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CHAPTER 4

Dynamical Systems Approaches to Cognition

Gregor Schöner

1. Introduction

Think of a little boy playing in the play-
ground, climbing up on ladders, balancing
on beams, jumping, running, catching other
kids. Or think of a girl who prepares to draw
a picture, finding and setting up her painting
utensils, dipping the brush in water, care-
fully wiping it off, whipping up the water
paint of the selected color with small cir-
cular movements, the brush just touching
the pad of paint. When she actually paints,
she makes a sequence of brush strokes to
sketch a house. Clearly, both scenes in-
volve lots of cognition. The ongoing, com-
plex behaviors of the two children are cer-
tainly not simple reflexes, nor fixed action
patterns elicited by key stimuli, nor strictly
dictated by stimulus–response relationships.
Hallmarks of cognition are visible: selec-
tion, sequence generation, working mem-
ory. And yet, what makes these daily life
activities most intriguing is how seamlessly
the fine and gross motor control is tuned to
the environment; how sensory information
is actively sought by looking around, search-
ing, establishing reference; and how seam-

lessly the flow of activities moves forward.
No artificial system has ever achieved even
remotely comparable behavior. Although
computer programs may play chess at grand
master level, their ability to generate smooth
flows of motor actions in natural environ-
ments remains extremely limited.

Clearly, cognition takes place when or-
ganisms with bodies and sensory systems
are situated in structured environments, to
which they bring their individual behavioral
history and to which they quickly adjust.
There is a strong theoretical tension in cog-
nitive science about the extent to which cog-
nition can be studied while abstracting from
embodiment, situatedness and the structure
of the nervous systems that control cogni-
tive processes in organisms. This chapter ar-
gues that in making such abstractions, im-
portant concepts are missed, including most
importantly the concepts of stability and
instability.

The embodied view of cognition em-
phasizes the close link of cognition to the
sensory and motor surfaces and the struc-
tured environments in which these are im-
mersed. The dynamical systems approach
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to cognition is the theoretical framework
within which this embodied view of cogni-
tion can be formalized. This chapter reviews
the core concepts of the dynamical systems
approach and illustrates them through a set
of experimentally accessible examples. Par-
ticular attention will be given to how cog-
nition can be understood in terms that are
compatible with principles of neural func-
tion, most prominently, with the space–time
continuity of neural processes.

2. Embodiment, Situatedness,
and Dynamical Systems

Cognition is embodied in the obvious sense
that natural cognitive systems are housed in
a physical and physiological body, and that
cognitive processes take place within the or-
ganism’s nervous system. Cognition is situ-
ated in the similarly obvious sense that this
body acts in a specific, structured environ-
ment from which it receives sensory infor-
mation and on which it may have an effect.
Body and nervous system are adapted to
natural environments on many time scales,
from evolution to development and learn-
ing. Any individual organism brings its par-
ticular history of behavior and stimulation
to any situation in which cognition is acted
out.

In another sense, embodiment is a sci-
entific stance, in which researchers aim to
understand cognition in ways that do not
neglect the linkage between cognitive pro-
cesses and the sensory and motor surfaces,
do not neglect the structured environments
in which cognition takes place, are mind-
ful of the potential role of individual ex-
perience in cognition, and are careful when
abstracting from the concrete neuronal pro-
cesses that are the basis for the behavior of
organisms.

Taking that stance does not prevent re-
searchers from building artificial cognitive
systems or from constructing abstract math-
ematical models of cognitive processes. But
in each case, the potential link to a body, to
an environment, and to a stream of behav-
ior must be considered. Whether the theo-

retical constructs employed are compatible
with organizational principles of the nervous
system must be examined. Models of cogni-
tion that take the embodied stance must be
process models that can capture, at least as
a matter of principle, the unfolding in time
of cognition and the associated sensory and
motor processes.

Often, building a robotic demonstration
of a process model is a useful test of the ex-
tent to which the principles of embodiment
have been respected. Many classical produc-
tion system modelers of cognition for in-
stance, face serious, sometimes insurmount-
able problems when they try to feed their
systems from real sensors in the real world
and let their systems control real bodies. The
limited success of the artificial intelligence
approach to autonomous robotics reflects
these difficulties (Brooks, 1991).

Dynamical systems theory provides the
language in which the embodied and situ-
ated stance can be developed into a scien-
tific theory of cognition. To examine this
claim, we need to clarify what dynamical
systems theory refers to. There is, of course,
the field of mathematics that concerns itself
with dynamical systems (Perko, 1991). The
mathematical concepts capture the property
of many natural systems in which a suffi-
ciently rich characterization of the present
state of the system enables prediction of
future states. Scientific theories based on
this mathematical framework have been ex-
traordinarily successful in physics and many
branches of science connected to physics.
In each case, this required forming scien-
tific concepts based on the mathematical
framework, concepts that had to prove their
power by capturing laws of nature, proper-
ties, and constraints of systems. The mathe-
matics alone did not do that job. By anal-
ogy, developing an understanding of cog-
nition within the mathematical framework
of dynamical systems requires that concepts
are defined that bring the mathematics to
bear on the subject matter.

One level at which this has been
done with considerable success is that of
metaphor. Dynamical systems as a meta-
phor promote thinking about underlying
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“forces” (vector-fields), from which the ob-
served pattern or behavior emerges. The so-
lutions of nonlinear dynamical systems may
change qualitatively, even as the underlying
vector-fields change only in a graded way.
This fact may serve as a metaphor for how
qualitatively distinct states or events may
emerge from continuous processes, for how
there may be multiple possible causes for the
emergence of such qualities, and for how
all contributions to a system may matter,
not only the ones most specifically linked
to the new quality. This image dates back,
perhaps, to the notion of the Gestalt field
in Gestalt psychology (Köhler, 1920/1939)
and has been a source of fresh thinking in de-
velopmental psychology (Thelen & Smith,
1994). The strongest impact of dynamical
systems as a metaphor may be in heuristics,
that is, as a source of new questions and new
view points.

This chapter, however, reviews efforts to
form concepts based on the mathematical
theory of dynamical systems into a rigorous
scientific approach toward cognition that
embraces the embodied and situated stance.
The argument will be laid out that the con-
cepts of attractor states with their stability
properties, the loss of stability when such
states go through bifurcations, and the emer-
gence of new attractor states from instabili-
ties are necessary ingredients of an account
of embodied and situated cognition. No
physical realization of cognition is possible
without addressing the problems to which
these concepts provide solutions. Not cov-
ered in this review is recent discussion about
dynamical systems and embodiment within
philosophy (see, for instance, Van Gelder,
1998; Juarrero, 1999; Keijzer, 2001).

3. Dynamical Systems Thinking:
Uniquely Instantiated Dynamics

Control systems provide an interesting
metaphor for the notion that meaningful
function may emerge from simple, embod-
ied mechanisms. A highly illustrative exam-
ple comes from the orientation behaviors of
the common house fly (Reichardt & Poggio,

1976; Poggio & Reichardt, 1976). Flies ori-
ent toward moving objects, which they
chase as part of their mating behavior. De-
tailed analysis revealed that the circuitry un-
derlying this behavior forms a simple con-
troller: A motion detection system fed by
luminance changes on the fly’s facet eye
drives the flight motor, generating an
amount of torque that is a function of where
on the sensory surface motion was detected.
If the speck of motion is detected on the
right, a torque to the right is generated. If the
speck is detected on the left, a torque to the
left is generated. The level of torque passes
through zero when the speck is right ahead.
The torque changes the flight direction of
the fly, which in turn changes the location
on the facet eye at which the moving stim-
ulus is detected. Given the aerodynamics of
flies, the torque and its on-line updating gen-
erate an orientation behavior, in which the
insect orients its flight into the direction in
which a moving stimulus is detected.

That meaningful behavior emerges as a
stable state, an attractor, from the neu-
ral circuitry linking the sensory surface to
the flight motor, which together with the
physics of flight establish a dynamical sys-
tem (Figure 4.1). In the lab, the behavior
can be elicited by imposing a motion signal
on the fly’s facet eye. In the fly’s natural envi-
ronment, the sensory signal typically comes
from other flies. In fact, the system is tuned
such that pursuit of another fly works amaz-
ingly well, probably the outcome of evolu-
tionary optimization.

