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Discrete “neurons”

or activation variables: how do they arise? 
How do they sample sensory/motor spaces... 

no evidence that neural discreteness matters 
for behavior



Continuity in space

hypothesis: behavior is embedded in continua

the space of possible behaviors, e.g. space of movements, 
percepts, timing structures 

neuronal substrate is continuous (maps, broad tuning)

(=> need to understand how categorical 
behavior may emerge from such continua)



Dynamical Field Theory: space

in DFT, continuous spaces are dimension over 
which activation fields are defined

homologous to sensory surfaces, e.g., visual or auditory 
space (retinal, allocentric, ...)

homologous to motor surfaces, e.g., saccadic end-points or 
direction of movement of the end-effector in outer space

feature spaces, e.g., localized visual orientations, color, 
impedance, ...

abstract spaces, e.g., ordinal space, along which serial order 
is represented 



example: motion perception

single motion

motion pattern

http://localhost/~gregor/motion_stimuli/apparent_motion/applet/index.html
http://localhost/~gregor/motion_stimuli/motion_pattern/applet/index.html


example: selection decisions in 
motion perception

motion pattern
why not diagonal motion?

or the other diagonal motion?

http://localhost/~gregor/motion_stimuli/motion_pattern/applet/index.html
http://localhost/~gregor/motion_stimuli/diagonal_motion/applet/index.html
http://localhost/~gregor/motion_stimuli/other_diagonal_motion/applet/index.html


example: selection decisions in 
motion perception

is the alternative motion realized? 
flat motion quartet 

tall motion quartet

square motion quartet

http://localhost/~gregor/motion_stimuli/flat_motion_quartet/applet/index.html
http://localhost/~gregor/motion_stimuli/tall_motion_quartet/applet/index.html
http://localhost/~gregor/motion_stimuli/motion_quartet/applet/index.html
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fields: continuous activation variables defined 
over continuous spaces 

e.g., retinal space, movement 
parameters, feature 
dimensions, viewing 

parameters, ...

dimension

activation
field

metric contents

information, probability, certainty

Dynamical Field Theory: space



activation fields

e.g., space, movement 
parameters, feature 
dimensions, viewing 
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representing different percepts
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Link between DFT and 
neurophysiology 

What do neurons represent?



tuning curve
example: primary visual cortex (monkey)



tuning curve

example: primary motor cortex (monkey)



Example 1: Jancke et al: A17 in the cat, 
population representation of retinal location 

Jancke, Erlhagen, Dinse, Akhavan, Giese, Steinhage, Schöner JNsci 19:9016 (99)

Link between DFT and 
neurophysiology



determine RF profile for each 
cell

it’s center determines what that 
neuron codes for

compute a distribution of 
population activation by 
superposing RF profiles 
weighted with current neural 
firing rate

the potentially high-dimensional space of visual stimulus at-
tributes. The second step consisted of projecting the neural re-
sponses to “composite” stimuli assembled from two squares of
light at varied separations (Fig. 1B) onto this subspace by ana-
lyzing DPAs weighted with the responses to composite stimuli.
Distance-dependent deviations of the DPAs from the superposi-
tion of the corresponding elementary components reveal insight
into interaction processes within the representation of retinal
location at the population level. Such interaction may arise from
recurrent connectivity within the cortical area as well as from
recurrence within the network providing the sensory input. A
neural field model explicates how such mechanisms contribute to
the evolution of cortical activation within ensembles of neurons.

