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Abstract 

This chapter lays the conceptual and mathematical foundations of Dynamic Field Theory. 

We first talk about continua of possible percepts and of possible motor actions and propose 

activation fields defined over relevant feature dimensions as the universal format of the neural 

representations on which perceptual, motor, and cognitive processes are based. We then lift the 

neural dynamics introduced in the first Chapter to a dynamics of such activation fields. Self-

excitation discussed in Chapter 1 becomes local excitatory interaction within an activation field. 

Mutual inhibitory coupling discussed in Chapter 1 becomes global inhibitory interaction within a 

field. Self-stabilized peaks of activation become the new attractor states that are the fundamental 

units of representation in DFT. We examine a set of instabilities from which peaks emerge or in 

which peaks disappear. These include the detection instability that demarcates the bi-stable 

regime in which an instance of representation may either exist or not from the mono-stable 

regime in which an instance of representation must be created. The reverse detection instability 

delimits the bi-stable regime at the other end where it merges into a mono-stable regime in which 

only the sub-threshold state remains stable. The selection instability delimits the capacity of 

Dynamic Fields to stabilize an initial selection decision. The memory instability delimits the 

regime in which peaks can be sustained without localized input, a form of working memory. The 

last element of DFT we introduce is the memory trace, a simple mechanism of learning from the 

activation history of a field. We show how the memory trace may generate a representation of 

the probability of choices and illustrate how categorical responding may emerge from continuous 

activation fields. In a last section, we illustrate all instabilities and the memory trace in a set of 

examples around the phenomenon of perseverative reaching in Piaget’s A-not-B paradigm.  
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In Chapter 1 we have introduced the notions of activation variables, 𝑢 𝑡 ,  and their neural 

dynamics, 𝑢 = −𝑢 + ℎ + inputs+ interaction. Activation variables characterize the inner state 

of the Central Nervous Systems (CNS). They may be coupled to other activation variables 

through interaction. They may also receive inputs directly from the sensory surfaces. And they 

may provide input to other activation variables and ultimately impact on motor systems (in ways 

we will study in depth in Chapter 4). In Chapter 1 we have nurtured an intuition that activation 

variables “stand for” something outside the CNS that is ultimately specified by the links of their 

dynamics to the sensory or motor surfaces, be they direct or through other activation variables. In 

this chapter we need to make this intuition explicit and address directly how activation variables 

may come to represent states of affairs outside the CNS.  

This begs the question, of course, what kind of states outside of the CNS need to be 

represented inside the CNS. We will argue, that those states form continua that span the many 

different possible percepts, the many possible motor actions, and ultimately, the many possible 

thoughts. Seemingly discrete states such as object categories or different categories of motor acts 

are often embedded in continua. Recognizing a letter as a category, for instance, we also perceive 

its continuous variations like size, orientation, contrast, or any of the other manifold visual 

dimensions. In fact, this is true even in what is sometimes called categorical perception. In 

categorical perception, two stimuli are only discriminated if they fall into different categories. 

Different versions of a stimulus, that both fall into the same category, are not discriminated. The 

question is, if there is ever truly categorical perception (Pisoni, 1973). Today, most researchers 

soften the concept of categorical perception by requiring only that discrimination between 

stimuli is enhanced when they fall into different categories than if they fall into the same 

category (Goldstone, Hendrickson, 2009). It is typically found, that discrimination of stimuli that 

fall into the same category is never fully abolished.  

In summary, DFT is founded on the hypothesis that the continuous states of the world are 

primary. How the CNS breaks continua into categories then requires an account that must go 

beyond merely postulating that discrete activation variables stand for discrete categories. The 

critical question is, therefore, how activation variables may represent continua. We will 

introduce the idea of continuous sets of activation variables that form activation fields. These 

activation fields are linked through continuous mappings to sensory and motor surfaces. We will 
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lift the neural dynamics of activation variables to activation fields and will re-encounter the 

instabilities we analyzed in Chapter 1, the detection and the selection instability. Generalizing 

the neural dynamics to fields will enable us to differentiate between different paths through the 

detection instability depending on whether localized or global input is the driving force. We will 

also be able to more clearly establish in which sense sustained activation is a mechanism for 

working memory of metric information.  

A major theoretical advance that the passage from activation variables to activation fields 

enables is a better understanding of how learning may shape neural representations. We will look 

at the simplest learning mechanism within DFT, the laying down of a memory trace that 

facilitates activation of field locations previously activated. Through the memory trace, the 

history of activation pre-shapes fields, so that all field locations are no longer equal. We will 

discuss how this may build a bridge from the hypothesized fundamental continuity of neural 

representations toward the neural representation of categorical states.  

So this Chapter is quite ambitious. It presents the core ideas of DFT that permeate the 

entire book. It reviews the associated conceptual commitments, while also trying to be 

pedagogical and clear. If the going gets rough, look out for the end of the Chapter. There we will 

make the ideas concrete and practical in a set of worked-through examples. The Dynamic Field 

model we will review invokes all the instabilities introduced earlier as well as the memory trace 

to account for sensory-motor decision-making and perseverative reaching in infancy and early 

childhood.  

 

2.1 Spaces 

It is quite intuitive that there would be infinitely many different things we could 

potentially see. Think about an object, say a bottle standing on the table in front of you. The 

bottle may vary in size, in shape, in color, in surface texture. It may be positioned at different 

locations on the table. If someone held up the bottle, its orientation relative to you, the observer, 

may vary. All these variations are, a priori, continuous in nature: location, orientation, color, 

shape, texture, all may vary in a graded way. Visual morphing software makes such continuous 

variation directly accessible to computer graphics.  

How may we formalize these continua of possible percepts? Let’s use a minimal setting 

that would be typical of a psychophysics experiment: a single spot of brightness moving on a 
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computer screen. The observer perceives the moving spot while fixating at a location marked by 

a cross. A continuum of instantaneous motion percepts is possible: the spot may move through 

different locations in different directions. This continuum may be described using a 

mathematical space that is spanned by coordinate axes.  A possible set of coordinates includes 

the two-dimensional location of the spot on the retina and the direction of motion on the retina 

relative to a fixed axis, say, the horizontal axis (Figure 2.1). This yields a three-dimensional 

space of possible motion percepts of a single spot of light. Each location in that space represents 

one possible motion percept. Visual object motion may vary along additional dimensions such as 

speed, rigid body rotation, motion in depth, and so on. There is probably no single best way for 

how to describe the set of possible motion percepts. Which dimensions we need to include may 

be dictated by the questions we will ask an observer in an experiment. We may ask an observer 

to discriminate motions that differ in movement direction, or ask the observer to point a joystick 

in the direction of motion perceived. In this case, motion direction is a critical dimension that 

needs to be accounted for. In a more complex setting, we may ask an observer to intercept a 

moving object. This probes multiple dimensions of motion perception, including direction but 

also speed and timing.  