There is an irony in the scientific his-
tory of this analysis. Reichardt and col-
leagues (Reichardt & Poggio, 1976; Poggio &
Reichardt, 1976) had opened the loop by
fixing the fly to a torque meter, so that the
amount of torque generated by the flight
motor could measured. This was done as a
function of the location in the visual array,
at which a moving stimulus was presented.
From the measured torque, these authors
predicted the closed loop behavior. Measur-
ing closed loop behavior still required fix-
ing the fly to the torque meter, but now
the visual surround was moved as a function
of the measured torque to imitate natural
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Figure 4.1. Schematic illustration of how the
dynamics of heading direction accounts for how
flies select and orient to visual targets. (a) The
torque exerted by the fly’s flight motor
generates a turning rate, which is a function of
the fly’s heading direction relative to a visual
target, an object that makes small oscillatory
movements around the indicated position. This
dependence effectively defines a dynamics of
heading direction, which has an attractor
(zero-crossing with negative slope) at the
direction in which the target lies. (b) When two
objects are metrically close (see the two vertical
lines) they generate a fused attractor. Over time,
the fly’s average heading lies between the two
targets. (c) When two objects are metrically far
(vertical lines), a bistable dynamics results. The
fly switches randomly between the two heading
directions, generating a bimodal histogram
(bottom) of flying directions over time.

flight. When imperfections of this early form
of virtual reality were removed, researchers
found that the prediction did not hold up
(Heisenberg & Wolf, 1988). Apparently, the
fly’s simple nervous system computes an ex-
pected visual motion from its own motor
commands (reafference) and treats detected
visual motion matching that prediction dif-
ferently than extraneous motion signals re-
lated to movement of an object relative to
the fly. So even this very simple control
system provides hints that uncovering the
dynamics from which behavior emerges re-

quires more than an input-output analysis in
open loop.

Even so, there is no explicit representa-
tion of the speck in motion, nor reasoning
about goals and plans to reach those goals.
The behavior emerges when a neural sys-
tem linked to the sensory and motor surfaces
is immersed in an environment to which it
is adapted. The complete system, including
neural network and coupling through the
body and environment, can be understood
as a dynamical system. Its attractor solution
is the emergent behavior. Although in some
abstract sense one could say that the neurons
controlling the flight motor “estimate” the
direction in which the target lies, their firing
does not “re-present” this value because the
estimate is implicit in the control circuitry
driving the flight system and cannot be for-
warded to be used in any other context.

Some have argued that such emergence
of a behavior from a closed control could
form the core of a potential dynamical sys-
tems refoundation of cognition (Gelder &
Port, 1995). But is control already a form of
cognition? Would that not imply that every
heater with a thermostat is already a cog-
nitive system? One dimension along which
systems maybe be distinguished is flexibil-
ity. One could argue that the threshold of
cognition has not been reached as long as an
emergent behavior is uniquely determined
by sensory inputs. By contrast, when a con-
trol system makes decisions, selects among
a range of inputs, and generates behavior
based on its own inner state, then this might
represent the most elementary form of cog-
nition. That implies a form of flexibility, in
which the emergent outcome is no longer
dictated by the sensed outer world but is in-
stead, at least to some minimal extent, based
on choices generated from within the sys-
tem.

The flight control system of house flies is
capable of such flexibility. When confronted
with several patches of visual motion on its
facet eye, the fly selects one of the patches
and directs its flight in pursuit of that visual
object (Poggio & Reichardt, 1976). This ca-
pacity to select emerges from the control
dynamics. Superposing the torque patterns
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generated by each motion patch, two at-
tractors emerge (Fig. 4.1c). One of these
is selected depending on the initial orienta-
tion and on chance. When the two patches
are close to each other, the two attractors
merge, and the fly flies in an averaged direc-
tion (as shown in Fig. 4.1b).

This example illustrates ideas that gener-
alize well beyond the framework of control
theory. A summary of the principles of a dy-
namic approach to behavioral patterns can
be formulated as follows (Schöner & Kelso,
1988a). (1) Patterns of behavior are charac-
terized by inner states, which determine the
persistence of the patterns over time and
under changing conditions. A state can be
characterized by variables with specific val-
ues corresponding to specific states. States
and associated variables are not limited to
those of sensorimotor loops. State variables
may originate, for instance, from within the
neural networks that control behavior. (2)
The evolution in time of these state vari-
ables is generated by neural networks linked
to sensory and motor surfaces that can be
modeled as dynamical systems. Many factors
may contribute to the effective dynamics
of such systems, including the physical dy-
namics and material properties of the body
and of the environment. Sensory inputs, in-
cluding internal sensory feedback, also act as
forces on this dynamics. (3) Asymptotically
stable states structure the solutions of this
dynamical system. Over the long run, only
attractor solutions are robust and likely to
be observed. The nervous system is exten-
sively interconnected, so that for any par-
ticular circuit and any particular pattern,
other connections act effectively as pertur-
bations, as do variable sensory inputs and
the complex and temporally variable natural
environment. (4) As a corollary, only when
states are released from stability does behav-
ioral flexibility arise. Release from stability
takes the form of instabilities (bifurcations)
in which the restoring forces around an at-
tractor become too weak to resist change.
New solutions may be reached or even cre-
ated from instabilities. The full complex-
ity of behavior may ultimately be generated
from the complex structure of stable dynam-

ical states and their instabilities in a nonlin-
ear, strongly interlinked dynamical system.

As an illustration of these principles, con-
sider the coordination of rhythmic move-
ment, a domain in which dynamical systems
ideas have been developed and evaluated
in detail (Schöner & Kelso, 1988a; Kelso,
1995). Patterns of coordination underly-
ing such behaviors as the gaits of loco-
motion, speech articulatory movements, or
the playing of a musical instrument can
be characterized through measures of the
relative timing of components, such as
the relative phase, φ. Their evolution re-
flects the coupling between the neural net-
works that control the components (Gross-
berg, Pribe, & Cohen, 1997) as well as,
in some instances, mechanical coupling
(Turvey, 1990). The temporal evolution and
stability of the coordination patterns can be
described by an effective dynamical system
governing the measures of relative timing,
which can be modeled as a relative phase
dynamics (Schöner, Haken, & Kelso, 1986).
Stable states (attractors) of the dynamics
correspond to stable patterns of coordina-
tion. The coordination of homologous limbs,
for instance, occurs generally in two sym-
metric patterns, the limbs either moving in-
phase or in phase alternation (“anti-phase”).
These patterns stay invariant under a variety
of conditions, including changes in the fre-
quency of the rhythmic movement. Their
stability does not stay invariant, however.
The anti-phase pattern of coordination typ-
ically becomes less stable at higher move-
ment frequencies. This manifests itself in as-
sociated changes of stability measures, such
as an increase in the amount of fluctuation of
relative phase and an increase in the amount
of time needed to recover from a perturba-
tion of the coordination pattern (Schöner
et al., 1986). Stability is thus an essential
property of coordination patterns. Without
stability, patterns do not persist. In fact,
at sufficiently high movement frequencies,
an involuntary switch out of the anti-phase
into an in-phase pattern of coordination
occurs. An understanding of coordination
thus requires more than an account of the
information processing needed to compute
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the pattern. It also requires an account for
how the pattern is reached from all kinds
of perturbed states. In dynamical systems
thinking, both the specification of the state
and the mechanisms for its stabilization
emerge from the same underlying dynamical
system.

Are stability properties perhaps gener-
ated at a lower level of control, whereas
relative timing per se is planned at a more
abstract, disembodied level? Information
processing models of timing have invoked
“clocks” that generate time signals represent-
ing more or less complex patterns of coor-
dination, which are then handed down to
a “motor” system that handles the control
(Vorberg & Wing, 1996). A first response
is that the clocks themselves must have sta-
bility properties if they are to account for
coordination, and this makes them dynam-
ical systems as well (Schöner, 2002). Ab-
stracting from the dynamic, embodied prop-
erties of timing means, however, missing out
on important constraints for higher cogni-
tive function. How people switch intention-
ally from one pattern of coordination to an-
other, for instance, is constrained by stability
(Scholz, Kelso, & Schöner, 1988). First,
switching from a more stable to a less stable
pattern takes longer than vice versa. Second,
the intention to switch to a pattern increases
that pattern’s stability so that it is possible
to switch to a pattern that is unstable un-
der less specific intentional constraints. The
experimental results were quantitatively ac-
counted for by a model in which the inten-
tion to switch to a coordination pattern is a
force in the coordination dynamics that in-
creases the stability of the intended pattern
(Schöner & Kelso, 1988b). Another study
had participants learn a new pattern of coor-
dination that initially was not in the behav-
ioral repertoire (Schöner, Zanone, & Kelso,
1992). The process of learning amounted to
increasing the stability of the target pattern.
That the underlying coordination dynamics
was changed could be shown when partici-
pants were asked at different points during
their training to produce patterns of coordi-
nation near the target pattern. Before learn-
ing performance was biased toward the in-

trinsic patterns of in-phase and anti-phase.
After learning a new bias toward the learned
pattern was observable. The bias could be at-
tributed to the underlying dynamics of rela-
tive timing, which changed during learning,
with new forces stabilizing the learned pat-
tern (Schöner et al., 1992). Related work es-
tablished that perceived or memorized con-
straints for relative timing could likewise
be understood as contributions to the dy-
namics of coordination (Schöner & Kelso,
1988c).

