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evolution of activation fields in 
time: neuronal dynamics
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the dynamics such 
activation fields is 
structured so that 

localized peaks 
emerge as attractor 
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mathematical formalization
Amari equation
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=> simulations



solutions and instabilities
input driven solution (sub-threshold) vs. self-stabilized 
solution (peak, supra-threshold)

detection instability

reverse detection instability

selection

selection instability 

memory instability 

detection instability from boost



Relationship to the dynamics of 
discrete activation variables
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Detection 
instability
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the detection instability helps 
stabilize decisions

threshold piercing detection instability
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the detection instability helps 
stabilize decisions

self-stabilized peaks are macroscopic neuronal 
states, capable of impacting on down-stream 
neuronal systems

(unlike the microscopic neuronal activation that 
just exceeds a threshold)



emergence of time-discrete events

the detection instability also explains how a 
time-continuous neuronal dynamics may create 
macroscopic, time-discrete events



behavioral signatures of  
detection decisions

detection in psychophysical paradigms is rife with 
hysteresis

but: minimize response bias



Detection instability

in the detection 
of Generalized 
Apparent 
Motion

Generalized Apparent Motion

(Johansson, 1950)
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Detection instability

varying 
BRLC



Detection instability

hysteresis of motion detection as BRLC is varied

(while response bias is minimized)

184 H. S. Hock, G. Schöner / Seeing and Perceiving 23 (2010) 173–195

Figure 5. Hysteresis effect observed by gradually increasing or gradually decreasing the background
relative luminance contrast (BRLC) for a participant in Hock et al.’s (1997) third experiment. The
proportion of trials with switches from the perception of motion to the perception of nonmotion, and
vice versa, are graphed as a function of the BRLC value at which each ascending or descending
sequence of BRLC values ends. (Note the inversion of the axis on the right.)

which there were switches during trials with a particular end-point BRLC value
was different, depending on whether that aspect ratio was preceded by an ascend-
ing (vertical axis on the left side of the graph) or a descending sequence of BRLC
values (the inverted vertical axis on the right side of the graph). For example, when
the end-point BRLC value was 0.5, motion continued to be perceived without a
switch to non-motion for 90% of the descending trials, and non-motion continued
to be perceived without a switch to motion for 58% of the ascending trials. Percep-
tion therefore was bistable for this BRLC value and other BRLC values near it; both
motion and non-motion could be perceived for the same stimulus, the proportion of
each depending on the direction of parameter change. It was thus confirmed that
the hysteresis effect obtained for single-element apparent motion was indicative of
perceptual hysteresis, and was not an artifact of ‘inferences from trial duration’.

7. Near-Threshold Neural Dynamics

The perceptual hysteresis effect described above indicates that there are two stable
activation states possible for the motion detectors stimulated by generalized ap-
parent motion stimuli, one suprathreshold (motion is perceived) and the other sub-
threshold (motion is not perceived). Because of this stabilization of near-threshold
activation, motion and non-motion percepts both can occur for the same stimu-
lus (bistability), and both can resist random fluctuations and stimulus changes that
would result in frequent switches between them.

7.1. Why Stabilization Is Necessary

Whether an individual detector is activated by a stimulus or not, a random per-
turbation will with equal probability increase or decrease its activation. Assume it



overcoming fixation
detection can be like selection: initiating an action 
means terminating the non-action=fixation or 
posture 

example: saccade initiation 
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Fig. 1. Psychophysical set-up for double-target stimuli in direction (a) or
eccentricity paradigms (b). In direction paradigms, the visual targets (black
dots) lie on an imaginary line (vertical here), that is offset against the initial
fixation point (cross). The whole arrangement may also be rotated by ±90⇥. We
denote the dimension separating different visual targets by x , and the dimension
separating the fixation position from the line of visual targets by y (see dashed
lines). In the eccentricity paradigm, fixation signal and visual targets all lie on
the same imaginary line (horizontal here). We denote the associated dimension
by x .