 

 
Figure 2.1 Left: The possible perceptual manifestations of a single moving spot of brightness, marked be a filled circle, 
moving in the direction marked by an arrow, can be described by a small number of continuous dimensions including the 
location of the motion in the visual array (horizontal and vertical in a retinal reference frame), and the direction of 
motion. Right: For two of these dimensions the representation of a single motion in an activation field is illustrated. The 
motion induces a single peak of positive activation located at the appropriate location in the space of possible motions, 
while all other locations in the field have negative levels of activation. Note that this activation pattern represents the 
location and the direction of motion of the spot of brightness at one moment in time. If we were to follow the spot of 
brightness as it moves on the retina, the peak would track that movement, shifting to a new retinal location at every 
moment in time. 
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How many dimensions are needed to describe a real-world percept? An extreme view, 

taken in mathematical models of computer vision, is to sample the image by “pixel” (picture 

elements), and describe each pixel by a few coordinate axes that may capture, for instance, the 

intensity in the three color channels red, green, and blue. An image resolution that human 

observers find convincing may be as high as 1000 by 1000 pixels, which would imply that the 

image as a possible percept has about 3 million dimensions. Now that is a questionable count. 

First of all, most variations of individual pixel lead to visual noise, not to new visual percepts. 

The range of possible images created by looking at the world is constrained by properties of the 

world. For instance, surfaces tend to be continuous and their orientation in space tends to vary 

continuously. This creates reflectance maps in which brightness varies continuously. In fact, it is 

possible to estimate shape from shading based on such constraints (Koenderink, van Doorn, 

2003). Moreover, visual perception is constrained by attention. Only a small portion of the image 

is in the attentional foreground at any given moment in time. In fact, human observers may be 

blind to changes in non-attended parts of the visual array if the transients used to induce change 

are masked (Simons, 2000).  

So counting the dimensions of an image may be not a good estimate of the dimension of 

the space of possible percepts. Although the example we used in Figure 2.1 is a simplified 

laboratory setting, possible percepts may be best captured by visual feature dimensions that 

characterize individual objects in the perceptual foreground. The neurophysiology of the visual 

system suggests that there is a limited number of cortical maps representing such visual features, 

perhaps not more than 40 to 60 (Swindale, 2000). DFT is based on the hypothesis that neural 

representations in the brain can be captured by continua spanning a limited number of 

dimensions. We will typically use coordinate systems that are consistent with the known cortical 

feature maps. This link to neurophysiology will be expanded in Chapter 3.  

That the set of possible voluntary limb movements is similarly of modest dimensionality 

is, perhaps, more directly intuitive. Consider, for instance, the set of possible voluntary 

movements of the hand that are oriented to an object (Figure 2.2). Such movements may vary in 

direction and extent, perhaps also in the amount and direction of mechanical resistance, or in the 

peak velocity of the movement. Neurons in motor and pre-motor cortex are tuned to such 

movement parameters, which span the space of possible movements (Georgopoulos, 1986). Each 
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location in that space corresponds to one particular hand movement. 

 
Figure 2.2 Left: Illustration of the movement parameters direction and amplitude: By varying the direction of end-
effector motion in outer space, together with the movement amplitude, a set of possible targeted hand movements can be 
described. Right: An activation defined over these two dimensions represents through a single peak the presence of a 
movement plan. The location of the peak indicates, which movement amplitude and direction is planned. Activation in the 
peak is positive, while elsewhere it is negative, so that only activation variables inside the peak may impact on 
downstream neuronal networks that may be driving the motor action. 

The visual array is a two-dimensional space that is an important component of the 

descriptions both of possible percepts and of possible actions. This is obvious when you think of 

eye movements, in which gaze is shifted toward different locations in the visual array. A visual 

scene is captured by its spatial layout, typically along the two spatial dimensions that describe a 

surface such as a tabletop or the plane on which we stand. In addition to their spatial location we 

may remember the colors of objects, their shape, or their orientation.  If we lump these feature 

dimensions together, we may think of objects as being represented by a location in an 

appropriate space that combines visual space with feature dimensions. Sets of objects are sets of 

such locations. Later we will see, how this embedding of percepts and actions in the two-

dimensional visual array can play a role in organizing higher-dimensional representations 

through binding (Chapter 5 and 8). We may use the same style of thinking also for more abstract 

properties of the world. For instance, an “ordinal” dimension may be used to characterize the 

spatial or temporal order of events (this idea will be elaborated in Chapter 14).  

 

2.2 Activation fields 

 

What may a neural representation of a continuous space look like? Go back to Figure 2.1 

that illustrates the three-dimensional space of the possible visual motions of a single spot of 
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brightness. This space can be represented by a continuum of activation variables, one for each 

location in the three-dimensional space. These activation variables are labeled with an index that 

has continuous values. Mathematical, this makes them a field, a field of activation. This 

mathematical concept of a field is precisely analogous to how fields are used in physics, such as 

in the gravitational field, the electrical field, or the flow field inside a fluid or gas. The 

gravitational field, for instance, assigns to every location in three-dimensional Euclidian space a 

gravitational potential that can be assessed by observing the force exerted on a test mass. At any 

location, that force points in the direction in space in which the gravitational potential decreases 

most strongly, computed as the gradient of the gravitational field. The link between activation 

fields and measurement or observation is similarly based on the spatial pattern generated in the 

activation field. This is illustrated in the right half of Figure 2.1 for the activation field defined 

over the horizontal position and the direction of a visual motion (the vertical position is omitted 

to make the graphical representation practical). The field has an activation pattern which a single 

peak of action. Its center specifies the location and direction of the single perceived visual 

motion.  