The picture that emerges from this exem-
plary system is that movement coordination
emerges as stable states from a nonlinear, po-
tentially multistable dynamics, realized by
neural networks coupled to the body in a
structured environment. Cognitive aspects
of motor control, such as intentional move-
ment goals, motor memory, or skill learning,
are all mediated through this dynamics of
coordination. Its graded change may lead to
both graded and categorical change of move-
ment behavior.

Beyond motor control, nonlinear dynam-
ics has been invoked as a general frame-
work for cognition, in which the concept
of representation is unneeded (Gelder &
Port, 1995). This has been viewed as a
strength by some, as a weakness by others
(Markman & Dietrich, 2000). Extending dy-
namical systems ideas beyond motor con-
trol, we run into a conceptual limitation,
however. Take the coordination of rhythmic
movement we just discussed, for example.
What value does relative phase have when
the movement is stopped? When movement
is restarted, does the coordination system
start up at the last value that relative phase
had? Describing the state of a motor sys-
tem by a variable such as relative phase re-
quires that variable to have a unique value
at all times. That value must evolve continu-
ously in time, cannot jump, cannot split into
two values, or disappear and have no value.
The dynamical system description of coor-
dination by relative phase is thus “uniquely
instantiated.”

For another example, consider the
biomechanics of the human arm, which has
a well-defined physical state at all times,



P1: JZP

CUFX212-04 CUFX212-Sun 978 0 521 85741 3 November 20, 2007 18:7

dynamical systems approaches to cognition 107

characterized by the spatial positions of its
segments or the ensemble of its joint angles.
That physical state changes only continu-
ously, that is, the arm obviously does not
disappear in one position and reappear at
another. The biomechanics of the arm are
characterized by the equations of motion,
a set of differential equations for the joint
angles that generate continuous joint angle
trajectories. The variables in this dynamical
description are uniquely instantiated. Every
joint angle has exactly one value at each
time, and that value changes continuously
in time.

Now think about planning a movement.
A movement plan may exist before a move-
ment is initiated. This is revealed by the
movement starting out in the direction of
the target, by the latency between a move-
ment command and the initiation of the
movement being shorter when the move-
ment goal is known ahead of time, or by
observing specific neuronal activity prior to
movement initiative. A movement plan may
be described in the same terms as the state
of the arm, for example, as a desired con-
figuration of the joint angles. But are those
variables uniquely instantiated? After having
made a movement, is the movement plan
still around? When a new movement is pre-
pared, do the joint angle variables containing
the planned arm configuration evolve con-
tinuously from the values of the previous
movement plan to the required new val-
ues? Clearly, that does not make sense. In
a first approximation, the preparation of a
new movement does not depend on the pre-
vious motor act. Also, early during move-
ment planning, movement parameters may
have multiple values (Ghez et al., 1997;
Wilimzig, Schneider, & Schöner, 2006).

Is it possible that the planning of move-
ments does not fall into the domain of dy-
namical systems thinking? The answer is no,
because there are clear indications of dy-
namics at the level of movement preparation
(Erlhagen & Schöner, 2002). Movement
plans evolve continuously in time (Ghez
et al., 1997) and are updated at any time
during movement preparation when sensory
information changes (Goodale, Pélisson, &

Prablanc, 1986). The neural substrate re-
flects both neuronal properties (Georgopou-
los et al., 1989; Scott, 2004).

Similarly, perception has signatures both
of dynamics and of a lack of unique instanti-
ation. That percepts cannot be described by
uniquely instantiated variables is intuitive.
When we watch a slide show, each slide in-
duces a new percept. It does not seem to
make sense to say that the new percept in-
duced by the next slide emerges from the
percept of what was on the previous slide
by continuous transformation. Evidence for
a new percept, depending on what has just
previously been perceived, comes, however,
from multistable stimuli. The motion quar-
tet (Hock, Kelso, & Schöner, 1993) is a par-
ticularly clear example, illustrated in Fig-
ure 4.2. Spots at the four corners of an
imaginary rectangle have luminance levels
above background. Two spots lying on one
diagonal are much brighter, the two spots
on the other diagonal are only a little bit
brighter than background. If the two diago-
nals switch from frame to frame, then one of
two motion patterns is clearly seen: Either
the bright spots move horizontally (panel c)
or vertically (panel d), but never both at the
same time. Different stimulus geometries fa-
vor either perceptual outcome: Flat rectan-
gles (panel e) generate predominantly verti-
cal motion percepts, tall rectangles (panel f)
generate predominantly horizontal motion
percepts. When the stimulus geometry is
changed continuously in time, the percep-
tual state tends to persist, leading to percep-
tual hysteresis (panel g). This is a very robust
finding, immune to intentional or semantic
influences and to eye movements, and not
caused by response bias Hock et. al., 2005).
Hysteresis is evidence for continuity of the
underlying perceptual state and supports a
dynamical systems account for perception
(Hock, Schöner, & Giese, 2003).

When, on the other hand, the percep-
tion of motion is briefly interrupted while
the stimulus series is presented, hysteresis is
abolished (Hock & Ploeger, 2006; Nichols,
Hock, & Schöner, 2006). A sophisticated
way of demonstrating that fact employs
the background relative luminance contrast
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Figure 4.2. The two frames (a and b) of the
motion quartet stimulus and its two possible
percepts, horizontal (c) and vertical (d) motion,
indicated by white arrows. Motion is seen from
locations at which luminance decreases to
locations at which luminance increases. If the
stimulus is periodically repeated, the direction
of motion is inverted on subsequent frame
changes, but the pattern of horizontal versus
vertical tends to persist. Low aspect ratios (e)
favor vertical, high aspect ratios (f) favor
horizontal motion. When the aspect ratio is
continuously varied from frame to frame (g),
the initially established motion direction tends
to persist, leading to hysteresis, the dependence
of perceptual outcome on the direction of
stimulus change (arrows).

(BRLC; see Figure 4.3). This is the amount
of change in luminance from frame to frame
in relation to how much the spots’ average
luminance is above background. A BRLC
of 2 (panel a) provides the strongest motion
signal. This is when the change of luminance
goes all the way down to background lumi-
nance. BRLCs below two have considerable
contrast in both frames, but more contrast
in one frame than in the other. Near a BRLC
of zero (panel b), there is hardly any lumi-

nance change between frames. When BRLC
is varied, the probability of motion being
perceived varies between these limit cases
(panel c); Hock, Gilroy, & Harnett, 2002).
(This transition from nonmotion to motion
perception is likewise hysteretic, a fact we
shall return to later.) At intermediate lev-
els of BRLC, motion perception is bistable:
Sometimes, motion will be perceived, some-
times not. Thus, if during a stimulus se-
ries that changes the geometry from, say,
flat to tall, the BRLC level is abruptly low-
ered for just a single frame, then on a cer-
tain percentage of trials, the perception of
motion will stop altogether, whereas on the
other trials, motion will continue to be per-
ceived through the perturbation. Hock and
Ploeger (2006) found that hysteresis was
abolished on those trials, on which motion
had stopped, but not on those on which mo-
tion had continued. Thus, whether or not
the direction of motion is preserved over

(a) (b)

BRLC

% motion(c)

12

Figure 4.3. The background relative luminance
contrast (BRLC) is the amount luminance
changes from frame to frame divided by the
distance between average luminance and
background. (a) A BRLC of two means
luminance changes between a high level and
background. (b) A small BRLC means
luminance changes little from frame to frame, so
that all locations in the motion quartet have
similar contrast relative to background in both
frames (c). The probability of perceiving motion
increases with increasing BRLC. The transition
between motion and nonmotion shows
hysteresis, that is, depends on the direction of
BRLC change (arrows).
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dimension, x

activation, u(x)

metric contents

information

Figure 4.4. Activation fields are defined over
the metric space, x, relative to which
information is being represented, for example,
space, feature, or movement parameters.
Activation, u, itself encodes the amount of
information about specific values, for example,
the readiness to activate a specified action or the
certainty of a sensory estimate.

time depends on whether or not motion re-
mained active.

The continuity captured by the dynam-
ical variables of uniquely instantiated de-
scriptions is thus not sufficient to move from
motor control toward movement planning
or to perception. What is missing is a dy-
namic representation of the presence or ab-
sence of plans or percepts. The classical con-
cept of activation can play that role (Spencer
& Schöner, 2003).

