Dynamic Field Theory Gregor Schöner gregor.schoener@ini.rub.de

Discrete "neurons"

- or activation variables: how do they arise? How do they sample sensory/motor spaces...
- no evidence that neural discreteness matters for behavior

Continuity in space

hypothesis: behavior is embedded in continua

- the space of possible behaviors, e.g. space of movements, percepts, timing structures
- neuronal substrate is continuous (maps, broad tuning)
- (=> need to understand how categorical behavior may emerge from such continua)

Dynamical Field Theory: space

- in DFT, continuous spaces are dimension over which activation fields are defined
 - homologous to sensory surfaces, e.g., visual or auditory space (retinal, allocentric, ...)
 - homologous to motor surfaces, e.g., saccadic end-points or direction of movement of the end-effector in outer space
 - feature spaces, e.g., localized visual orientations, color, impedance, ...
 - abstract spaces, e.g., ordinal space, along which serial order is represented

example: motion perception

single motion

motion pattern

example: selection decisions in motion perception

<u>motion</u> pattern

- why not <u>diagonal motion</u>?
- or the <u>other diagonal motion</u>?

example: selection decisions in motion perception

is the alternative motion realized?

flat motion quartet

<u>tall motion</u>quartet

square motion quartet

space of possible percepts and activation field

space of possible actions and activation field

Dynamical Field Theory: space

fields: continuous activation variables defined over continuous spaces

information, probability, certainty

activation fields

representing different percepts

Link between DFT and neurophysiology

What do neurons represent?

tuning curve

example: primary visual cortex (monkey)

tuning curve

example: primary motor cortex (monkey)

Link between DFT and neurophysiology

Example I: Jancke et al: AI7 in the cat, population representation of retinal location

Jancke, Erlhagen, Dinse, Akhavan, Giese, Steinhage, Schöner JNsci 19:9016 (99)

- determine RF profile for each cell
- it's center determines what that neuron codes for
- compute a distribution of population activation by superposing RF profiles weighted with current neural firing rate

The current response refers to a stimulus experienced by all neurons

Reference condition: localized points of light

elementary stimuli

result: population distribution of activation defined over retinal space = representation of visual location

=> does a decent job estimating retinal position

Extrapolate measurement device to new conditions

or when complex stimuli are presented (here: two spots of light)

superposition of responses to each elemental stimulus

0.4°

by comparing DPA of composite stimuli to superposition of DPAs of the two elementary stimuil obtain evidence for interaction

early excitation

late inhibition

interaction

at location of left component stimulus

model by dynamic field:

stimulus

experiment

DFT model

Neurophysiological grounding of DFT example: movement planning

Bastian, Riehle, Schöner, 2003

tuning of cells in motor and premotor cortex to direction of end-effector movement path

Distribution of Population Activation (DPA)

Distribution of population activation =

[Bastian, Riehle, Schöner, 2003]

look at temporal evolution of DPA

or DPAs in new conditions, here: DPA reflects prior information

Distributions of Population Activation are abstract

neurons are not localized within DPA!

cortical neurons really are sensitive to many dimensions

motor: arm configuration, force direction

visual: many feature dimensions such as spatial frequency, orientation, direction...

DPA is a projection from that highdimensional space onto a single dimension