

M classification, recognition

categories

beans
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honey

fish can

deo

shampoo

box of slide frames
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[based on low-level features, Faubel, Schoner, 2008]



approach: simply the environment

M environment designed and completely
known: industrial robots

M but also true for many robot demonstrations.. e.g.,
catching a object that is tracked by conventional
technology

® environment designed to simplify task

B e.g, dishwasher trivializes perception required to achive
task

B environment is inherently simply ...

M e.g, roads for autonomous driving




research

Ma lot of individual, specific solutions based on
insight....

M unsegmented vision for vehicles (everything
close is an obstacle)

M |earning from examples: machine learning

M exploit analogy to human nervous system...

B attention

M feature maps



(2) interaction with humans

Min part a problem of perception
as well...

B meaning is particularly
Important..

B e.g.,“the red cup to the left of the
green cup’‘ requires generating
hypotheses and testing them

e
T e



Figure 5.1  From left to right, journalist robot, shopping assistant robot, and the Paro seal
robot (courtesy of University of Tokyo, ISI Lab., ATR-IRC Lab., and AIST,
respectively).

Figure C.61. Rackham museum guide. Robovie I, a shopping assistant robot (courtesy of ATR-IRC Lab.).



Figure 5.3  From left to right, manipulators in Robotic Room 1 and Robotic Room 3, and a
wheelchair (courtesy of University of Tokyo, Intelligent Cooperative Systems
Lab. and AIST [wheelchair]).



research

M perceptually grounding language
Mintention perception

B gesture recognition

M joint attention

B dialogue management

B emotion recognition



example: action parsing
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... other applications

Mif successful opens up other applications

M e.g, disembodied internet based assistant systems (like
SIRI) that would share the visual environment of the user
(through a phone camera or web cam)



(3) back-ground knowledge

Mimplicit knowledge how the world works

B how to open a door

M that milk is in the fridge

B how to grasp a glas vs.a cup vs.a spoon

B how to grasp an object to achieve a particular goal

B to clear space before moving something to a new
place...

B |ohn Searle call this “background”
(knowledge, skills)



M “background” is where the traditional

approach to artificial intelligence was
positioned

B knowledge bases
M reasoning
M action planning

B architectures



DE

DE

navior based robotics

navioral organization

world
—> obstacle avoidance
— roaming
—> target acquisition

—> create a map




research

M special solutions designed/programmed “by
hand”

Mautonomous learning from experience...
largely unsolved

Manalogy with human nervous system whose
structure reflects “knowledge” about how
the world works...



Organizing and flexibly updating timed
actions: An attractor dynamics approach

Farid Oubbati, Mathis Richter and Gregor Schoner

Institut fur Neuroinformatik
Ruhr-Universitat Bochum, Germany




(4) movement generation

M classical approach works very well: control
and optimal control

B => fast, precise trajectory formation in industrial robots

B but;

M high demands on perception
M less well developed for online updating in dynamic scenes

B soft actuation for safe interaction with humans



research

M exploit analogies with human movement
coordination, movement primitives

M exploit analogy with muscle: soft visco-elastic
actuators



Neural computation: learning
from analogies with the human
nervous system



(1) visuel cognition

M feature maps, within neural activation
controls the attentional foreground

Mand that are continuously linked to sensory
input ...

M sequences of attentional selection decisions
generate scene representations
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(2) movement planning

Mis driven by scene representation

direction




... based on neural activation fields

movement
direction
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... online updating




(3) timing and coordination

Mall movement is coordinated, timed, and
multi-sensory...







(4) muscles

Mare tunable (dampened)
Springs

1 force applied

antagonist

agonist






1 force applied

antagonist

agonist

T force applied




" force applied

B muscle activation
and force result
from spatial
command




research
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... OUr own

Bonline updating in a neural dynamic
architecture with simulated muscles...
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Neural computation: learning
about human perception/
cognition/action

M test theories: do models actually generate
behavior?

Minsight into problems the CNS must solve

B e.g, coordinate transforms

Minsight into problems the CNS need not
solve

M e.g., optimal control