2. Model

Information about upcoming movements is represented by
distributions of population activation in cortical structures
such as the frontal eye fields and subcortical structures such
as the superior colliculus. When distributions of population
activation are characterized by a strong overlap between
information coded by neighboring neurons with similar tuning
curves information processing in such neural networks can
be described by continuous neural fields. This approximation
was first proposed based on the anatomy of cortical areas
by Amari (1972, 1977) and Wilson and Cowan (1973). The
link to population coding has been established more recently
(Bastian, Schöner, & Riehle, 2003; Erlhagen, Bastian, Jancke,
Riehle, & Schöner, 1999; Jancke et al., 1999). We follow the
mathematical formalization by Amari and Arbib (1977) and the
conceptual framework of Dynamic Field Theory by Erlhagen
and Schöner (2002), Kopecz and Schöner (1995) and Schöner
et al. (1997), which we briefly review now by describing how
the model of the selection system is constructed.

The first step is to define the metric dimensions that span
the space of possible eye movements. These are clearly the two
dimensions of visual space in retinal coordinates, representing
possible saccadic end-points. To simplify the modelling,

Fig. 2. The Dynamic Field Model of saccadic decision making consists of an
initiation level and a selection level. During the fixation period, a single peak
of activation in the initiation level at the foveal position reflects the active state
of fixation. (a) In the absence of a visual target, activation is negative at the
selection level, and the fixation peak remains stable. (b) At target onset, input
to the selection level generates a self-stabilized activation peak there, which
provides extra-foveal input to the initiation level, and competes with the fixation
peak and ultimately wins, inducing a movement-related peak in that level.

we exploit that typical paradigms probing saccadic decision
making sample this space in specific ways. Fig. 1 illustrates the
direction (top) and eccentricity (bottom) paradigms. In the first,
the initial fixation lies off an imaginary line, along which two
targets are presented. For selection, it is sufficient in this case
to model representations along the dimension, x , separating
different possible targets (vertical in the figure). For initiation,
it is sufficient to model representations that separate initial
fixation from the shared component of the two visual targets
along a perpendicular dimension, y (horizontal in the figure).
In eccentricity paradigms, initial fixation position and visual
targets are all lined up, so the same linear dimension, x , can be
used for both initiation and selection processes. To generalize
this account to two dimensions of selection and initiation
does not require any new mathematics, but is numerically
considerably more costly (Erlhagen & Schöner, 2002; Wilimzig
& Schöner, 2005).

An activation variable u(x) is assigned to each site along
this dimension. The level of activation u(x) represents the
degree to which this particular value is currently specified.
High levels of activation drive neuronal processes down-stream
from the activation field, low levels of activation do not.
When, for instance, no saccadic end-point is specified in the
absence of sensory information, the field is flat at negative
levels u(x) = constant < 0 (Fig. 2(a)). A localized peak of
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Fig. 4. Time course of activation in the initiation level. Positive activation is
depicted in grey scales as a function of retinal position and time. At time = 0
the target is switched on and the fixation input is switched off. Movement
initiation according to our criteria occurs at the time marked by the dashed
line.

⌅v,iniv̇ini(t) = �vini(t) +
⇥

wini fu[uini(y⇥, t)]dy⇥ + hv,ini. (6)

This field receives only foveal input, Sfix(y, t), while visual
structure at other locations does not directly generate input.
Instead, extra-foveal input is provided from the selection field.
In the presence of a fixation signal, there is typically a self-
stabilized peak at the origin representing a fixation state (both
panels of Fig. 2). When the selection field provides extra-foveal
input, competition between activation at the fovea and at the
specified location leads to the suppression of the fixation peak
and the generation of a peak at the specified saccadic end-
point (see Fig. 4). If we map positive levels of activation onto
elevated firing rates and negative levels of activation onto lower
than spontaneous firing rates, then this mechanism in the model
matches neurophysiological results, which show that saccade
initiation correlates with an increased discharge rate in saccade-
related neurons and at the same time with a decreased discharge
rate in fixation neurons (Dorris and Munoz (1998) and Dorris,
Pare, and Munoz (1997), see review by Schall (2004a)).

Stochastic variability is represented in the model through
fluctuations of the level of activation. These are caused by
stochastic inputs, modelled in the simplest form as independent
gaussian white noise at each field site (with zero mean
�⇥(x, t) = 0 and variance, q: �⇥(x, t)⇥(x ⇥, t ⇥) = q�(t �
t ⇥)�(x � x ⇥). These approximate the influence of other
neuronal processes, unrelated to the task as well as intrinsic
neuronal variability. Spatially uncorrelated noise is the weakest
possible stochastic perturbation. To model variance in the
countermanding paradigm we introduce variability from trial-
to-trial in the strength of fixation inputs, which models random
variations of unspecific factors such as attention or pretrial
effects.