MATERIALS AND METHODS
Experimental setup
Animals and preparation. Electrophysiological recordings from a total of
178 cells were made extracellularly in the foveal representation of area 17
in 20 adult cats of both sexes. Animals were initially anesthetized with
Ketanest (15 mg/kg body weight, i.m.; Parke-Davis, Courbevoie, France)
and Rompun (1 mg/kg, i.m.; Bayer, Wuppertal, Germany). Additionally,
atropin (0.1 mg/kg, s.c.; Braun) was given. After intubation with an
endotracheal tube, animals were fixated in a stereotactic frame. During
surgery and recording, anesthesia was maintained by artificial respiration
with a mixture of 75% N2O and 25% O2 and by application of sodium
pentobarbital (Nembutal, 3 mg ! kg !1 ! hr !1, i.v.; Ceva). Treatment of all
animals was within the regulations of the National Institution of Health
Guide and Care for Use of Laboratory Animals (1987). Animals were
paralyzed by continuous infusions of gallamine triethiodide (2 mg/kg, i.v.
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Figure 1. A, Schematic illustration of the elementary stimuli (squares of light, 0.4 " 0.4°) presented at seven horizontally shifted positions within the
foveal representation of the visual field. B, Composite stimuli were assembled from combinations of the elementary stimuli and were presented at six
different separation distances of 0.4–2.4°. The left stimulus component was kept at a fixed nasal position. C, I llustration of the noncentered field
approach. Stimuli, indicated by the small gray square, were presented independent of the locations of the RFs of the measured neurons (schematically
illustrated by gray ellipses). The frame with the cross-hair illustrates the analyzed portion of the visual space (2.8 " 2.0). D–F, I llustration of the Gaussian
interpolation method to construct the DPA. D1, The grid of stimuli used (36 circles, each 0.64° in diameter) to measure the RF profile of each neuron
was centered on the hand-plotted RF (response plane technique). D2, The RF profile constructed from responses to this stimulus grid was smoothed (D3)
with a Gaussian filter (width, 0.64°). The RF center was determined as the location of the centroid of this smoothed RF profile. D4, The contribution
of each cell to the population representations was always centered on this location and was weighted with the current firing rate of the neuron, illustrated
as vertical bars of varying length. This weighting factor was normalized to the maximal firing rate of each neuron. E, The DPA was obtained by Gaussian
interpolation (width, 0.6°) of the weighted firing rates and by a subsequent convolution with an unweighted Gaussian (width, 0.64°). F, View of the
distribution of population activation using gray levels to indicate activation. The location of the stimulus is indicated by the small square outlined in black
together with the stimulus frame. In a second approach, one-dimensional DPAs were derived by means of an OLE; see Materials and Methods and
Figure 2C.
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The current response refers to 
a stimulus experienced by all 
neurons

Reference condition: localized 
points of light

the potentially high-dimensional space of visual stimulus at-
tributes. The second step consisted of projecting the neural re-
sponses to “composite” stimuli assembled from two squares of
light at varied separations (Fig. 1B) onto this subspace by ana-
lyzing DPAs weighted with the responses to composite stimuli.
Distance-dependent deviations of the DPAs from the superposi-
tion of the corresponding elementary components reveal insight
into interaction processes within the representation of retinal
location at the population level. Such interaction may arise from
recurrent connectivity within the cortical area as well as from
recurrence within the network providing the sensory input. A
neural field model explicates how such mechanisms contribute to
the evolution of cortical activation within ensembles of neurons.