4. Dynamical Field Theory

4.1. Activation Fields

To represent metric information in terms of
dynamical state variables, we need two di-
mensions (Figure 4.4). One is the metric di-
mension along which information is speci-
fied. Each location in the field corresponds
to a particular value along the metric di-
mension. For each such value, the activation
level of the field spans the second dimension
that encodes a measure of the amount of in-
formation about that value.

For a sensory representation, the first
dimension may entail parameters whose
values must be estimated from sensory
information. Such parameters may be, for
instance, the location in visual space of a
stimulus, perceptual features such as orien-
tation, spatial frequency, and pitch, or even
relatively high-level parameters, such as the

estimation of the pose of a visual object.
The body scheme is another example,
which may involve estimating joint angles
from proprioceptive information. For such
sensory representations, low levels of acti-
vation at a particular field location indicate
that the value of the represented dimension
associated with that location is not a likely
estimate. High levels of activation mark field
locations that contribute substantially to
the current estimate of sensory information.

For motor representations, metric dimen-
sions may be spanned by movement param-
eters like movement direction or movement
extent, level of force, or movement time.
Low levels of activation at a field location in-
dicate that the associated movement is not a
likely movement plan. High levels of activa-
tion indicate that the movement represen-
ted at that location is close to being initiated,
and activation from that field site will be
handed down to the motor control system.

In this picture, localized peaks of activa-
tion are units of representation. The loca-
tion of the peaks in the field encodes metric
information about the underlying dimen-
sion. The activation level of the peaks is
the strength of representation, which may
variably encode the certainty of an estimate,
the closeness to execution of a plan, or the
physical intensity of a stimulus. A flat distri-
bution of activation, by contrast, represents
the absence of specific information.

The limit case of uniquely instantiated
dynamics is modeled whenever a single posi-
tive peak moves continuously along the met-
ric dimension. Its motion may be described
by an instantiated dynamics in which the
peak location is the dynamical state variable,
whose time course is generated through an
ordinary dynamical system. By contrast, in
the more general conception of a dynamic
field, it is the activation level at each field
location that acts as state variable. Thus,
dynamic fields are infinite dimensional dy-
namical systems, and activation levels rather
than peak locations evolve continuously in
time. Peaks may be suppressed and created.
For instance, harking back to the problem
of coordination, a peak over the dimension
“relative phase” would indicate that relative
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phase has a well-defined value. If the move-
ment is stopped, that peak decays. When
movement resumes, a peak could be gen-
erated at a new location, so that relative
phase could start up at a new value. Sim-
ilarly, peaks of activation in a dynamic field
defined over the direction and location of
perceived motion signify the perception of
a particular movement pattern. When the
peaks decay (e.g., because BRLC was low-
ered), the motion percept is lost. When the
stimulus is restored in strength, peaks may
come up at new locations, restoring the per-
cept of motion but potentially in a new
direction.

4.2. Field Dynamics

The dynamical system from which the tem-
poral evolution of activation fields is gen-
erated is constrained by the postulate that
localized peaks of activation are stable ob-
jects, or, in mathematical terms, fixed point
attractors. Such a field dynamics has the
generic form

τ u̇(x, t) = −u(x, t) + resting level

+ input + interaction (4.1)

where u(x, t) is the activation field defined
over the metric dimension, x, and time, t.
The first three terms define an input-driven
regime, in which attractor solutions have
the form u(x, t) = resting level + input. The
rate of relaxation is determined by the time
scale parameter, τ . The interaction stabilizes
localized peaks of activation against decay
by local excitatory interaction and against
diffusion by global inhibitory interaction
(Figure 4.5). In Amari’s formulation (Amari,
1977) the mathematical form is specified as

τ u̇(x, t) = −u(x, t) + h + S(x, t)

+
∫

dx′w(x − x′)σ (u(x′, t)).

(4.2)

Here, h < 0 is a constant resting level,
S(x, t) is spatially and temporally variable
input function, w($x) is an interaction ker-

dimension

local excitation: stabilizes
peaks against decay

global inhibition: stabilizes
peaks against diffusion

input

activation field

Figure 4.5. Local excitatory interaction helps
sustain localized peaks of activation, whereas
long-range inhibitory interaction prevents
diffusion of peaks and stabilizes against
competing inputs.

nel, and σ (u) is a sigmoidal nonlinear thresh-
old function (Figure 4.6). The interaction
term collects input from all those field sites,
x′, at which activation is sufficiently large.
The interaction kernel determines if inputs
from those sites are positive, driving up
activation (excitatory), or negative, driv-
ing down activation (inhibitory). Excitatory
input from nearby location and inhibitory

1/2

1

β

x-x'

σ(u)

u

w(x-x')

wexcite

winhib

width

Figure 4.6. The interaction kernel, w($x), in
Amari’s neural field dynamics depends only on
the distance, $x, between the field locations as
illustrated on top. The kernel depicted here is
excitatory only over small distances, whereas
over larger distances, inhibitory interaction
dominates. Only sufficiently activated field sites
contribute to interaction. This is modeled by
sigmoidal threshold functions, such as the one
illustrated on bottom, σ (u) = 1/(1+ exp(−βu)).
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dimension
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activation
field

activation
field

(a) (b)

dimension

Figure 4.7. The dynamic activation field (solid
line) in response to input distributions (dashed
line). (a) Localized input is applied to the
activation field that is initially at the negative
resting level. This induces a subthreshold peak,
which does not yet engage interaction. (b)
When input is slightly increased, excitatory
interaction pulls the activation peak up, which
in turn inhibits the field elsewhere.

input from all field locations generically sta-
bilize localized peaks of activation. For this
class of dynamics, detailed analytical results
provide a framework for the inverse dynam-
ics task facing the modeler, determining a
dynamical system that has the appropriate
attractor solutions.

A literature on neuronally more realistic
or detailed models includes multilayer field
dynamics (in which excitation and inhibi-
tion are separated, as in real neuronal sys-
tems; Wilson & Cowan, 1972) and models of
spiking neurons (Gerstner & Kistler, 2002).
The qualitative dynamics of the generic
Amari formulation are shared features of
this entire class of neuronal dynamics, how-
ever. In particular, two functionally rele-
vant kinds of attractor solutions arise. The
input-driven attractor is a largely subthresh-
old pattern of activation in which the con-
tribution of the neuronal interaction is neg-
ligible (Figure 4.7a). Self-excited attractors,
by contrast, are localized patterns of acti-
vation with levels sufficient to engage neu-
ronal interaction (Figure 4.7b). In this state,
local excitatory interaction lifts activation
within the peak beyond levels induced by
input, whereas global inhibitory interaction
suppresses levels elsewhere below the levels
justified by the resting level or inputs.

That these two kinds of attractors are
qualitatively different states can be seen
from the fact that there is a dynamical insta-
bility separating them, the detection insta-

bility (see Bicho, Mallet, & Schöner, 2000,
for discussion). This instability can be ob-
served, for instance, if the amplitude of a
single localized input is increased. Below a
critical point, this leads to a subthreshold
input-driven solution (Figure 4.7a). When
input strength reaches a threshold, this solu-
tion becomes unstable and disappears. The
system relaxes to a peaked solution, which
coexists bistably with the (input-driven so-
lution. As a result, the detection decision
is stabilized against small changes of input:
When the input level drops again, the peak is
sustained within a range of input strengths.
This leads to hysteresis, that is, dependence
of the observed state on the direction of
change.

Next to detection decisions, selection
among multiple inputs is another ele-
mentary form of cognition. This function
emerges from a second instability, illustrated
in Figure 4.8. When inputs are sufficiently
strong and metrically close, the detection
instability leads to a peak positioned over
an averaged location. For broad input distri-
butions, averaging may occur in the input
stream, although the excitatory interaction
may bring about averaging even when in-
put is bimodal (as in Figure 4.8a). When
the metric distance between inputs is larger,
however, the dynamic field is bistable, in-
stead. A single peak emerges from the de-
tection decision, localized either at one or at

Figure 4.8. (a) The dynamic activation field
(solid line) may generate a peak at an averaged
position in response to bimodal input (dashed
line) when the input peaks are within the range
of excitatory interaction. (b) At larger distance,
inhibitory interaction dominates, and the field
dynamics becomes bistable: Either a peak
positioned over one input mode may be
generated (black solid line) or a peak positioned
over the other (gray solid line), but not both at
the same time.
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dimensioninput input

(a) (b)

resting
level

activation

dimension

dimension

(c) (d)

activation

resting
level

activation

dimension

activation

Figure 4.9. In the left column, a self-stabilized
activation peak generated in response to a
localized input is only stable while that input is
present (a). When the input is removed (c), the
peak decays to a subthreshold distribution. In
the right column, the input-induced peak (b) is
sustained when input is removed (d). The
difference between the two columns is the
slightly larger resting level (dashed horizontal
lines) on the right.

the other location of input. Asymmetries in
input, fluctuations, or prior activation his-
tory may favor one over the other state, but
competition prevents simultaneous activa-
tion at both locations.