Finally, we need to specify how activation patterns in the
model drive saccadic eye movements. In earlier work, we
showed how a self-stabilized peak of saccade-related activation

may set a new stable state for the motor control system of the
eyes (Kopecz & Schöner, 1995). Although the details were not
realistic, the conceptual issue was that the transition from a
peak-less state to a state with a self-stabilized peak may induce
a related transition in the motor control system from a fixation
state to a movement state. In reality, the motor control system
has considerably more complex structure, including horizontal
and vertical burst generators which are transiently activated
(review, Lefèvre, Quaia, and Optican (1998), Robinson (1986)).
Here we seek a way to simplify the problem by replacing the
entire motor control system with a simple rule that determines
the time of initiation of a saccade as well as its metrics. Saccade
latency was determined as the time interval from stimulus
presentation to the moment in time when the activation within
the fixation peak

F(t) =
⇥ ⇤fix

�⇤fix

fu[uini(y⇥, t)]dy⇥ (7)

fell below a criterion level Fthresh. To this time we added 70 ms
to account for an estimated 40 ms afferent and 30 ms efferent
delay (e.g. Smit and van Gisbergen (1989)). The metrics of
the saccades were characterized by the center of gravity of the
activation distribution in the selection field:

xc =
⇥

R⇥
x ⇥ fu[u(x ⇥)]dx ⇥

� ⇥

R⇥
fu[u(x ⇥)]dx ⇥. (8)

Thus, the read out of saccadic end-point is done within the
selection level while the fixation level solves the release of the
fixation activity and the building of a new activation peak at
the location of the target within the coordinates of the fixation
level. To decide whether movement cancellation was successful
in countermanding trials we observed whether a peak was
generated at the target site of the field by looking for positive
activation there.

3. Results

3.1. Overcoming fixation and countermanding

In the model, a saccade is initiated when extra-foveal
activation in the initiation level induced by input from the
selection level inhibits the fixation peak. How much time this
takes depends on the amount of foveal fixation activation, which
in turn, depends on the fixation stimulus. This can be illustrated
by simulating the gap-step-overlap paradigm (Fig. 5), in which
the fixation signal is extinguished either before (gap), at the
same time (step), or after (overlap) the visual target appears.
The mean latency of saccade initiation increases from gap
to step to overlap conditions, matching the experimentally
established effect (panel (b) of the figure) and reproducing
Kopecz’s (1995) earlier modelling results. While Kopecz did
not model variance, the stochastic inputs included in our model
enables us to generate histograms of latencies (panel (a) of
the figure) that can be compared to experimental assessments
of variability (Gezeck & Timmer, 1998). In the model, the
compact, sharp histograms in the gap and step condition
are in contrast with the broader, noisier histogram in the

[Wilimizig, Schneider, Schöner, 2006]



initiation vs. fixation
such models account for the gap-step-overlap 
effect

[Kopecz, 95]
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stabilizing selection decisions



behavioral signatures 
of selection decisions

in most experimental situations, the correct 
selection decision is cued by an “imperative signal” 
leaving no actual freedom of “choice” to the 
participant (only the freedom of “error”)

reasons are experimental 

when performance approaches chance level, then 
close to “free choice” 

because task set plays a major role in such tasks, I 
will discuss these only a little later



one system of “free choice”

selecting a new saccadic location

Analysis of the eye movement trace may allow us to understand why
changes are so hard to detect and what is the origin of the difference between
the Central and Marginal Interest cases.

Eye Movement Measures

Figure 2 shows a typical eye movement scanning pattern for a picture. It is seen
that even though the observer was looking at the picture for 48 sec, and search-
ing actively for possible changes that might occur anywhere in the picture, the
eye continued to follow a surprisingly stereotyped, repetitive, scanpath in
which large areas of the picture are never directly fixated. Similar observations
were made by Yarbus (1967) and other authors, who observed that many por-
tions of a picture are never directly fixated, and that the particular scanpath that
is used depends on what the observer is looking for in the picture.