Not only the location of maximal activation, but also the width of the peak is meaningful 

and can be assessed in an experiment. Psychophysical experiments on visual motion, for 

instance, may probe the range of activation around a particular location in the location/direction 

space by inducing an initial activation pattern through a first motion stimulus, say, a horizontal 

motion (an activation pattern centered on 0 degrees). This may then be followed by a second 

stimulus that probes neighboring locations of the location/direction space, for example, by 

specifying motion at an angle of 67.5  (= 90− 22.5) degrees from horizontal and another at an 

angle of 112.5  (= 90+ 22.5) degrees from horizontal. Motion perception will be typically 

selective, so that only one of the two motions is seen. If the 67.5 degree motion is preferred over 

the 112.5 degree motion, then we infer that the prior pattern of activation centered at 0 degrees 

overlaps more with input at 67.5 degrees than with input at 112.5 degrees, biasing motion 

perception toward the closer angle. This was confirmed in experiments that run under the label 

“motion inertia” (Anstis, Ramachandran, 1987) and were referred to in Chapter 1. The 

experiments show that the activation peak representing horizontal motion at zero degrees must 

reach out to at least 67.5 degrees. Paradigms of perceptual hysteresis provide similar signatures 

of the metric range over which pervious perceptual experience, represented by patterns of 
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activation, impacts on new perceptual experience (Hock, Kelso, Schöner, 1993; Hock, Schöner, 

2010).  

In the motor domain, behavioral signatures of the width of activation peaks may be 

observed through the variance of movements from trial to trial. In the timed movement initiation 

paradigm, participants are trained to initiate movements at a fixed time, paced by a metronome 

(Ghez et al, 1997). Which movement out of a range of possible movements must be performed is 

cued only a short moment before the metronome signal. This stimulus-response time is 

experimentally varied. When the possible movements are metrically close, say closer than 60 

degrees for movement direction, then the distributions of movement directions across trials 

observed for short stimulus response times is mono-modal and centered on the mean movement 

direction. When the different possible movements are metrically far from each other, farther than 

60 degrees for movement direction, then the distributions are multi-modal, each maximum 

centered on one of the possible movement directions (Favilla, 1997). With increasing stimulus-

response interval, the mono-modal distributions sharpen and become centered on the correct, 

cued movement direction. In the multi-modal distributions, one peak centered on the correct 

movement direction sharpens and grows, the other peaks decay. The transition from mono-modal 

to multi-modal initial distributions of movement parameters gives an indication for the width of 

the underlying activation peaks in the space of movement directions (Erlhagen, Schöner, 2002). 

In fact, it is possible to directly observe such distributions from the neural activity of populations 

of neurons tuned to movement direction (Georgopoulos, Schwartz, Kettner, 1986). The width of 

distributions of population activation is consistent with the estimate from the behavioral data 

(Erlhagen et al., 1999). This link between activation fields and population activity in the brain 

will reviewed in detail in the next Chapter 3.  

Peaks of activation are the fundamental units of representation in DFT. Peaks signify two 

things. First, because the level of activation within a peak exceeds the threshold of the sigmoid 

function, the peak reflects the fact that an instance has been created within the activation field 

that is now capable of impacting on any other neural networks that the field projects onto. This 

may include the motor system, so that peaks ultimately drive behavior in DFT (exactly how is 

the topic of Chapter 4). In a sense, peaks are thus “go’’ signals for whatever process is driven by 

the field. Secondly, the location of a peak represents metric information along the dimensions 
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that span the activation field. Through its location, a peak thus signifies an estimate of a 

perceptual state, of a movement parameter, or of other metric feature dimensions.  

If perceptual information along the dimension of an activation field is multi-valued, 

peaks of activation may represent different kinds of perceptual decisions. Figure 2.3 gives an 

example from the perception of apparent motion (Giese, 1999). When a point light is first shown 

and then replaced by two point lights at different locations, one of three things may happen: 

Visual motion may be perceived from the first point light into the direction that averages 

between the two target lights (fusion). A splitting visual motion may be perceived, starting at the 

first light and ending at the two new locations (transparency). Or a single visual motion may be 

seen from the first to only one of the two new locations (selection). (See Kim, Wilson, 1993, for 

psychophysics of this kind.) An activation field representing movement direction may represent 

all three states of affairs. It may generate a single peak centered over the two targets (fusion). It 

may generate two peaks, each centered over the direction to one target (transparency). Or it may 

generate a single peak centered over one of the two targets (selection).  

In Chapter 6 we will see that the number of peaks that can be simultaneously activated is 

limited by inhibitory interaction, a constraint that provides a neural account for capacity limits. 

So, the typical picture in DFT is that only a small number of activation peaks is present at any 

time.  
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Figure 2.3 The left column illustrates three stimuli of apparent motion in which a spot of brightness (filled circle) is 
extinguished and two spots of brightness (open circles) appear elsewhere. Such displays may generate a percept of 
apparent visual motion as indicated by the arrows. Depending on the angular distance between stimulated motions, the 
perceived visual motion (black arrows) is either a single fused motion (top) in the direction of the average of the two 
stimulated motions (grey arrows), or consists of two transparent motions in the stimulated direction (middle), or is a 
single motion at one of the two stimulated locations (bottom). The right column shows the activation field defined over 
movement direction that represents these perceptual outcomes. On top, the fused motion (black arrow) is represented by 
a peak positioned near the average direction of the two inputs, whose locations are marked by grey arrows. In the middle, 
two motions that are perceived at the same time (transparency) are represented by two peaks located each over a 
stimulated movement direction. On bottom, one motion is represented by a single peak located at the site that 
corresponds to its movement direction, while activation at the other stimulated site is suppressed. Adapted from Giese, 
1999.  