When activation levels are sufficiently
high in the field, many locations have acti-
vation levels above threshold and contribute
to interaction. This may enable the dynamic
field to sustain a peak of activation, even
when the localized input that first generated
the peak (through a detection instability) is
removed (Figure 4.9). Sustained activation
of localized peaks of activation provides a
neural mechanism for metric working mem-
ory (Schutte, Spencer, & Schöner, 2003).
Metric information about past stimulation is
thus preserved over much longer time scales
than the dynamic time scale of individual
neurons or field sites (Amit, 1994).

This is true, of course, only to the ex-
tent to which there are not other localized
inputs that would attract sustained peaks.
Such inputs may be small enough to not be
able to push the dynamic field through the

detection instability. Even so, they may in-
duce drift of sustained peaks (Schutte et al.,
2003; Spencer et al., 2007). Relatedly, small
inputs may be sufficient to trap peaks that
are induced by broad or even homogenous
inputs to the field, which push the field
broadly through a detection instability. This
may lead to categorical representations of
metrically graded inputs (Spencer, Simmer-
ing, & Schutte, 2006).

Instabilities may amplify small differ-
ences. A peak of activation can be induced,
for instance, by providing a homogeneous
boost to the field. Where the peak comes
up then depends on small subthreshold pat-
terns of localized input or any other inhomo-
geneities in the field. Such inhomogeneities
may arise because input connections have
slightly different strengths as a result of Heb-
bian strengthening of those inputs that have
successfully induced peaks. Another simple
form of learning is the laying down of a
memory trace at those field sites at which
peaks have been generated. In either case,
the history of activation may influence on-
going decision making. This is illustrated in
the following section by showing how habits
may be formed and how the behavioral his-
tory biases decisions.

4.3. Behavioral Signatures
of Dynamic Fields

How may dynamic fields, their instabilities,
and their functional modes help understand
the emergence of elementary forms of cog-
nition? We will answer this question in the
context of a few exemplary case studies and
show, at the same time, how behavioral sig-
natures of the neural field dynamics may
provide evidence for the Dynamical Field
Theory (DFT) account of cognition.

Most psychophysics makes use of detec-
tion decisions in one form or another. Are
these decisions related to the detection in-
stability of DFT (Figure 4.7)? Hock, Ko-
gan, and Espinoza (1997) observed that a
psychophysical detection decision was self-
stabilizing when the perceptual alternative
to a detection was perceptually clear. They
asked participants to indicate whether they
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saw apparent motion or flicker between two
spots of changing luminance. The param-
eter they varied was the BRLC discussed
earlier (Figure 4.3). Changing BRLC con-
tinuously in time led to perceptual hystere-
sis, the initially established percept persist-
ing into the regime, in which both motion
and nonmotion percepts were possible (il-
lustrated schematically in Figure 4.3c). The
authors argued that perception is always
based on the activation of ensembles of
neurons. Within such ensembles, interac-
tion supports self-stabilization of patterns of
activation, and this could account for the
observed stabilization of the detection de-
cision in the manner of the detection in-
stability (Figure 4.7). In a follow-up study,
Hock et al. (2004) exposed participants to
motion stimuli of constant BRLC within the
bistable region for a variable amount of time.
They asked participants to report when per-
cepts switched from motion to nonmotion
and vice versa. The resultant switching rates
revealed that the switching probability in-
creased over time both for switches to mo-
tion as well as for switches to nonmotion
perception. This would typically be inter-
preted in terms of selective adaptation, indi-
cating that both the motion and the nonmo-
tion percepts are embodied by neural pop-
ulations that build up inhibition while they
are activated. (See Hock et al., 2003, for
how adaptation relates to dynamical systems
ideas in perception.)

Thus, even though the mean behavior
may be perfectly well described in the clas-
sical threshold manner, psychophysical de-
tection decisions may involve the stabiliza-
tion of decisions through a bistable regime
around threshold. The decisions underlying
selection are less commonly studied, in part,
because tasks in which the stimulus does
not uniquely specify the required choice
tend to be fragile experimentally (e.g., by
being subject to cognitive penetration, re-
sponse strategies, and response bias). The
gaze control system frequently performs se-
lection decisions and is relatively immune
to these problems. Our gaze is reoriented
to new visual targets at a high rate of ap-
proximately three times a second. Select-

ing the next visual target is thus one of the
most basic sensorimotor decision problems
solved by the human central nervous sys-
tems. Empirically, a transition is observed
from averaging for visual targets that can be
fovealized simultaneously to selection when
targets are metrically too far from each other
for that to be possible (Ottes, van, Gisber-
gen, & Eggermont, 1984). DFT has provided
an account for this transition that captures
a range of experimental details (Kopecz &
Schöner, 1995; Trappenberg et al., 2001).
The most recent addition to that range is
an account for the time course of selec-
tion, with fast saccades tending more toward
averaging than slow saccades, because the
competitive inhibition required for selection
needs more time to become effective (Wil-
imzig et al., 2006).

Development offers another, wonderful
window into the study of selection. Infants
are not at risk of adopting dodgy cognitive
schemes when confronted with a range of
choices and no stimulus that disambiguates
the selection. Instead, they select move-
ment targets reliably, such as in the classical
paradigm of Jean Piaget (Piaget, 1954) in
which two locations, A and B, are perceptu-
ally marked on a box. In the classical version,
a toy is hidden at the A location, covered by
a lid, and after a delay, the box is pushed
toward the infant, who reaches for the A lid
and may also retrieve the toy. After four to
six such A trials, the toy is hidden at the B
location. If a delay continues to be imposed,
young infants below about 12 months of age
are likely to make the A-not-B error, that
is, they persevere and reach to the A loca-
tion rather than the cued B location. Older
infants do not make the perseverative error,
nor do young infants when the delay is short.
Smith et al. (1999) have demonstrated that
a toyless version works just as well: The cue
consists of waving the A or the B lid and
attracting the infant’s attention to the corre-
sponding location. Thus, sensorimotor deci-
sion making is a critical component of this
paradigm.

In the dynamic field account of persevera-
tive reaching (Thelen et al., 2001; Schoner &
Dineva, 2006; Dineva & Schöner, 2007), an
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Figure 4.10. A Dynamical Field Theory model of perseverative
reaching in Piaget’s A not B paradigm represents the planned
movement by an activation field defined over a movement
parameter. A peak over the A location (here at the left-most lid)
represents a reach to A. The dynamic activation field evolves under
the influence of specific input (attracting attention to the A location
by waving the lid), task input (the two visibly distinct lids), boost
(the box with lids is pushed toward the infant), and the memory
trace left by earlier reaches to A.

activation field represents the range of pos-
sible reaching movements, described para-
metrically, for instance, by the direction
of end-effector movement in space (Fig-
ure 4.10). A suprathreshold activation peak
centered over the direction in which either
of the two lids are located represents an in-
tention to move the hand in the correspond-
ing direction. Various forms of input drive
the generation of such a peak. The two lo-
cations are perceptually marked by the lids,
so both associated directions receive perma-
nent “task” input representing the layout of
the reaching space. The cuing action that at-
tracts the infant’s attention to one of the two
locations generates transient “specific” input
to the cued location only. Finally, when the
box is pushed into the reaching space of
the infant, all reaching locations on the box
receive a homogeneous “boost” input. On
later trials, an accumulated “memory trace”
of previous activation patterns also acts as
input, preactivating the locations to which
earlier reaches were directed.

The mathematical model that formalizes
this account is reviewed in the Appendix.
Figure 4.11 illustrates the temporal evolu-

tion of the field and the memory trace over
the course of an “A not B” experiment. On
the initial A trials, the specific input gen-
erates some activation at the cued A loca-
tion, which decays again during the delay.
When the boost is applied after the delay,
this pushes the field through the detection
instability, generating a peak at the A loca-
tion. The small remnant activation advan-
tage of A over B left over from the specific
input is sufficient to bias the decision in fa-
vor of A. The peak at A signifies a reach to A
and a memory trace is laid down at that lo-
cation. This memory trace preactivates the
field near A on subsequent trials, further bi-
asing the selection toward the A location.
The memory trace thus represents the mo-
tor habit formed during A trials.

