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Dynamic Field Theory

dimensions

activation fields

field dynamics: peaks, instabilities



activation fields

e.g., space, movement 
parameters, feature 
dimensions, viewing 

parameters, ...
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the dynamics such 
activation fields is 
structured so that 

localized peaks 
emerges as attractor 

solutions
movement 
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time
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preshaped
field

specific input
arrives
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local excitation: stabilizes
peaks against decay

global inhibition: stabilizes 
peaks against diffusion
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activation field u(x)
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Amari equation

⌧ u̇(x, t) = �u(x, t) + h + S(x, t) +

Z
w(x� x

0
)�(u(x

0
, t)) dx

0

where

• time scale is ⌧

• resting level is h < 0

• input is S(x, t)

• interaction kernel is

w(x� x

0
) = wi + we exp

"

�(x� x

0
)

2

2�

2
i

#

• sigmoidal nonlinearity is

�(u) =

1

1 + exp[��(u� u0)]

1



=> simulations



instabilities

self-stabilized or sustained peaks of activation 
vs. sub-threshold hills of activation

detection instability, driven by localized input 
or boost

selection instability

memory instability 



illustration of the instabilities



illustration of the instabilities



each microphone samples heading direction

heading
direction

sensitivity cone of each microphone

sensory surface



and provides input to the field

activation
field

heading
direction

two sound sources

input from sensory surface

heading
direction



detection instability on a phonotaxis robot



target selection on phonotaxis vehicle



robust estimation



tracking



memory & forgetting on phonotaxis vehicle



a robotic demo of all of instabilities



motor dynamics

couple peak in direction field into dynamics of 
heading direction as an attractor

Behavioral Dynamics

behavioral dynamics ⌅̇ is driven by the motor
planning field
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movie: coupled dynamics
ICPA–June 14, 2007 10



=> transition from DFT to DST

peak specifies value for a 
dynamical variable that is 
congruent to the field 
dimension

dimension

activation
field

specified value

peak position



from DFT to DST

treating sigmoided field 
as probability: need to 
normalize 

=> problem when there is no 
peak: devide by zero! 

dimension

activation
field

specified value

peak position

dimension

activation
field

no value specified



from DFT to DST
solution: peak sets attractor

location of attractor: peak location

strength of attractor: summed supra-threshold activation

xpeak =
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ẋ = �
�⌅

dx �(u(x, t))
⇥
(x � xpeak)
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from DFT to DST
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field
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x

dx/dt

x
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=> Bicho, Mallet, Schöner (2000)

this is how target acquisition is integrated into 
obstacle avoidance on the robot



boost-driven detection instability

inhomogeneities in the field existing prior to a 
signal/stimulus that leads to a macroscopic 
response=“preshape”

the boost-driven detection instability amplifies 
preshape into macroscopic selection decisions



boost-induced detection instability

transforms graded 
patterns, learned 
inhomogeneities 
into macroscopic 
decisions: 
categorical states! 



this supports 
categorical 
behavior

when preshape 
dominates

[Wilimzig, Schöner, 2006]



continuous 
responding for 
weak preshape

specific 
(imperative) input 
dominates and 
drives detection 
instability

[Wilimzig, Schöner, 2006]
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How does a 
preshape/memory 
trace arise?

memory trace dynamics

a form of learning that 
captures habit formation 
by stabilizing activation 
patterns



mathematics of the memory trace
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memory trace only evolves while activation is 
excited

potentially different growth and decay rates 



Wilimzig, Schöner 2006

slow

fast



categories may emerge ...

Wilimzig, Schöner 2006



Higher-dimension dynamic fields

provide new functions



mathematics of 2D fields

=> simulation

no problem ... self-
stabilized peaks 
work just fine...



dimensional cuing

e.g., three inputs 
at three location 
with three 
different colors

answer: “where is 
the red square”

color space



supply ridge input 
along the cued color 
dimension

dimensional cuing

color space
red



peak comes up 
where stimulus input 
and cue overlap

read out spatial 
location at which 
peak is located

dimensional cuing

color space read out 
spatial 

location
of red 
square



three colored objects 
including two red 
ones

answer: “where are 
the red ones”?

dimensional cuing

color space



same idea: cue at read 
through ridge input

dimensional cuing

color space
red



=> both red 
squares generate 
peaks

and their locations 
can be read out

dimensional cuing

color read out 
spatial 

locations
of red 

squares

space



dimensional cuing from long-term 
memory: cued recall

not input, but a 
memory trace from 
previous exposures 
to colored squares at 
particular locations 
provides preshape

“where was the red 
square”

color space



=> same mechanism 
applies

color space
red

dimensional cuing from long-term 
memory: cued recall



peak comes up 
where preshape and 
cue overlap

read out spatial 
location at which 
peak is located color space read out 

spatial 
location
of red 
square

dimensional cuing from long-term 
memory: cued recall
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synaptic association

in conventional 
connectionist 
networks associative 
relationships are 
learned by adjusting 
synapses between 
those color and 
space neurons that 
have been co-
activated

space encoding neurons
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connections must be 
learned, so does not 
account for how 
“where is the red 
square” works from 
current stimulation 
(seen for the first time 
ever)

limitations of synaptic association

space encoding neurons
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learning multiple 
associations poses a 
binding problem: 

connectionist 
associators learn 
one item at a time 
and need separate 
presentation of 
individual items!

limitations of synaptic association

space encoding neurons
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blue

left right

the network may associate blue with left and read with right



Coordinate transformations

Example: transform visual target from retinal 
representation to body-centered representation 
for reaching



coordinate transformations

2D field enables 
representation of 
associated retinal 
location and 
head position

=> project to 
extract body 
related location

retinal location
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coordinate transformations

peak in body 
relative 
coordinates 
tracks changes of 
head position

retinal location
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coordinate transformations

use same 2D field to 
reciprocally estimate 
head position from 
retinal position and 
position relative to 
body (e.g., while 
holding object in 
hand)

retinal location
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coordinate transformations

or predict retinal 
position from location 
of object relative to 
body and head position

retinal location
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=> project Sebastian Schneegans



Coordinate transformations

predict 
retinal 
location 
following 
gaze shift

[Schneegans, Schöner, BC in press]



… in next lecture

you will see how higher dimensional fields 
make use of these properties to achieve scene 
representation… 

also uses the principles of sequence generation 
and behavioral organization presented earlier 