 

2.3 Field dynamics 

In DFT, activation fields are postulated to form dynamical systems. This means that an 

activation field, 𝑢(𝑥, 𝑡), defined over dimension, 𝑥, evolves in time, 𝑡, as described by a 

differential equation. This equation has a form analogous to that used for individual activation 

variables in Chapter 1. It links the rate of change of activation, 𝑢(𝑥, 𝑡), at any location, 𝑥, 

through a "−𝑢(𝑥, 𝑡)" term to the current level of activation, 𝑢(𝑥, 𝑡). This is the stabilization 

mechanism that limits growth of activation at positive levels and decay of activation at negative 

levels. The resting level, ℎ < 0, is assumed to be the same for all field locations while localized 

input, 𝑠(𝑥, 𝑡), may vary along the field dimension and in time. Thus, the first three terms in 

𝜏  𝑢 𝑥. 𝑡 = −𝑢 𝑥, 𝑡 + ℎ + 𝑠 𝑥, 𝑡 + ∫ 𝑘 𝑥 − 𝑥! 𝑔 𝑢 𝑥!, 𝑡 𝑑𝑥!                        (2.1) 

are identical to the dynamics of individual activation variables, except that the discrete index that 
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numbers the different activation variables has been replaced by the continuous variable, 𝑥, that 

spans the field dimension. As before, the parameter, 𝜏, determines the overall time scale of the 

temporal evolution of 𝑢(𝑥, 𝑡).  

What is different for activation fields compared to activation variables is the 

mathematical format of neural interaction. The integral is a continuous version of the sum over 

all field sites, 𝑥′. Each site, 𝑥′, contributes only to the extent to which activation at that site 

exceeds a threshold as mediated by a sigmoidal function,𝑔(𝑢 𝑥!, 𝑡 ). The threshold for coupling 

is, by convention, at 𝑢 = 0, although the sigmoid function may be soft enough to allow 

activations slightly below zero to also contribute. The strength with which supra-threshold 

activation at site, 𝑥′, contributes to the rate of change of activation, 𝑢(𝑥, 𝑡), at site, 𝑥, is a 

function, 𝑘(𝑥 − 𝑥!), the distance between the two sites. Interaction is excitatory (𝑘 𝑥 − 𝑥! > 0) 

for close distances, and inhibitory (𝑘 𝑥 − 𝑥! < 0) for larger distances. This dependence of 

coupling strength on the distance between field sites makes the dynamics a homogeneous 

integro-differential equation: the dynamics looks the same everywhere along the dimension of 

the field. With a solution, 𝑢(𝑥, 𝑡), any shifted version of this solution is also a solution. Only 

localized inputs, 𝑠(𝑥, 𝑡), that differ at different field locations, break the homogeneity.  

Activation peaks are inherently attractors of this neural dynamics. As illustrated in Figure 

2.4, local excitatory interaction among locations within a peak of activation stabilizes the peak 

from decaying. If this were the only form of interaction, however, activation at the boundaries of 

a peak would keep rising, leading to unbounded expansion of the peak. Inhibitory interaction 

over longer distances in the field stabilizes peaks against this expansion. Thus, excitatory and 

inhibitory interaction together stabilize the shape of activation peaks. Amari (1977) showed this 

mathematically. His and subsequent analyses help us solve the “inverse’’ dynamics problem. In 

the typical “forward” dynamics problem that we are taught in math courses, we find the solutions 

of a given equation. Modeling entails inverse dynamics, finding an equation that has the desired 

solutions. In DFT, we seek equations that have peaks of activation as attractor solutions. The 

mathematical analysis shows that the Amari neural dynamics is a possible equation that has 

peaks as attractors and we adopt that equation as a possible mathematical formalization of DFT 

on that basis.  
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Figure 2.4 Left: A sigmoidal function, 𝒈(𝒖), approaches zero for sufficiently negative values, and a positive constant for 
sufficiently positive values of activation, 𝒖. Right: As mediated by the sigmoid function, activated regions in the field 
interact by exciting nearby locations (light gray arrow), stabilizing peaks from decay, and by inhibiting locations further 
removed (dark gray arrow), stabilizing peaks against diffusion. 

Through their positive levels of activation, peaks signal the decision in which an instance 

is created along the underlying dimension. This decision is stabilized by neural interaction. 

Neural interaction does not stabilize peaks against shifts along the field dimension. In the 

absence of localized input, the field dynamics is homogeneous so that any shifted version of an 

activation peak is also a possible solution. We shall see later in this Chapter, that drift along the 

field dimension is psychophysically real. Localized input may limit or stop such drift.  

The two contributions to neural interaction, excitatory and inhibitory, are related to the 

two forms of interaction discussed for discrete activation variables in Chapter 1. Local excitatory 

interaction is a generalization of the self-excitation we studied there, while global inhibition is a 

generalization of the mutual inhibitory coupling studied for two activation variables. Figure 2.5 

illustrates these analogies by visualizing the relationship between the activation fields and 

discrete activation variables. One may think of the discrete activation variables as representing 

the total activation within a region in the field that approximately covers an activation peak.  In 

this picture we only keep track of locations that receive input at some point in a task setting. In 

Chapter 1 only two locations were ever stimulated, and that is why two activation variables were 

sufficient. Local excitatory interaction summed within a region shows up in the neural dynamics 

of the activation variable as self-excitation. Inhibitory interaction only gathers contributions from 

locations at which activation may become positive. For two activation variables, these are the 

two regions captured by the two variables, so that mutual inhibitory coupling of the two 
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activation variables captures global inhibition. This analogy underlines, once more, that local 

populations rather than individual neurons are the substrate for representation. The question, how 

a particular activation variable with a discrete index may come to stand for a particular 

perceptual or motoric state is answered by embedding the activation variables in activation 

fields. The discrete variables are merely samples of an underlying continuous metric dimension. 

 
Figure 2.5 An activation field, 𝒖(𝒙) (solid dark line), is stimulated by input, 𝒔(𝒙) (solid grey line), with two local maxima. 
The field dynamics can be captured qualitatively by keeping track of activation only within the two regions (highlighted 
by grey shading) that receive input. Total activation in each region is described by an activation variable, 𝒖𝟏 and 𝒖𝟐, 
respectively; total input into each region by input strengths, 𝒔𝟏 and 𝒔𝟐, respectively. In this approximation, local 
excitatory interaction within each region becomes self-excitation of the activation variables, while global inhibitory 
interaction becomes mutual inhibition between the two activation variables. 

 

2.4 Attractors and their instabilities 

In Chapter 1 we discussed attractors and instabilities in some detail for the neural 

dynamics of one or two activation variables. The mathematical concept of stability and the 

mechanisms of bifurcation are really the same for activation fields, but less intuitive and more 

difficult to visualize. We shall look now at the two classes of attractor solutions of the dynamics 

of activation fields, the sub-threshold and the self-stabilized activation patterns and examine the 

instabilities that separate them. Lifting the dynamics from discrete activation variables to 

activation fields will provide new insight into the meaning of the instabilities and the situations 

in which they may arise. The exercises at the end of this chapter invite you to reproduce all 

instabilities discussed here, making use of an interactive simulator of Dynamic Fields.  