The memory trace is sufficiently strong
to tip the balance on the first B trial in fa-
vor of the A location. In that trial, the spe-
cific cue provided input to the B location,
but the remnant activation after the delay
is not strong enough to overcome the bias
to A induced by the memory trace. Gener-
ally, when the delay is sufficiently long and
when sufficiently many reaches to A have
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Figure 4.11. Temporal evolution of activation in the
reaching field (top) and the associated memory trace
(bottom) during the time course of an A not B experiment
performed on the Dynamical Field Theory model. Six A
trials are followed by two B trials. In each trial, a specific cue
is presented at A or B, inducing activation at the associated
locations (small bumps in the middle of each trial in the top
graph). During the ensuing delay, these activations decay.
When the boost arrives (ridges along the φ-axis in top graph,
a peak is induced at the location with most remaining
activation. This peak generates a memory trace (bottom),
which biases peak generation on B trials. In these
simulations, the model perseverates by generating peaks at
the A location on B trials.

built enough of a memory trace at A, the
bias to A generates a perseverative reach.

Figure 4.12 shows how the behavioral
history in an individual run of the experi-
ment matters. In this instance, a fluctuation
leads to the generation of a peak at the B
location during an A trial. Such a reach to B
on an A trial is called a spontaneous error.
It leaves a memory trace at B and weakens
the trace at A, predicting increased proba-
bility of a spontaneous error being observed
again and, in particular, a reduced prob-
ability of perseverative reaching. Both are
true in the experiment (Dineva & Schöner,
2007).

Why do older infants reach correctly? In
the DFT account, this is due to a subtle shift
in dynamic regime. Older infants are closer
to the cooperative regime, that is, the regime

in which activation peaks are sustained in
the absence of localized input (right column
in Figure 4.9). This may arise because their
overall level of activation is higher or be-
cause of characteristic changes in neuronal
interaction (Schutte et al., 2003). They are
thus capable of generating a sustained peak
of activation when the specific cue is given
and thus stabilize the reaching decision to-
ward B during the delay against competing
input from the memory trace at A.

In fact, whether or not people are ca-
pable of stabilizing decisions against com-
peting influences depends on a variety of
contextual factors. Toddlers and even 4-
year-olds display perseverative errors, for in-
stance, when toys are hidden in a sandbox
(Spencer, Smith, & Thelen, 2001). After the
toy is hidden, the sand is smoothed over
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Figure 4.12. Another simulation run for the Dynamical
Field Theory model of perseverative reaching. In this
simulation, a fluctuation in activation leads to a spontaneous
error on the fifth A trial: The field generates a peak at the B
location rather than at the A location. This leads to a a
memory trace being laid down at B and the memory trace at
A being weakened. As a result, a second spontaneous error
occurs, and the model responds correctly on the B trials.

and no perceptual marker of the reaching
location is left. On B trials after the delay,
these children search for the toy in the sand
at a location that is metrically attracted to
the A location by as much as half the dis-
tance between A and B. In DFT, this met-
ric bias comes from sustained peaks drifting
during the delay, attracted by the memory
trace input laid down during the A trials .

John Spencer and colleagues have ex-
tended this picture into the domain of spa-
tial working memory (Spencer & Hund,
2002; Hund & Spencer, 2003; Spencer &
Hund, 2003). They had children of var-
ious ages and adults point to a location
on a featureless surface, at which variable
amounts of time earlier a marker had been
displayed. By varying the delay between pre-
sentation of the location and its probe, these
researchers have been able to directly ob-
serve the drift of metric spatial memory.
Drift occurs in the direction of locations pre-
viously held in spatial working memory and

away from any visual landmarks. Older chil-
dren and adults drift less and more slowly.
Here is a set of behavioral data that uncovers
direct behavior signatures of the underlying
neural picture of self-stabilized neural acti-
vation patterns storing metric information
(Schutte et al., 2003)!

5. Discussion

5.1. Is the Dynamical Systems Approach
Embodied and Situated?

Given the abstract mathematics behind the
dynamical systems approach, it is legitimate
to ask whether the approach does, in fact,
embrace the theoretical stance of embodi-
ment and situatedness as announced. Does
the dynamical systems approach take seri-
ously the link of cognitive processes to sen-
sory and motor processes? Does it take into
account the embedding of cognition within
structured environments as well as within
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the behavioral history of an organism? The
more general issue is autonomy, that is, the
continuous flow of experience under both
the action of the individual and the time-
varying sensory information about a chang-
ing environment. Cognition in naturalistic
settings is based on such autonomy. We hu-
mans move seamlessly from decision to de-
cision, generating action on our own time
frame, only exceptionally reacting to stim-
uli, more typically actively controlling sen-
sory flow. We update action plans as new
sensory information arises. When we are in-
terrupted, the last state of our cognitive pro-
cesses continues to be available when we re-
sume an action. Thus, cognitive processing
is never really off-line.

Dynamical systems thinking is all about
autonomy. The theoretical concept of stabil-
ity, at the core of dynamical systems think-
ing, is key to understanding autonomy. Only
if stability is warranted may cognitive pro-
cesses be linked to on-line sensory input.
Linking cognitive processes to motor sys-
tems that act in the real world requires
control-theoretic stability. This includes the
need to stabilize decisions against fluctuat-
ing sensory input and internal neuronal in-
teraction long enough to physically act out
what was decided. Conversely, in a system
that is open to sensory input and that stabi-
lizes decisions, the release from stability is
required to bring about behavioral change.
In fact, instabilities are crucial for under-
standing how the discrete behavioral events
may emerge that structure the continuous
flow of experience.

By applying dynamical systems concepts
at multiple time scales, it is possible to
understand how behavioral history as well
as the history of stimulation matter. The
accumulation of behavioral history is the
basis of learning and adaptation. Indi-
vidual differences may be preserved over
time as differences in experience condition
further differences in behavior.

Even so, one may ask whether the link of
cognitive processes to the sensory and motor
surfaces is really always required. Are clas-
sical information-processing accounts and

many connectionist models not legitimately
simplifying analysis by neglecting those
links? Such simplification may, however,
hide serious problems in the interface be-
tween the abstract information processing
model and the sensory and motor processes
through which cognition is realized. When,
for instance, input units in a neural network
are assumed to encode objects or symbols,
this hides nontrivial processing, including
segmentation, classification, and estimation
of object parameters. Similarly, if a neuron
encodes a motor output, this may hide the
nontrivial processes, of control in realtime,
including reactions to unforeseen perturba-
tions of the effector system.

One qualitative form of demonstration
and exploration of such issues hidden in the
interfaces of cognitive models with the real
world is to implement the models on phys-
ical robotic platforms. A robotic implemen-
tation requires complete specification of the
entire path from the sensory surface to the
cognitive model as well as on to the mo-
tor control system. Robotic function may
require particular environmental conditions
(e.g., uncluttered perceptual scenes), which
expose hidden assumptions about simplifi-
cations and abstractions that may or may not
limit the explanatory power of the cognitive
model.

Dynamical systems thinking has been
tested extensively with robotic implementa-
tions. In fact, an entire approach to robotic
behavior has been developed based on dy-
namical systems thinking (Schöner, Dose, &
Engels, 1995). Implementations have some-
times used very simple sensory systems and
simple motor control strategies that did not
include a detailed model of the plant (Bi-
cho & Schöner, 1997). On the other hand,
more complex systems with more highly de-
veloped cognitive processes have also been
demonstrated (Bergener et al., 1999). The
conceptual framework includes DFT em-
ployed to endow robots with representa-
tions (Engels & Schöner, 1995; Bicho et al.,
2000; Erlhagen & Bicho, 2006; Faubel &
Schöner, 2006). By generating complex be-
havioral sequences from attractor dynamics
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that undergo instabilities, these implemen-
tations have demonstrated how autonomy
emerges in dynamical systems architectures
(Steinhage & Schöner, 1998; Althaus &
Christensen, 2003).