MATERIALS AND METHODS
Experimental setup
Animals and preparation. Electrophysiological recordings from a total of
178 cells were made extracellularly in the foveal representation of area 17
in 20 adult cats of both sexes. Animals were initially anesthetized with
Ketanest (15 mg/kg body weight, i.m.; Parke-Davis, Courbevoie, France)
and Rompun (1 mg/kg, i.m.; Bayer, Wuppertal, Germany). Additionally,
atropin (0.1 mg/kg, s.c.; Braun) was given. After intubation with an
endotracheal tube, animals were fixated in a stereotactic frame. During
surgery and recording, anesthesia was maintained by artificial respiration
with a mixture of 75% N2O and 25% O2 and by application of sodium
pentobarbital (Nembutal, 3 mg ! kg !1 ! hr !1, i.v.; Ceva). Treatment of all
animals was within the regulations of the National Institution of Health
Guide and Care for Use of Laboratory Animals (1987). Animals were
paralyzed by continuous infusions of gallamine triethiodide (2 mg/kg, i.v.
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Figure 1. A, Schematic illustration of the elementary stimuli (squares of light, 0.4 " 0.4°) presented at seven horizontally shifted positions within the
foveal representation of the visual field. B, Composite stimuli were assembled from combinations of the elementary stimuli and were presented at six
different separation distances of 0.4–2.4°. The left stimulus component was kept at a fixed nasal position. C, I llustration of the noncentered field
approach. Stimuli, indicated by the small gray square, were presented independent of the locations of the RFs of the measured neurons (schematically
illustrated by gray ellipses). The frame with the cross-hair illustrates the analyzed portion of the visual space (2.8 " 2.0). D–F, I llustration of the Gaussian
interpolation method to construct the DPA. D1, The grid of stimuli used (36 circles, each 0.64° in diameter) to measure the RF profile of each neuron
was centered on the hand-plotted RF (response plane technique). D2, The RF profile constructed from responses to this stimulus grid was smoothed (D3)
with a Gaussian filter (width, 0.64°). The RF center was determined as the location of the centroid of this smoothed RF profile. D4, The contribution
of each cell to the population representations was always centered on this location and was weighted with the current firing rate of the neuron, illustrated
as vertical bars of varying length. This weighting factor was normalized to the maximal firing rate of each neuron. E, The DPA was obtained by Gaussian
interpolation (width, 0.6°) of the weighted firing rates and by a subsequent convolution with an unweighted Gaussian (width, 0.64°). F, View of the
distribution of population activation using gray levels to indicate activation. The location of the stimulus is indicated by the small square outlined in black
together with the stimulus frame. In a second approach, one-dimensional DPAs were derived by means of an OLE; see Materials and Methods and
Figure 2C.
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the potentially high-dimensional space of visual stimulus at-
tributes. The second step consisted of projecting the neural re-
sponses to “composite” stimuli assembled from two squares of
light at varied separations (Fig. 1B) onto this subspace by ana-
lyzing DPAs weighted with the responses to composite stimuli.
Distance-dependent deviations of the DPAs from the superposi-
tion of the corresponding elementary components reveal insight
into interaction processes within the representation of retinal
location at the population level. Such interaction may arise from
recurrent connectivity within the cortical area as well as from
recurrence within the network providing the sensory input. A
neural field model explicates how such mechanisms contribute to
the evolution of cortical activation within ensembles of neurons.

MATERIALS AND METHODS
Experimental setup
Animals and preparation. Electrophysiological recordings from a total of
178 cells were made extracellularly in the foveal representation of area 17
in 20 adult cats of both sexes. Animals were initially anesthetized with
Ketanest (15 mg/kg body weight, i.m.; Parke-Davis, Courbevoie, France)
and Rompun (1 mg/kg, i.m.; Bayer, Wuppertal, Germany). Additionally,
atropin (0.1 mg/kg, s.c.; Braun) was given. After intubation with an
endotracheal tube, animals were fixated in a stereotactic frame. During
surgery and recording, anesthesia was maintained by artificial respiration
with a mixture of 75% N2O and 25% O2 and by application of sodium
pentobarbital (Nembutal, 3 mg ! kg !1 ! hr !1, i.v.; Ceva). Treatment of all
animals was within the regulations of the National Institution of Health
Guide and Care for Use of Laboratory Animals (1987). Animals were
paralyzed by continuous infusions of gallamine triethiodide (2 mg/kg, i.v.
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Figure 1. A, Schematic illustration of the elementary stimuli (squares of light, 0.4 " 0.4°) presented at seven horizontally shifted positions within the
foveal representation of the visual field. B, Composite stimuli were assembled from combinations of the elementary stimuli and were presented at six
different separation distances of 0.4–2.4°. The left stimulus component was kept at a fixed nasal position. C, I llustration of the noncentered field
approach. Stimuli, indicated by the small gray square, were presented independent of the locations of the RFs of the measured neurons (schematically
illustrated by gray ellipses). The frame with the cross-hair illustrates the analyzed portion of the visual space (2.8 " 2.0). D–F, I llustration of the Gaussian
interpolation method to construct the DPA. D1, The grid of stimuli used (36 circles, each 0.64° in diameter) to measure the RF profile of each neuron
was centered on the hand-plotted RF (response plane technique). D2, The RF profile constructed from responses to this stimulus grid was smoothed (D3)
with a Gaussian filter (width, 0.64°). The RF center was determined as the location of the centroid of this smoothed RF profile. D4, The contribution
of each cell to the population representations was always centered on this location and was weighted with the current firing rate of the neuron, illustrated
as vertical bars of varying length. This weighting factor was normalized to the maximal firing rate of each neuron. E, The DPA was obtained by Gaussian
interpolation (width, 0.6°) of the weighted firing rates and by a subsequent convolution with an unweighted Gaussian (width, 0.64°). F, View of the
distribution of population activation using gray levels to indicate activation. The location of the stimulus is indicated by the small square outlined in black
together with the stimulus frame. In a second approach, one-dimensional DPAs were derived by means of an OLE; see Materials and Methods and
Figure 2C.
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result: population distribution 
of activation defined over 
retinal space = representation 
of visual location