 

Detection: The simplest stable state of the equation arises when activation is below zero, 

and only weak inputs are present. In that limit case, no portion of the field is activated enough to 
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return positive values from the sigmoid. Interaction is therefore not engaged and the field 

dynamics is now independent at each location, 𝑥, of the field  

𝜏𝑢 𝑥, 𝑡 = −𝑢 𝑥, 𝑡 + ℎ + 𝑠 𝑥, 𝑡                                                             (2.2) 

Figure 2.6 illustrates this dynamics at one location. At its zero crossing, 𝑢 𝑥, 𝑡 = 0, lies the 

stationary solution, 

𝑢! 𝑥, 𝑡 = ℎ + 𝑠 𝑥, 𝑡                                                                                                             (2.3), 

that represents the sub-threshold attractor state, essentially just the input, 𝑠(𝑥, 𝑡), shifted 

downward by ℎ < 0. As in Chapter 1, we can read the stability of this solution off the negative 

slope of the rate of change at the zero crossing. Activation grows if it lies below, decays if it lies 

above this stationary state. If input varies in time, activation will thus track the sub-threshold 

solution with a delay that reflects the time scale, 𝜏, of the field dynamics. (Strictly speaking, the 

sub-threshold solution is not stationary then.) 

 
Figure 2.6 The dynamics of activation, 𝒖(𝒙), at a single field location, 𝒙, is illustrated. This dynamics is independent of 
activation at other locations as long as interaction is not engaged. That is the case around the sub-threshold attractor, 
𝒖𝟎 𝒙, 𝒕 = 𝒉 + 𝒔 𝒙, 𝒕 < 𝟎, that emerges as the zero-crossing of the rate of change, 𝒖(𝒙). The sub-threshold attractor 
becomes unstable and disappears if input, 𝒔(𝒙, 𝒕), becomes sufficiently strong so that it pushes the sub-threshold attractor 
toward zero from below and engages interaction. 

Interaction is engaged as soon as activation approaches zero from below anywhere along 

the field dimension. Let’s look around a location at which input drives activation toward the 

threshold. We approximate the input pattern, 𝑠(𝑥, 𝑡), as a Gaussian centered on that location. 

Figure 2.7 traces the attractors of the neural dynamics when the strength of that localized input 

pattern increases. We start out with weak input, at which the only stable stationary state is the 

sub-threshold attractor, a copy of the input pattern shifted down by the resting level as discussed 

above. For a single Gaussian input function, this attractor is a sub-threshold hill of activation. As 

input strength increases, activation in that attractor reaches threshold from below, engaging 
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excitatory interaction, which pulls up the activation within the hill. In a recurrent cycle, 

increasing activation levels within the hill engage local excitatory interaction more strongly 

which in turn increases activation levels. Through this growth cycle the sub-threshold hill of 

activation becomes unstable in what we call the detection instability.  

 
Figure 2.7 For a localized input pattern (grey solid line) that increases in strength (from top to bottom), the attractor 
states of a dynamic activation field are shown. Top: At low input strength, the only attractor is the sub-threshold hill of 
activation (black solid line) that mirrors input shifted down by the negative resting level of the field. Second from top: At 
a larger input level, the sub-threshold hill of activation continues to be stable, but co-exists with a self-excited peak of 
activation (black dashed line). This self-excited peak is close to the reverse detection instability: if input were weakened a 
little, the peak would decay and the system would return from this bi-stable regime to the mono-stable regime illustrated 
on top. Second from bottom: For stronger input, the sub-threshold hill of activation (black dashed line) becomes unstable 
at the detection instability, the upper limit of the bi-stable regime. Bottom: At even stronger input, the self-excited peak of 
activation is the only remaining attractor. The system is again mono-stable. 

What solution does the activation field converge to once the sub-threshold state has 

become unstable? Inhibitory interaction eventually limits the growth of the activated region, 

leading to a new balance of excitatory and inhibitory interaction. This is the self-stabilized peak 

attractor that is fundamental to DFT. Within the peak, the balance of excitation and inhibition 
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leads to a positive level of activation, so that this attractor is an instance of the dimension 

represented by the field, in the sense we discussed earlier. Outside the peak, the inhibitory 

influence from the peak is unopposed by excitatory interaction leading to a negative level of 

activation below the resting level.  

The possibility of a self-excited peak does not appear just as the sub-threshold hill 

becomes unstable. This attractor has been around at levels of localized input below the detection 

instability. There is a range of input levels, within which both the sub-threshold hill and the self-

stabilized peak of activation are stable. For input levels within this range, the neural dynamics is 

bi-stable. Only one of the two stable states can be realized at any one time. Which state the 

system is in depends on the history of activation. In the narrative above, the neural dynamics 

starts in the sub-threshold hill state and input strength is then increased. The activation pattern 

tracks the change of input strength within the sub-threshold solution as indicated by Equation 

2.3. Only when the sub-threshold hill becomes unstable at the detection instability, does the 

activation pattern switch to the alternate attractor, the self-stabilized peak of activation. 

Conversely, if the system starts out in an activation pattern near the self-stabilized peak, it 

converges to that attractor and stays in that attractor as input changes. This may happen, for 

instance, if the system has been pushed through the detection instability by a strong input which 

is then reduced in strength. Once the system has switched to the self-stabilized peak, it persists in 

this state even as input strength is reduced back below the critical level of the detection 

instability.  

As long as there is enough positive activation within the peak to keep the peak afloat 

through local excitatory interaction within the peak, the stabilization mechanism of the peak 

attractor remains viable. When the level of localized input falls below a critical level, this 

mechanism begins to fail. The reverse detection instability occurs, delimiting the range of bi-

stability on the side of low levels of input (Figure 2.7).  