Is dynamical systems thinking primarily
limited to the sensorimotor domain? His-
torically, dynamical system thinking arose
from work on movement coordination, and
this review reflected that history. This his-
tory sets dynamical systems thinking apart
from both the classical information process-
ing approaches and connectionism and is
reflected in the relationship between dy-
namical systems thinking and the embod-
ied and situated conception of cognition.
Much of the recent development of the dy-
namical systems approach, however, moves
well beyond the sensorimotor domain. This
newer work was only briefly touched, refer-
ring to accounts for working memory, cate-
gory formation, and object recognition, for
instance. DFT has been critical to the exten-
sion of dynamical systems thinking beyond
the sensorimotor domain. In fact, through
DFT, the concept of representation could
be integrated into dynamical systems think-
ing (Spencer & Schöner, 2003). The DFT
framework gives the concept of representa-
tion a very concrete, embodied sense. For
instance, self-stabilized peaks induced by
sensory information “re-present” that sen-
sory information even when it is no longer
available at the sensory surface. Similarly,
self-stabilized peaks are “re-presentations” of
motor decisions when they stabilize these
decisions while they are not (yet) acted
out. The strongly interacting neuronal dy-
namics of DFT are thus capable of achiev-
ing the two qualities that define representa-
tions: First, they enable the coupling to the
sensory and motor surfaces through which
representations establish and maintain links
to the outside world. Second, they stabi-
lize these representations, which thus con-
tinue to be effective even when no longer
linked to sensory or motor systems. This is
a sense of representation close to that in-
voked by the neuroscientist Joaquı́n Fuster
(2005) as a universal feature of the cerebral
cortex.

5.2. Is the Dynamical Systems Approach
Neurally Based?

The second component of the embodied
stance requires accounts to be consistent
with principles of neural function. Do the
abstract mathematical concepts of the dy-
namical systems approach live up to this re-
quirement?

Biophysically, neurons really are, of
course, little dynamical systems (Wilson,
1999). The historical origin of the concept of
dynamic neural fields comes from biophys-
ical models of cortical activation dynam-
ics (Wilson & Cowan, 1972, 1973; Amari,
1977). The insight that cognitive function is
best described in terms of neural dynamics
is probably due to Grossberg (1980).

On this basis, the two branches of dynam-
ics systems thinking reviewed in this chap-
ter may be roughly mapped onto two forms
of neuronal coding. In rate coding, differ-
ent levels of firing rate are assumed to rep-
resent different states of a sensor or effec-
tor system. This form of coding is typical at
the periphery of the nervous system. Mo-
tor neurons, for instance, bring about dif-
ferent levels of force production in muscles
when active at different rates. Interestingly,
even in these simplest cases, the actual phys-
ical state of the associated muscle–joint sys-
tem depends on the resistance encountered
and on local reflex loops requiring a proper
dynamical understanding of the embodied
and situated system (Latash, 1993). The
uniquely instantiated dynamical systems ap-
proach generalizes the rate code principle to
include forms of instability from which qual-
itatively new neural functions may emerge
as the neuronal dynamics change gradu-
ally. Even invertebrate nervous systems, in
which rate coding is the prevalent form of
neural representation (Bullock, Orkand, &
Grinnell, 1977), provide examples of such
instabilities. In these systems, neurons may
switch allegiance among different patterns
of neuronal activity that are responsible for
different elementary behaviors. When suffi-
ciently large populations of neurons switch,
a macroscopic change of behavior may re-
sult, for instance, a switch to another pattern
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of coordinated activity in Central Pat-
tern Generators (Nusbaum & Beenhakker,
2002).

The other form of neuronal representa-
tion is based on the space code principle,
which states that what a neuron represents
is determined by its position within the neu-
ronal network. The firing rate then merely
expresses how strongly the information rep-
resented by each neuron contributes. The
space code principle is typically assumed to
be prevalent in the central nervous system
of vertebrates. In vertebrate nervous sys-
tems, space coding is postulated for cortex
but also such subcortical structures as the
thalamus, colliculus, or the hippocampus.
Dynamic neuronal fields are direct abstrac-
tions of neuronal representations based on
the space coding principle.

The concept of a dynamic neuronal field
adds two assumptions to the space code
principle. First, dynamic fields postulate a
topology, in which neurons representing
metrically similar contents interact exci-
tatorily, whereas inhibitory interaction re-
lates neurons across the represented met-
ric dimension. This principle is consistent
with the existence of topographic maps, in
which neighborhood relationships on the
sensory or motor surface are preserved in
neuronal representation. Within such maps,
local excitatory interaction is typically ob-
served (Douglas & Martin, 2004). The over-
lapping patterns of input activation together
with local excitatory interaction justify the
continuous description of neuronal patterns
of activation on which DFT is based.

A topographical layout of functional
maps is not the only way in which this
basic assumption of DFT can be realized.
Population coding is a more general way
for dynamical fields to be realized (Jancke
et al., 1999; Erlhagen et al., 1999). The con-
ception of population coding is based on
the observation that cortical and subcorti-
cal neurons typically have broadly overlap-
ping tuning functions, so that for any given
perceptual or motor state, many neurons
are active (Georgopoulos, Schwartz, & Ket-
tner, 1986). This is true of most cortical
maps, but also of brain structures without

apparent topographical order such as the
motor and premotor cortices with respect
to movement parameters such as the direc-
tion of end-effector motion or the spatial di-
rection of end-effector force (Georgopoulos
et al., 1992). In some instances, researchers
were able to show that interaction is ex-
citatory among neurons coding for metri-
cally similar values of movement parameters
(Georgopoulos, Taira, & Lukashin, 1993).
A systematic mapping of neuronal popula-
tion coding onto dynamic fields can be based
on the concept of Distributions of Popula-
tion Activation, in which not only the most
active neurons and their preferred stimulus
or motor state are taken into account, but
the entire distribution of activation is inter-
preted (Erlhagen, Bastian, Jancke, Riehle, &
Schöner, 1999; Bastian, Schöner, & Riehle,
2003).

Dynamic field theory makes the second
major assumption that under some circum-
stances neuronal interaction can be domi-
nant in the sense that activation patterns
are not necessarily dictated by afferent input
but may be stabilized by interaction from
“within” a neuronal representation. Neu-
roanatomically, the vast majority of neu-
ronal connections are not part of a unidirec-
tional feed-forward path from the sensory
to the motor surfaces (Braitenberg & Schüz,
1991). This fact speaks in favor of the as-
sumption that interaction may be dominant.
There is still not much general understand-
ing of the strength and effectiveness of neu-
ronal interaction compared with neuronal
input from the sensory surfaces. This may in
large part be a consequence of the method-
ological bias toward input-output character-
izations, for which we have a large ensemble
of powerful techniques available. By con-
trast, the identification of strong forms of
neuronal interaction is comparatively more
difficult and methodologically not system-
atized.

Does any structure in the brain “read”
population codes or cortical maps? In other
words, could one ignore the structure of
neuronal representations built on the space
code principle and instead study cognition
at a “higher” level, at which symbols and
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their manipulation might be directly rep-
resented? Although there have been the-
oretical analyses of how population codes
may be “read” (Seung & Sompolinsky, 1993;
Denève, Latham, & Pouget, 1999), it is
difficult logically to answer this question.
What one can say is that a transformation
into a different coding regime for higher
brain function is unnecessary and not jus-
tified by any data. Furthermore, it is easy to
conceive of dynamical principles that gov-
ern neuronal function all the way through
to the effector systems. In this view, sta-
ble patterns of neuronal activation ulti-
mately steer the periphery into dynamical
states, from which behavior emerges, with-
out any need to ever abstract from the space-
time contiguous processes that embody
cognition.

All this having been said, the dynami-
cal systems approaches sketched here do re-
main at a certain level of abstraction. More
detailed neuronal realism may entail taking
into account the spiking nature of neuronal
interaction, cellular processes both at the
level of activation dynamics and their mod-
ification by processes of learning and adap-
tation. What is the right level of abstraction
for an understanding of neuronal function?
This question may be difficult to answer in
general. It is useful to keep in mind, how-
ever, that all answers to this question are
subject to critical assessment. If one assumes
primacy of the micro level, then the flight
toward the microscopic would find no end.
Why wouldn’t molecular or even atomic
levels of description be privileged over cel-
lular descriptions, for instance?

So what are the arguments in favor of
the particular neural level of description at
which our dynamical systems approach is so
effective? The answer lies within the em-
bodied stance: It is mass action in the ner-
vous system that is correlated with those
motor and sensory parameters to which cog-
nition is sensitive. Neural activity of pop-
ulations of neurons in various parts of the
central nervous system modulate their tem-
poral evolution with the demands of cog-
nitive tasks. The time courses of popula-
tion activation are predictive of behavioral

events (Shadlen & Newsome, 2001; Schall,
2001; Bastian et al., 2003), and the met-
rics of distributions of population activation
are predictive of the metrics of behavioral
responses (Cisek & Kalaska, 2005). Simi-
lar arguments can be made for the instanti-
ated dynamical systems approach (Schöner
& Kelso, 1988a).