the potentially high-dimensional space of visual stimulus at-
tributes. The second step consisted of projecting the neural re-
sponses to “composite” stimuli assembled from two squares of
light at varied separations (Fig. 1B) onto this subspace by ana-
lyzing DPAs weighted with the responses to composite stimuli.
Distance-dependent deviations of the DPAs from the superposi-
tion of the corresponding elementary components reveal insight
into interaction processes within the representation of retinal
location at the population level. Such interaction may arise from
recurrent connectivity within the cortical area as well as from
recurrence within the network providing the sensory input. A
neural field model explicates how such mechanisms contribute to
the evolution of cortical activation within ensembles of neurons.

MATERIALS AND METHODS
Experimental setup
Animals and preparation. Electrophysiological recordings from a total of
178 cells were made extracellularly in the foveal representation of area 17
in 20 adult cats of both sexes. Animals were initially anesthetized with
Ketanest (15 mg/kg body weight, i.m.; Parke-Davis, Courbevoie, France)
and Rompun (1 mg/kg, i.m.; Bayer, Wuppertal, Germany). Additionally,
atropin (0.1 mg/kg, s.c.; Braun) was given. After intubation with an
endotracheal tube, animals were fixated in a stereotactic frame. During
surgery and recording, anesthesia was maintained by artificial respiration
with a mixture of 75% N2O and 25% O2 and by application of sodium
pentobarbital (Nembutal, 3 mg ! kg !1 ! hr !1, i.v.; Ceva). Treatment of all
animals was within the regulations of the National Institution of Health
Guide and Care for Use of Laboratory Animals (1987). Animals were
paralyzed by continuous infusions of gallamine triethiodide (2 mg/kg, i.v.

F

E3.84˚

response plane

1

3

RF-center

2.8˚

CA B

D

2.8˚

elementary stimuli composite stimuli

nasal temporal

[deg]2

4

Figure 1. A, Schematic illustration of the elementary stimuli (squares of light, 0.4 " 0.4°) presented at seven horizontally shifted positions within the
foveal representation of the visual field. B, Composite stimuli were assembled from combinations of the elementary stimuli and were presented at six
different separation distances of 0.4–2.4°. The left stimulus component was kept at a fixed nasal position. C, I llustration of the noncentered field
approach. Stimuli, indicated by the small gray square, were presented independent of the locations of the RFs of the measured neurons (schematically
illustrated by gray ellipses). The frame with the cross-hair illustrates the analyzed portion of the visual space (2.8 " 2.0). D–F, I llustration of the Gaussian
interpolation method to construct the DPA. D1, The grid of stimuli used (36 circles, each 0.64° in diameter) to measure the RF profile of each neuron
was centered on the hand-plotted RF (response plane technique). D2, The RF profile constructed from responses to this stimulus grid was smoothed (D3)
with a Gaussian filter (width, 0.64°). The RF center was determined as the location of the centroid of this smoothed RF profile. D4, The contribution
of each cell to the population representations was always centered on this location and was weighted with the current firing rate of the neuron, illustrated
as vertical bars of varying length. This weighting factor was normalized to the maximal firing rate of each neuron. E, The DPA was obtained by Gaussian
interpolation (width, 0.6°) of the weighted firing rates and by a subsequent convolution with an unweighted Gaussian (width, 0.64°). F, View of the
distribution of population activation using gray levels to indicate activation. The location of the stimulus is indicated by the small square outlined in black
together with the stimulus frame. In a second approach, one-dimensional DPAs were derived by means of an OLE; see Materials and Methods and
Figure 2C.
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=> does a decent job estimating retinal 
position