In summary, when the strength of localized input varies, the dynamics of activation fields 

goes through three regimes: mono-stable with the sub-threshold hill of activation as sole attractor 

at low levels of input, bi-stable with both sub-threshold hill and self-stabilized peak of activation 

as attractors at intermediate levels of input strength, and mono-stable with the self-stabilized 

peak of activation as sole attractor at high levels of input strength. Within the bi-stable region, 

which attractor is observed depends on the history of activation and thus, on the history of input 
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strength. Increasing input strength leads to persistence of the sub-threshold hill of activation up 

to the detection instability. Decreasing input strength leads to the persistence of the self-

stabilized peak of activation down to the reverse detection instability. This is the same hysteresis 

we first discussed in Chapter 1 in the approximation in which we described the dynamics around 

the stimulated location of the field by a single activation variable with self-excitatory interaction 

(see Figure 1.11 there).   

The name we chose for the detection instability suggests that the switch from the sub-

threshold hill to a self-excited peak of activation could be viewed as a detection decision. The 

peak indicates that an instance of whatever the field represents has been created and is now 

capable of affecting downstream parts of the neural dynamics because the activation levels are 

sufficient to drive sigmoidal coupling functions above zero. The bi-stability of the dynamics just 

below the detection instability implies that the detection decision remains stable even if the input 

that induced it, fluctuates in strength. This is a significant feature of decision making in neural 

dynamics that may be contrasted, say, with the notion of threshold piercing common in neural 

network models. According to this notion, a detection is registered whenever an activation 

variable exceeds a particular detection threshold (Schall, 2004). When such a threshold is first 

pierced, fluctuations in the input signal may often lead to activation falling below the threshold 

again in close temporal vicinity to the first detection. Threshold piercing is thus not a stable 

mechanism for making detection decisions when these are linked to fluctuating sensory signals. 

The detection instability, in contrast, makes it possible to make stable detection decisions in the 

face of time varying and fluctuating sensory input.  

Another conceptual implication of the detection instability has to do with continuous 

versus discrete time. As an organism moves through an environment, sensory inputs typically 

vary continuously in time. Out of such time-continuous sensory data, the detection instability 

creates an event at a discrete time, the moment when the rapid transition from a sub-threshold 

hill to a self-stabilized peak signifies a decision. Embedded in a complete sensory-motor system, 

this event may ultimately trigger motor actions. The discrete moments in time at which such 

actions are initiated thus emerge autonomously from the time-continuous neural dynamics.  

After the discrete decision event, the self-stabilized peak remains coupled to continuously 

varying sensory input, however. One way this can be seen comes from the fact that the peak is 

centered on the localized input as analyzed mathematically by Amari (1977). The position of the 
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peak may be viewed as an estimate of the location at which localized input is maximal. When the 

input pattern moves, the peak tracks the moving input. The peak will typically lag behind the 

moving input, just like any low-pass filter does, and for input that moves too fast it may fail to 

track (the peak then decays at the old location and a new peak is induced at the new location). 

But within these constraints, the peak stays connected to time varying input that is sufficiently 

strong.  

 

Working memory: There reverse detection instability does not always occur: There are 

conditions under which even at zero strength of localized input the self-excited peak attractor 

persists. This may happen, for instance, for sufficiently large resting levels, ℎ < 0, which alone 

can be sufficient to keep activation in the self-excitatory loop that sustains the peak. At a given 

resting level, this may happen when the strength of local excitatory interaction is sufficiently 

large. Under these conditions, whenever a peak has somehow been induced, the peak persists, 

sustained entirely by interaction, in the absence of any localized external input into the field.  

To see the functional significance of self-sustained peaks consider a scenario in which a 

peak is first induced by a detection instability at a location, 𝑥!, at which localized input was 

maximal. When the localized input is now removed, the peak persists and thus effectively is a 

memory of the previous detection decision (Figure 2.8). Its positive level of activation represents 

a memory of the fact that significant input to this field has existed at some point. Its location 

represents a memory of the location of that previous input. Sustained peaks of activation of this 

nature are the commonly accepted picture for how working memory comes about in neural 

populations, consistent with neurophysiological evidence for sustained firing of neurons in 

working memory tasks (Fuster, Alexander, 1971; Fuster, 2005). This will be discussed at length 

in Chapter 6, where will also address capacity limits and how information is brought into and out 

of working memory.  
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Figure 2.8 The memory instability is illustrated by contrasting a condition in which peaks of activation are not sustained 
when localized input is removed (left column) with a situation in which peaks are sustained (right column). In each case, a 
localized input (grey solid line) induces a self-stabilized peak (top row), and is then removed (bottom row). When peaks 
are not sustained, the system switches to sub-threshold attractor upon removal of localized input (bottom left). When 
peaks are sustained, the self-excited peak becomes a self-sustained peak (bottom right). The resting level, 𝒉 < 𝟎, is more 
negative on the left than on the right. Increasing resting level may push the system through the memory instability into 
the regime of sustained peaks. 

Sustained peaks of activation are really the same attractors as the self-stabilized peaks of 

activation. We speak of sustained peaks after the localized input has been removed. Whether or 

not a peak is sustained in the absence of input depends on dynamic parameters. Figure 2.8 

illustrates one form of the memory instability, a transition in dynamic regime in the absence of 

localized input. For sufficiently negative resting level, ℎ (left column in the figure), the neural 

dynamics is mono-stable with the sub-threshold attractor in the absence of localized input. At 

higher (but still negative) resting level, ℎ (right column in the figure), the neural dynamics is bi-

stable in the absence of localized input. Both the sub-threshold state as well as the sustained peak 

is an attractor of the field dynamics. The sustained peak will be observed when the dynamics 

starts out with a self-excited peak state as shown in the figure. In this bi-stable regime, the 

sustained peak is actually a family of infinitely many possible attractors, which are marginally 

stable because they can be shifted along the field dimension. Drift along the marginally stable 

direction is possible in the presence of noise. Any small inhomogeneity breaks the marginal 

stability and leads to the emergence of a single attractor that is localized over any local 

maximum of input. The drift and the breaking of marginal stability are psychophysically real and 

can be observed in human working memory for metric information as we will discuss later in this 

Chapter. (Strictly speaking, the marginally stable sustained peaks are not attractors, but it is 
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common practice to still refer to them this way, as they resist all perturbations except lateral 

shift.).  