Could this be the reason why some changes are not noticed? Could it be that
those cases when the change is missed correspond to cases where the scanpath
happens not to include the change location? This hypothesis might explain the
difference between the MI and CI changes: Thus, it might be that MI locations,
being less “interesting” to observers, tend to be less likely to be included in the
scanpath than CI locations.

198 O’REGAN ET AL.

FIG. 2. Typical scanpath while a subject searched for changes. The original picture was in colour. The
change that occurred in this picture was a vertical displacement of the railing in the background to the
level of the man’ s eyes. In this record, the change was detected at the moment that the observer blinked
for the fourth time. The positions of the eye when the blinks occurred are shown as white circles. The
last, “effective” blink, marked “E”, occurred when the eye was in the region of the bar.

[O’Reagan et al., 2000]



input

input

saccadic 

end-point

targets

targets

saccadic 

end-point

activation field

activation fieldactivation

field

[after Kopecz, Schöner: Biol Cybern 73:49 (95)]

bistable

initial 

fixation

visual

targets

[after: Ottes et al., Vis. Res. 25:825 (85)]

saccade generation



2 layer Amari fields

to comply with Dale’s 
law

and account for 
difference in time 
course of excitation 
(early) and inhibition  
(late)

_ +

+
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[figure: Wilimzig, Schneider, Schöner, Neural Networks, 2006]



2 layer Amari model



time course of selection 

early: input driven

intermediate: dominated by excitatory interaction

late: inhibitory interaction drives 
selection

Wilimzig, Schneider, Schöner, Neural Networks, 2006



=> early fusion, late selection
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fixation and selection
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boost-induced detection instability
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boost-driven detection instability

inhomogeneities in the field existing prior to a 
signal/stimulus that leads to a macroscopic 
response=“preshape”

the boost-driven detection instability amplifies 
preshape into macroscopic selection decisions



this supports 
categorical 
behavior

when preshape 
dominates

[Wilimzig, Schöner, 2006]



simplest form of 
learning: the 
memory trace

William James: habit 
formation as the simplest 
form of learning 

(habituation: same for inhibition)



mathematics of the memory trace

⇥mem u̇mem(x, t) = �umem(x, t) +

�
dx� wmem(x � x�)�(u(x�, t))

⇥ u̇(x, t) = �u(x, t) + h + S(x, t) + umem(x, t)

+

�
dx� w(x � x�) �(u(x�))

1

⇥mem u̇mem(x, t) = �umem(x, t)

+

�
dx� wmem(x � x�)�(u(x�, t))

⇥ u̇(x, t) = �u(x, t) + h + S(x, t) + umem(x, t)

+

�
dx� w(x � x�) �(u(x�))

1

memory trace only evolves while activation is 
excited

potentially different growth and decay rates 



Wilimzig, Schöner 2006
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memory trace reflects history of 
decisions formation
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categories may emerge ...

Wilimzig, Schöner 2006



categories may emerge ...

based on categorical 
memory trace and 
boost-driven detection 
instability 

=> field responds 
categorically



Piaget’s A not B paradigm: “out-of-sight 
-- out of mind” 
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Toyless variant of A not B task

toy to be hidden [24]. Directing attention to an in-view
object (A) heightens activation at the location and, in the
experiment, infants reach to that continually in-view
object. Subsequently, when the experimenter directs
attention to a different nearby in-view object (B), infants
watch, but then reach back to the original object (A).

Experimenters have also made the error vanish by
making the reaches on the B trials different in some way
from the A trial reaches. In the model, these differences
decrease the influence of the A trial memories on the
activations in the field. One experiment achieved this by

shifting the posture of the infant [24]. An infant who sat
during the A trials would then be stood up, as shown in
Fig. 3, to watch the hiding event at B, during the delay and
during the search. This posture shift causes even 8- and
10-month-old infants to search correctly, just like
12-month-olds. In another experiment, we changed the
similarity of reaches on A and B trials by putting on and
taking off wrist weights [25]. Infants who reached with
‘heavy’ arms onA trials but ‘light’ ones on B trials (and vice
versa) did not make the error, again performing as if they
were 2–3 months older. These results suggest that the
relevant memories are in the language of the body and
close to the sensory surface. In addition, they underscore
the highly decentralized nature of error: the relevant
causes include the covers on the table, the hiding event,
the delay, the past activity of the infant and the feel of the
body of the infant.