Ûij
sup!sk , t" ! Ûi !sk , t" " Ûj !sk , t" (7)

of the time-resolved DPAs for two elementary stimuli si and sj with the
time-resolved DPAs of composite stimuli

Ûij
meas!sk , t" ! !

n#1

N

cn!sk" fn!si , sj , t". (8)

Ûij
meas (sk , t) is the extrapolated DPA that is based on replacing the rate

fn(si) in Equation 2 by the firing rates fn(si , sj , t) that are observed in
response to the corresponding composite stimulus.

RESULTS
Experimental results
Distributions of population activation of elementary stimuli
We constructed DPAs in response to a set of small squares of light
that only differ in their position along a virtual horizontal line and
that we termed elementary stimuli. The DPAs were defined in
visual space and were based on single cell responses from 178
neurons recorded in the foveal representation of cat area 17. To
obtain DPAs, we made use of two different approaches: (1) in a
two-dimensional Gaussian interpolation procedure, the RF cen-

ters were weighted with the normalized firing rate of each neuron
(Fig. 1D–F). Corresponding to the average RF profile of all
neurons recorded (compare Fig. 2A), the width of the Gaussian
was chosen uniformly to 0.6°; and (2) in addition, based on the
assumption that the representation of visual location can be
considered as a function of activation in parameter space, we
minimized the error for reconstructing one-dimensional distribu-
tions using the OLE procedure. This method is optimal in the
sense that it extracts the available information from the firing
rates under the condition of a least square fit.

As a reference, we calculated DPAs in the time interval be-
tween 40 and 65 msec after stimulus onset corresponding to the
peak responses in the PSTHs. Both approaches yielded equiva-
lent results. The DPAs were monomodal and centered onto each
respective visual field position. For each stimulus, Figure 2B
depicts the two-dimensional DPAs of all seven elementary stimuli
constructed by Gaussian interpolation. Figure 2C shows the OLE-
derived one-dimensional DPAs. The spatial arrangement of ac-
tivity within these distributions implies that neurons in primary
visual cortex contribute as an ensemble to the representation of
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Figure 2. A, Average RF, corresponding to the tuning for location, of all 178 recorded neurons. Based on the peak responses in the PSTHs (40–65 msec
after stimulus onset) each RF profile was smoothed by convolution with a Gaussian in two dimensions (width, 0.64°). RF centers were derived by
calculating the centroid of each profile (compare Fig. 1D3). For summation, the smoothed profiles were added with respect to their RF centers. The SD
was 0.6° (calculated for that part of the resulting average RF profile, which exceeded half of the maximal amplitude). This value of average RF width
matches the typical RF sizes found in area 17 of the cat (Orban, 1984). The vertical arrow indicates the spatial extension in terms of visual field
coordinates. B, Population representations of the elementary stimuli computed as two-dimensional DPAs over visual space after Gaussian interpolation
(compare Fig. 1). The construction was based on the activity of 178 neurons. DPAs were computed in the time interval between 40 and 65 msec after
stimulus onset corresponding to the peak responses in the PSTHs. The activation level is shown in a color scale normalized to maximal activation
separately for each stimulus (calibration bar at bottom right). Red indicates high levels of activation. The frame outlined in white depicts the area of the
visual field investigated as described in Figure 1C. In addition, the stimulus is shown as a square outlined in white. Note that for each stimulus the focal
zone of activation is approximately centered on the stimulus location. C, DPAs derived by means of an OLE for all seven elementary stimuli used. DPAs
were assumed as Gaussian profiles centered on each respective stimulus position. As in the interpolation procedure, neural activity was integrated
between 40 and 65 msec after stimulus onset. The width of the estimated Gaussian was chosen 0.6° to match the average RF width (tuning curve) of all
neurons measured (compare Fig. 2A). The maxima of the OLE-derived distributions were aligned accurately on the position of each stimulus.
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current stimulus: 
square of light

range of retinal field
sampled by neurons



Extrapolate measurement device to new 
conditions

e.g., time resolved 

visual field location, although the RF of each neuron might be
broadly tuned to stimulus location.