The level of description of DFT makes
explicitly the assumption that the tempo-
ral discreteness of neuronal spiking is un-
related to cognitive and behavioral events.
Such events must therefore be understood
as emerging from an underlying temporally
continuous process. Analogously, the as-
sumption is made that the discrete nature of
neurons is unrelated to any cognitive or be-
havioral discreteness. In particular, the for-
mation of discrete cognitive categories is un-
derstood as emerging from an underlying
continuum of neuronal representation.

5.3. What Kind of Account Does
Dynamical Systems Thinking Generate?

If all practical difficulties were removed,
what would an ultimate dynamical systems
account of cognition look like? It is easier to
say what it would not look like. It would
not look like the ultimate information-
processing model of cognition, with all cog-
nitive processing units listed and their path-
ways of information exchange identified.
Nor would it be like the ultimate connec-
tionist network model, the layers of which
would encode all existing neural represen-
tations and the network topology of which
would reflect the neuronal architecture.

In fact, in dynamical systems thinking,
the conceptual interaction with experiment,
proposing new questions and new measures,
has been more important than the mod-
els that resulted. In that sense, dynamical
systems thinking is primarily aimed at de-
veloping a generative theoretical language
that facilitates the uncovery of regularities
in nervous systems. Models are tools to test
concepts both for internal consistency and,
through quantitative theory-experiment re-
lationships, for consistency with nature.
Models are not by themselves the main goal
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of a dynamical systems approach to cogni-
tion.

This emphasis on concepts over models is
fostered by a central property of dynamical
systems, sometimes designated as emergence.
Attractors in a dynamical system emerge
when the conditions are right (when param-
eters have particular values). The dynamical
system relaxes to a new attractor when the
history is right, so that the initial condition
puts the system in a position from which
the attractor is reached. Both may occur in
response to changes that are not specific to
the newly realized attractor. For instance,
a change of resting level in a dynamic field
may lead to the attractor state, in which a
localized peak is sustained in the absence of
localized input. The resting level does not
specify any particular location for a peak,
nor that a peak must be generated. But ev-
erything else being equal, a peak may per-
sist stably only when the resting level is suf-
ficiently large. That attractor is the basis of
such cognitive functions as working memory
or sensorimotor decision making. These ca-
pacities may thus emerge from a neural field
dynamics in the here and now, in response
to inputs or global changes. These capacities
are not enclosed in a particular module that
sits somewhere in the brain, waiting to be
invoked. Instead, the same neuronal dynam-
ics may under some circumstances have the
cognitive functions of working memory and
decision making and, under other circum-
stances, lose these functions. Any individ-
ual contribution to the neuronal dynamics
is thus multifunctional.

Conversely, there are multiple ways a
new stable state may emerge as well as dis-
appear again (multicausality). There is quite
possibly no single parameter that is strictly
necessary or is always sufficient for a given
cognitive function to emerge. Even a com-
plete understanding of the dynamics of the
neural cognitive system is not by itself suf-
ficient to predict all possible ways cognition
may unfold when an organism is immersed
in a new and rich environment. When pro-
cesses of adaptation and learning incorpo-
rate parts of the environment and of expe-
rience into the system, the resultant com-

plexity may become inextricable (Rosen
2005).

Dynamical systems thinking is in that
sense open ended. It is not aimed, even
in principle, at an ultimate model, which
would include process models of all cogni-
tive, sensory, and motor capacities of the hu-
man. Instead, it is aimed at understanding
constraints for learning and development,
for how individual differences may manifest
themselves in different contexts, how indi-
vidual learning and developmental histories
may lead to the same function. So although
we may never be able to predict how a child
moves about in the playground, which swing
or slide she will select, we may very well
understand how progress in her motor skills
may improve her spatial orientation or how
perceptual experience with a set of objects
will impact on what she pays attention to
when naming a new object.

Appendix: Dynamical Field Theory
of Perseverative Reaching

The dynamic field theory of perseverative
reaching has its roots in a metaphorical dy-
namical systems account of Piaget’s A not B
error (Thelen & Smith, 1994). A first for-
malization into a mathematical model was
reported in (Thelen et al., 2001). Concep-
tual errors in that earlier account were cor-
rected by Evelina Dineva, and it is her model
that I review here (Schöner & Dineva, 2006;
Dineva & Schöner, 2007).

A dynamical activation field is defined
over the space of movement directions, φ,
of the infant’s hand. This is the “reaching”
field, u(φ, t). Its dynamics has the form of
an interactive neuronal field (Amari, 1977)
receiving a set of inputs:

τ u̇(φ, t) = −u(φ, t) + h

+
∫

dφ′w(φ − φ′)σ (u(φ′, t))

+ Stask(φ) + Sspec(φ, t)

+ Sboost(t) + uhabit(φ, t).

(4.3)
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Here, τ u̇(φ, t) = −u(φ, t) + h sets the acti-
vation field up as a dynamical system with
resting state u(φ) = h < 0, a homogenous
stationary stable state in the absence of input
and interaction, to which the field relaxes on
the time scale, τ . Interaction consists of in-
put from other field locations, φ′, which is
excitatory or inhibitory, depending on the
interaction kernel

w(φ − φ′) = wexcitatory

exp
[
−(φ − φ′)2/2$

]
− winhibitory.

(4.4)

For sufficiently close field locations (|φ −
φ′| < $), the intra-field connectivity
is predominantly excitatory (wexcitatory >

winhibitory), for larger distances it is in-
hibitory. Only sites, φ′, with sufficiently pos-
itive levels of activation contribute to inter-
action, as controlled by the nonlinear sig-
moidal function

σ (u) = 1
1 + exp(−β u)

(4.5)

whose parameter, β, controls how nonlinear
the interaction term is.

The input functions, Stask(φ), Sspec(φ, t),
and Sboost(t) model the experimental sce-
nario. The task input, Stask, captures the vi-
sual layout of the workspace and is modeled
as a sum of two gaussians centered over the
two movement directions, in which the two
locations, A and B, lie. The specific input,
Sspec(φ, t), captures the experimenter’s ef-
fort to attract attention to the A location
on A trials and to the B location on B tri-
als. It is modeled as a gaussian centered on
the corresponding location that is nonzero
only during the time interval during which
the experimenter performs this stimulation.
The boost, Sboost(t), captures the effect of
pushing the box with the two lids into the
reaching space of the infant. It is modeled as
a positive constant present only during the
time interval when the box is in reaching
space.

Finally, the formation of a habit of reach-
ing is modeled by a second dynamical acti-
vation field, uhabit(φ, t), which evolves over
a longer time scale, τhabit, and forms a mem-
ory trace of locations in the reaching field,
u(φ, t), at which sufficient levels of activa-
tion have been generated. The dynamics of
this memory trace is modeled as follows:

τhabit uhabit(φ, t)

= [−uhabit(φ, t) + chabitσ (u(φ, t))]

× &

(∫
dφ′&(u(φ′, t)

)
. (4.6)

The last term turns the memory trace mech-
anism off if there is no positive activity any-
where in the reaching field. This makes use
of the step function, &(u) = 1 if u > 0 and
&(u) = 0 while u ≤ 0. Thus, during epochs
in which there is no activation in the reach-
ing field, the memory trace remains un-
changed. This captures the observation that
inter-trial intervals do not seem to matter
much in the A not B paradigm. In fact, per-
severative tendencies persist through con-
siderable delays.

When an activation peak has been in-
duced in the reaching field, then the mem-
ory trace mechanism leads to increase of the
memory trace in locations on which the peak
is centered, whereas activation elsewhere in
the memory trace decays toward zero. Thus,
a dynamical balance emerges between dif-
ferent locations at which peaks are induced
in different trials. The constant, chabit, deter-
mines the amplitude of the memory trace.
In Dineva’s implementation of this dynam-
ics, a memory trace is laid down only during
the interval when the box is in the reach-
ing space (that is, while the boosting input
is present). At the end of a trial, the peak
in the reaching field is deleted, and the field
starts the next trial from its resting state (Fig-
ures 4.11 and 4.12).

Neuronal activity in the nervous system
has a stochastic component. To account for
fluctuations in activation, which make the
outcome of reaching decisions nondetermin-
istic, the model contains stochastic forces.
The generic model for such forces is additive
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gaussian white noise. This noise may be spa-
tially uncorrelated at different field sites or
also be correlated, modeling stochastic input
distributed by input kernels.

To simulate DFT models, the equations
must be numerically solved on a com-
puter using standard numerical procedures
(Kloeden & Platen, 1999). Simulating the
experimental paradigm typically requires
programming the time courses of sensory
inputs that describe the experience in such
paradigms. Under some circumstances, this
may include the need for sensor and mo-
tor models, in which the sensory conse-
quences of a motor act driven from the DFT
model is also taken into account (Steinhage
& Schöner, 1998).
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