This multicausality demands a rethinking of what is
meant by knowledge and development. Do 10-month-
old infants know something different when they make
the error compared with when they do not? The answer
is ‘yes’ if we conceptualize knowledge and knowing as
emergent, that is, made at a precise moment from
multiple components in relation to the task and to the
immediately preceding activity of the system. What do
12-month-olds know that 10-month-olds do not? There
can be no single cause, no single mechanism and no
one knowledge structure that distinguishes 10-month-
olds from 12-month-olds because there are many
causes that make the error appear and disappear.
Instead, both 10-and 12-month-olds can be regarded as
complex systems that self-organize in the task. How-
ever, just as trial dynamics are nested in task
dynamics, so are task dynamics nested in develop-
mental dynamics.

Developmental dynamics
The A-not-B error has been important to developmental
theory because it is tightly linked to a few months in
infancy. However, the neural field model suggests that the
dynamics that create the error in infants are basic
processes involved in goal-directed actions at all ages.
Indeed, by changing the task, researchers can make
perseverative errors come and go in older children and
adults, just as in infants. Recently, Spencer and colleagues

Fig. 2. (a) The time evolution of activation in the planning field on the first A trial.
The activation rises as the object is hidden and, owing to self-organizing properties
in the field, is sustained during the delay. (b) The time evolution of activation in
the planning field on the first B trial. There is heightened activation at A before the
hiding event, owing to memory for prior reaches. As the object is hidden at B, acti-
vation rises at B, but as this transient event ends, owing to the memory properties
of the field, activation at A declines and that at B rises.

TRENDS in Cognitive Sciences 
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Fig. 3. An infant sitting for an A trial (left) and standing for a B trial (right). This
change in posture causes younger infants to search as 12-month-old infants do
(see text for details).

Opinion TRENDS in Cognitive Sciences Vol.7 No.8 August 2003346
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[Smith, Thelen et al.: Psychological Review (1999)]



Toyless variant of A not B task 
reveals that A not B is essentially a 

decision task!
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[Smith, Thelen et al.: Psychological Review (1999)]
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[Dinveva, Schöner, Dev. Science 2007]
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Instabilities

detection: forming and initiating 
a movement goal

selection: making sensori-
motor decisions

(learning: memory trace)

boost-driven detection: 
initiating the action

memory instability: old infants 
sustain during the delay, young 
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Instabilities

detection: forming and initiating 
a movement goal

selection: making sensori-
motor decisions

(learning: memory trace)

boost-driven detection: 
initiating the action

memory instability: old infants 
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DFT of infant perseverative reaching

[Dinveva, Schöner, Dev. Science 2007]



DFT of infant perseverative reaching

[Dinveva, Schöner, Dev. Science 2007]

memory trace



DFT of infant perseverative reaching

[Dinveva, Schöner, Dev. Science 2007]

perseverative
errors



in spotaneous 
errors, activation 
arises at B on an A 
trial

which leads to 
correct reaching on 
B trial

spontaneous
error correct on B!

DFT of infant perseverative reaching

[Dinveva, Schöner, Dev. Science 2007]



that is because 
reaches to B on A 
trials leave memory 
trace at B

spontaneous
error correct on B!

DFT of infant perseverative reaching

[Dinveva, Schöner, Dev. Science 2007]



spontaneous errors 
promote 
spontaneous errors
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[Dinveva, Schöner, Dev. Science 2007]



DFT is a neural process model

that makes the decisions in each individual trial, by 
amplifying small differences into a macroscopic stable 
state

and that’s how decisions leave traces, have consequences



summary: instabilities

detection: forming and 
initiating a movement 
goal

selection: making sensori-
motor decisions

boost-driven detection: 
initiating the the action

learning: memory trace 

working memory: 
sustaining a delay

A trial

delay

A B

A B

Toyless version of A not B 
(Smith, Thelen, et al., 1999)



Conclusions

action, perception, and embodied cognition 
takes place in continuous spaces. peaks = units 
of representation are attractors of the neural 
dynamics

neural fields link neural representations to these 
continua 

stable activation peaks are the units of neural 
representation

peaks arise and disappear through instabilities 
through which elementary cognitive functions 
(e.g. detection, selection, memory) emerge
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