For extrapolation, DPAs were obtained by replacing the neural
activity observed in other time intervals or in response to com-
posite stimuli.

Temporal evolution of the DPAs of elementary stimuli
The main emphasis of this study was to explore cortical interac-
tion processes. It appears conceivable that such processes can be
traced during the entire temporal structure of neuron responses
because of differences of time constants of excitatory and inhib-
itory contributions (Bringuier et al., 1999) and because of time-
delayed feedback (Dinse et al., 1990). Accordingly, as an impor-
tant prerequisite, time-resolved DPAs were constructed for a
number of subsequent time intervals after stimulus onset using
the firing rates within each time slice as weights. Figures 3 and 4

illustrate the temporal evolution of the DPAs from 30 to 80 msec
after stimulus onset for two selected elementary stimuli. There is
a remarkable spatial coherence of activity within the ensemble.
The gradual build-up and decay of activation were quite uniform
across the distributions of all elementary stimuli.

On average, the DPAs constructed by Gaussian interpolation
reached maximal level of activation 54 ! 4 msec after stimulus
onset as compared to 53 ! 5 msec for the OLE-derived DPAs
(see Fig. 9B). To quantitatively assess the accuracy with which the
DPAs represent the location of the elementary stimuli position
during the entire time course of responses analyzed (30–80
msec), we compared the position of the maximum of each DPA to
the respective stimulus position. Figure 5 plots these constructed
positions against the real stimulus positions. Results from both
reconstruction methods revealed that the DPAs represent stimu-

30 - 40 ms 40 - 50 ms 50 - 60 ms 60 - 70 ms 70 - 80 ms

0.4˚

Figure 3. Two-dimensional DPAs of adjacent elementary stimuli (top and bottom) derived by Gaussian interpolation. The DPAs were obtained for
consecutive intervals of 10 msec duration covering the period from 30 to 80 msec after stimulus onset. Same conventions as in Figure 2 B. Each example
was normalized separately. As for the OLE-derived DPAs (compare Fig. 4), the distributions grow and decay gradually, and their maximum is always
located near the position of the stimulus. Although the two stimuli are at neighboring locations, differences of the spatial representations are apparent
throughout the time course of the response. For all elementary stimuli, the average latency of maximal activation was 54 ! 4 msec.
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Figure 4. The temporal evolution of two OLE-derived DPAs of the same elementary stimuli (A, B, vertical lines indicate position) as shown in Figure
3. The DPAs are depicted in 10 msec time intervals covering the period from 30 to 80 msec. The distributions grow and decay, gradually reaching
maximum activity at 53 ! 5 msec (average of all seven elementary stimuli) after stimulus onset. The position of the maximum of each distribution closely
approximates the stimulus position of the elementary stimulus throughout the time course of the neural population response, yet less accurately in the
late time epoch.
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two 
different 
stimulus 
locations

time



or when complex stimuli are presented (here: 
two spots of light)

(30–45 msec) and a late (45–80 msec) epoch. For the early
period, we compared the population representation of composite
stimuli to the superpositions. Because we expect to find excitatory
interaction, this is a conservative comparison, because saturation
effects would tend to limit the responses. The solid line in Figure
10 shows the difference between the activation in response to the
composite stimuli and the activation in the superimposed re-
sponses expressed in percent of the latter. In this early response
epoch, there was more activation in the measured than in the
superimposed responses at all distances except the largest (2.4°).
This excess activation, which reached a maximum of 58% at a
stimulus distance of 1.6°, is evidence of distance-dependent exci-
tatory interaction during the build-up phase of the DPAs of
composite stimuli.