 

Selection: Now let us look at slightly more complex input patterns, minimally an input 

with two local maxima (Figure 2.9). Generically, a self-stabilized peak arises at only one of the 

two locations. Activation at the other location is suppressed by inhibitory interaction that comes 

from the activated peak. The location with suppressed activation cannot conversely inhibit the 

activated peak because its activation is insufficient to return positive values of the sigmoid. The 

timing of activation controls which location “wins” this selective competition. A location at 

which activation rises earlier reaches supra-threshold levels of activation first and begins to 

inhibit activation at other locations. Locations at which activation arises later are inhibited before 

they can reach supra-threshold levels. The temporal advantage of a location may arise because 

inputs arrive asynchronously. This is the case, for instance, if one location was previously 

stimulated and prior activation from that previous stimulation biases the selection when a new 

stimulus arrives. The competitive advantage of a location may also arise because input of 

different strength impinges on different locations. The input function, 𝑠(𝑥, 𝑡), may favor one 

location over another as suggested in Figure 2.9. As a result, activation at the location that 

receives stronger input rises faster and reaches threshold earlier, engaging interaction and 

suppressing the further increase of activation at competing locations. In the models discussed so 

far, we have not specified exactly how input profiles arrive. In neural networks, the pattern of 

synaptic connectivity from a sensory surface to the network determines how sensitively a neuron 

responds to a particular input. Input patterns that best match the pattern of synaptic connectivity 

provide the strongest input to a given neuron (Haykin, 2008). This core mechanism of neural 

networks is lumped into the input function, 𝑠(𝑥, 𝑡), in DFT. “Good match” of an input pattern is 

thus captured by large levels of input for a particular location, leading to early rise of activation 

at that location and a competitive advantage of that location. The selection mechanism of DFT is 

thus a possible process implementation of the connectionist conception in which the neuron is 

selected that responds maximally because its connectivity best matches an input pattern.  
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Figure 2.9 Input functions (solid grey lines) and stable activation patterns (solid black lines) are shown as functions of the 
field dimension in three situations. Top: Input is bimodal, with identical maximal level of input at two locations. An 
activation peak centered on the left mode is a stable state that may have emerged because activation was initially higher 
on the left, because the left-most mode was presented first, or by chance from fluctuations in input. Middle: When input 
to the right-most location is much stronger than to the left-most location, the peak centered on the left location is no 
longer stable and the system switches in the selection instability to a peak centered on the right-most location. Bottom: If 
input is then returned to symmetrical levels for both modes, the peak centered on the right mode remains stable, an 
instance of the stabilization of selection decisions. 

The determination of selection by temporal order implies that selection choices are 

stabilized when input varies. Once a self-excited peak has been erected over a particular local 

maximum of input, inhibitory interaction from this peak to all other locations prevents other 

peaks from arising over other stimulated locations even if input to those locations becomes 

stronger than input to the selected location. This can be seen in Figure 2.9 from how activation is 

suppressed at the alternate field location even though input to either location is of the same 

strength. The stabilization of selection decisions makes it possible to continuously link an 

activation field to sensory input while at the same time preventing the selection decisions from 

fluctuating each time the location of maximal input varies. Contrast this to an algorithm, which 
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would select at every moment in time the location of maximal activation. That location could 

vary from moment to moment across multiple stimulated locations. In a sense, stable selection is 

a form of robust estimation, in that components of input that are metrically close to the location 

of the selected peak contribute to the estimate that peak represents, while components that are 

metrically far from the selected peak are suppressed.  

The stabilization of selection decisions has limits. When input strengths are sufficiently 

different, an initially established selection decision may be reversed. In the top panel of Figure 

2.9, the left most peak has been selected in some way. When the right-most input becomes much 

larger than the input to the left-most peak (in the middle panel), this selection decision can be 

overturned. A peak at the right-most location emerges and suppresses by inhibition the peak at 

the left-most location. This switch involves an instability, which we call the selection instability. 

Similar as for detection, this instability occurs at the boundary of a bi-stable region in which two 

attractors co-exist: a peak centered on either input is stable. Beyond the selection instability, the 

system is mono-stable, only the peak centered over the more strongly stimulated location 

remains stable.  

This capacity to select a location from a multi-modal input pattern generalizes beyond 

just two locations. Whether or not selection leads to a single self-excited peak or whether 

multiple peaks may coexist depends on the interaction kernel, in particular, its inhibitory portion. 

When inhibition levels off at larger distances, then peaks that are sufficiently far apart from each 

other may coexist. Generally, as more peaks are induced, the total amount of inhibition projected 

onto other locations increases. This limits the number of peaks that can be stabilized, providing, 

in fact, an account for capacity limits of working memory as discussed in Chapter 6.  

There are additional instabilities hidden here. Transitions may occur from a dynamic 

regime in which multiple peaks can be stable to a regime in which a single peak is selected. 

Transitions may occur between dynamic regimes in which the number of peaks that may co-exist 

changes. In each case, these instabilities can be brought about by changes in the strength and 

range of contributions to interaction within fields, but may also depend on the metric and 

strength of inputs and on the resting level. In principle, the number of such instabilities is 

unlimited. Another kind of transition occurs within the selective regime. For instance, when the 

neural dynamics is bi-stable, with a peak positioned over either of two local maxima of input, a 
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transition may occur to a mono-stable regime when the two locations move close to each other. 

This results in a single peak positioned over an averaged location (Kopecz, Schöner, 1995).  

We want to discuss one final instability, a variant of the detection instability linked also 

to selection. This instability has broad implications for DFT, in particular, for its link to learning 

which will be discussed next. Consider again a situation with a few localized inputs that are now 

quite weak, however. We may think of these inputs as inhomogeneities of the field that may arise 

through sensory input from the layout of the scene or may arise from learning processes that give 

some field locations higher resting levels than others (see below). As illustrated in Figure 2.10, 

these small inhomogeneities pre-shape the field in the sub-threshold state. The detection 

instability may now amplify this pre-shape into a full, self-stabilized peak. The input that induces 

the detection instability may be homogeneous, that is, contain no specific information about the 

location at which a peak is to be generated. What happens is that such a homogeneous boost to 

the activation level of the field first drives the field through the threshold at one of the locations 

that are a little more activated than the rest of the field. Interaction engages and brings about the 

detection instability around that location. If inhibition is global, the emergent peak will drive 

selection so that other, slightly less pre-activated locations cannot generate peaks. Even if the 

boost is present for a brief moment only, the bi-stability of sub-threshold and self-stabilized 