That the activation with composite stimuli exceeded even that
of the superpositions demonstrates that response saturation is not
the cause of the apparent inhibitory interactions observed in the

time-averaged analysis. Accordingly, the time-averaged inhibi-
tory effect (compare Figs. 6, 7) originates from the late response
epoch of 45–80 msec after stimulus onset. For this epoch, the
dashed line in Figure 10 shows the relative difference of responses
to composite as compared to elementary stimuli. At all stimulus
separations, the difference is negative, indicating inhibition below
the activation level for a single stimulus. This inhibition is slightly
stronger for larger stimulus separations, providing further evi-
dence for distance-dependent late inhibitory interaction. More-
over, it confirms that response saturation is not an explanation for
this inhibitory effect.

Spatial interaction: repulsion effect
The neural field model predicts (see next section) that inhibitory
interactions are dominant at larger distances, resulting in a re-
pulsion effect for the apparent position of two stimulus compo-
nents. We tested this prediction using the OLE-derived distribu-

0.4˚

Figure 6. The measured two-dimensional DPAs (top) of composite stimuli (from lef t to right, 0.4–2.4° separation) were compared to the superpositions
of the representations of their component elementary stimuli (bottom). The DPAs were based on spike activity of 178 cells averaged over the time interval
from 30 to 80 msec after stimulus onset. Same conventions as in Figure 2B, the color scale was normalized to peak activation separately for each column.
For small stimulus separation, note the remarkably reduced level of activation for the measured as compared to the superimposed responses. The bimodal
distribution recorded for the largest stimulus separation comes close to match the superposition. However, inhibitory interaction can still be observed.
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Figure 7. The OLE-derived DPAs for the composite stimuli as depicted in Figure 6. Solid lines mark the measured activations, and dashed lines show
the calculated superpositions (vertical lines mark stimulus positions). Peak activation was uniformly normalized. As demonstrated for the interpolated
two-dimensional DPAs, the level of measured activation was systematically reduced for smaller stimulus separations but approached linear superposition
for larger separations. The transition from monomodal to bimodal distributions was found between 1.2 and 1.6° separation. A slight asymmetry of the
amplitudes between the representations of the left and the right stimulus component was found for the measured as compared to the superimposed
distributions for stimulus separations of 1.2 and 1.6°.
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by comparing DPA of composite stimuli to 
superposition of DPAs of the two elementary 
stimuil obtain evidence for interaction

early excitation

late inhibition



interaction

sigmoidal signal F(u). This factor prevents the asymptotic tran-
sient response to fall below resting level because only those sites
in the field that are sufficiently activated are susceptible to inhib-
itory interaction.

The parameter !, Equation 9, determines the overall time scale
of build-up and decay of the field activity and can be adjusted to
reproduce qualitatively the measured time course of population
activity changes. In the numerical studies, we have used the value
! ! 15. A fixed criterion (5% above resting level) was used to
define the response onset in the experiments. For the simulations,
the afferent transient stimulus S(x,t) at position x, applied for a
duration "t ! 25 msec, is a Gaussian profile characterized by its
strength, As, and width parameter, 2". The choice of " fixes the
spatial units relative to the experimental space scale. All range
parameters used in the model simulations were chosen as multi-
ples of " ! 5, which represents 0.2° in visual space.

If this transient external input creates enough excitation within
the field, the excitatory response develops a single spatial maxi-
mum located at the center, x, of the stimulated segment. This is
followed by a process of relaxation to the resting state driven by
increasing inhibition in the field. The activation level of this

resting state is a homogenous and stable solution of the model
dynamics, fixed by the parameter h # 0 (h ! $3 for the simula-
tions shown here).

Simulation results
Figure 9 compares the temporal evolution of population activa-
tion in the experiment (B) and in the model (C). Composite
stimuli with six spatial separations were used. The same normal-
ization procedures for the simulated data were applied as for the
experimental data. To further facilitate the comparison of theory
and experiment, a time interval of 25 msec before stimulus onset
was added, so that the field dynamics has relaxed to its resting
state. This time window accounts for the temporal delay between
the stimulus presentation and the cortical response in the
experiment.

Distance-dependent early excitation and late inhibition are
observed by comparing the temporal evolution of the field in
response to the single input at the nasal location. Note that in the
experiment, the limit case of two independent peaks not inter-
acting at all is not reached even at the largest probed distances
between the component stimuli. At that largest separation, an
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Figure 9. Time-resolved analysis of interaction effects based on integrals of DPAs in a 0.8° wide band around the location of the nasally positioned
elementary stimulus (A, vertical arrow). The different composite stimuli are shown in column A. Column B contrasts the OLE-derived DPAs to composite
stimuli (solid line) with the responses to the single nasally positioned elementary stimulus (dashed line). At small distances, the activation to composite
stimuli had a significantly smaller latency accompanied by an earlier onset of the decay of the population activity as compared to the elementary stimuli.
The late part of the responses to the composite stimuli was characterized by an overall inhibition. The arrow marks that peak activation in response to
the composite stimulus of largest separation is still below activity measured in the single stimulus condition. Column C displays results of simulations
of the dynamic neural field model scaled to match the experimental stimulus conditions. Parameter values used for this simulation are: Au ! 5.2, Av !
4, "u ! 15, "v ! 25, As ! 4, Bs ! 10, b ! 1, h ! $ 3, ! ! 15. The arrow marks that inhibition can still be seen at the largest probed distances between
the component stimuli.
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model by dynamic field:
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in the field that are sufficiently activated are susceptible to inhib-
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duration "t ! 25 msec, is a Gaussian profile characterized by its
strength, As, and width parameter, 2". The choice of " fixes the
spatial units relative to the experimental space scale. All range
parameters used in the model simulations were chosen as multi-
ples of " ! 5, which represents 0.2° in visual space.
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mum located at the center, x, of the stimulated segment. This is
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increasing inhibition in the field. The activation level of this
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dynamics, fixed by the parameter h # 0 (h ! $3 for the simula-
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tion in the experiment (B) and in the model (C). Composite
stimuli with six spatial separations were used. The same normal-
ization procedures for the simulated data were applied as for the
experimental data. To further facilitate the comparison of theory
and experiment, a time interval of 25 msec before stimulus onset
was added, so that the field dynamics has relaxed to its resting
state. This time window accounts for the temporal delay between
the stimulus presentation and the cortical response in the
experiment.

Distance-dependent early excitation and late inhibition are
observed by comparing the temporal evolution of the field in
response to the single input at the nasal location. Note that in the
experiment, the limit case of two independent peaks not inter-
acting at all is not reached even at the largest probed distances
between the component stimuli. At that largest separation, an
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Figure 9. Time-resolved analysis of interaction effects based on integrals of DPAs in a 0.8° wide band around the location of the nasally positioned
elementary stimulus (A, vertical arrow). The different composite stimuli are shown in column A. Column B contrasts the OLE-derived DPAs to composite
stimuli (solid line) with the responses to the single nasally positioned elementary stimulus (dashed line). At small distances, the activation to composite
stimuli had a significantly smaller latency accompanied by an earlier onset of the decay of the population activity as compared to the elementary stimuli.
The late part of the responses to the composite stimuli was characterized by an overall inhibition. The arrow marks that peak activation in response to
the composite stimulus of largest separation is still below activity measured in the single stimulus condition. Column C displays results of simulations
of the dynamic neural field model scaled to match the experimental stimulus conditions. Parameter values used for this simulation are: Au ! 5.2, Av !
4, "u ! 15, "v ! 25, As ! 4, Bs ! 10, b ! 1, h ! $ 3, ! ! 15. The arrow marks that inhibition can still be seen at the largest probed distances between
the component stimuli.
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example: movement planning

Bastian, Riehle, Schöner, 2003

movement
direction

Neurophysiological grounding of DFT



tuning of cells in motor and premotor cortex to 
direction of end-effector movement path



Distribution of Population Activation 
(DPA)
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look at temporal 
evolution of DPA

or DPAs in new 
conditions, here: DPA 
reflects prior 
information 
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Distributions of Population 
Activation are abstract

neurons are not localized within DPA! 

cortical neurons really are sensitive to many 
dimensions

motor: arm configuration, force direction

visual: many feature dimensions such as spatial frequency, 
orientation, direction... 

=> DPA is a projection from that high-
dimensional space onto a single dimension