peaks below the detection instability helps stabilize the full peak once it has been activated. So 

the boost-driven detection instability amplifies small inhomogeneities in the field into complete 

self-excited peaks that represent decisions and impact downstream neural dynamics. Conversely, 

the boost-driven detection instability alleviates the demands on sensory input and on learning 

processes: These processes need to deliver only small, graded inhomogeneities that can then be 

amplified into full decisions without further specific information. This may help bootstrap fields 

from the sensory-motor domain in which inputs tend to be strong and stable, to the cognitive 

domain, in which inputs are internally generated and may be transient and weak. Using “boosts” 

to activate items will be a topic throughout the book, culminating in Chapter 14 in which we will 

leave the sensory-motor domain farthest behind.  
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Figure 2.10 Top: An activation field is pre-shaped at three locations, so that the sub-threshold attractor has small hills of 
activation there. Middle: An input that is constant across the field boosts the activation pattern, pushing activation 
toward zero from below, here very close to the detection instability. Bottom: The field has gone through the detection 
instability, in which the sub-threshold attractor has vanished, and has activated a self-stabilized peak localized over one of 
the three pre-activated regions. 

 

2.5 Memory trace 

 

The neural dynamics we have discussed so far takes place at the time scale at which 

inputs vary and decisions are made. Sustained peaks of activation, however, transform events at 

that fast time scale to the longer time scales at which working memory resides.  As working 

memory, sustained peaks are susceptible to capacity limits and interference limiting the 

persistence of these activation states when inputs vary. Interference arises through the selection 

instability when new sensory information competes with the existing sustained peaks.  

A more general neural dynamics at the longer time scale of memory is a dynamics of 

learning. The simplest form of such learning is, perhaps, habit formation, as postulated by 

William James (1899). Habits are formed when particular behaviors are experienced often 

enough. They make it easier to reproduce the same behaviors. While the modern understanding 

of habit formation is both more complex and more specific (Yin, Knowlton, 2006), the Jamesian 

metaphor can be translated into DFT as an elementary and generic form of learning: Any 

instance of a neural representation, a self-excited peak of activation, leaves a memory trace that 

facilitates the re-emergence of the same activation peak in the future (Erlhagen, Schöner, 2002). 

Figure 2.11 illustrates the mechanism: For a given activation field, the memory trace is a second 

layer of dynamics that evolves on the slower time scale of learning. Any supra-threshold 
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activation in the field provides excitatory input into the memory trace. Locations at which 

activation is above threshold thus grow a memory trace. As the memory trace at an activated 

location grows, it decays at all other locations, at which there is currently no supra-threshold 

activation. In the absence of any supra-threshold activation, however, the memory trace remains 

unchanged, neither growing nor decaying. This form of a dynamic memory trace generates a 

representation of the history of supra-threshold activation in the field. The memory trace, in turn, 

provides weak excitatory input into the activation fields. This is how the memory trace facilitates 

peak formation at the locations at which peaks have previously been generated.  

 
Figure 2.11 Evolution in time of an activation field (top) and its memory trace (bottom). The field receives time-varying 
input at two locations that induces a self-stabilized peak at these locations at different moments in time, interspersed with 
time intervals during which activation is below threshold everywhere along the field dimension. Supra-threshold 
activation drives the memory trace up at the matching location, e.g., on the left for the first 10 seconds. At competing 
locations, the memory trace decays, e.g., on the left around 15 seconds as the trace grows on the right. In the absence of 
supra-threshold activation, the memory trace remains unchanged, e.g., between 8 and 12 and again between 18 and 20 
seconds. 

 

A mathematical formalization of the memory trace invokes a second layer of dynamics 

for a field of memory trace levels, 𝑢mem(𝑥, 𝑡): 

𝜏mem𝑢mem 𝑥, 𝑡 = −𝑢mem 𝑥, 𝑡 + 𝑔(𝑢 𝑥, 𝑡 )                                                                                              (2.4) 

that evolves on the slower time scale, 𝜏mem ≫ 𝜏. The memory trace couples into the field 
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dynamics according to 

𝜏  𝑢 𝑥. 𝑡 = −𝑢 𝑥, 𝑡 + ℎ + 𝑠 𝑥, 𝑡 + 𝑐mem𝑢mem 𝑥, 𝑡 + ∫ 𝑘 𝑥 − 𝑥! 𝑔 𝑢 𝑥!, 𝑡 𝑑𝑥!                (2.5) 

with strength, 𝑐mem. The memory trace does not evolve (right hand side of Equation 2.4 set to 

zero) when no location in the activation has supra-threshold levels of activation. More complex 

learning dynamics may have a faster time scale for the building of a memory trace than for its 

decay. 

Erlhagen and Schöner (2002) showed how the dynamics of the memory trace generates a 

representation of the probability of events. Consider a two-choice motor task, for instance, in 

which the frequency with which each choice occurs varies across different conditions. Response 

times co-vary with the probability of each choice according to the Hyman law (Hyman, 1953): 

Response times are shorter for the more frequent choice. In their Dynamic Field model of the 

task, Erlhagen and Schöner represented the movement choices as values of a movement 

parameter encoded in an activation field. The imperative stimulus specifies which choice to 

select and also serves as the “go” signal, authorizing the participant to respond. That stimulus 

was modeled as localized input to that field. This input drives the field through the detection 

instability inducing a peak at the location that encodes the cued movement parameter value. Over 

time, peaks arise at the two locations as illustrated in Figure 2.11. The probability of each choice 

determines the frequency with which the peaks occur. The memory trace at the two locations that 

represent the two movements converges across trials to levels that reflect the frequency of each 

choice, a higher level for the more frequent movement. These levels feed into the activation 

field, pre-activating the field at the two locations. On any given trial, the imperative stimulus 

encounters, therefore, different initial activation levels. The more probable choice starts from a 

higher initial level of activation and thus reaches threshold earlier, leading to shorter response 

times. A detailed mathematical analysis predicts the Hyman law, in which response times 

increase with the logarithm of choice probability. (The logarithm comes from the exponential 

time course of activation as it relaxes to the attractor. Inverting the exponential to compute the 

time at which threshold is reached leads to a logarithmic dependence on initial activation levels. 

See appendix of Erlhagen, Schöner, 2002, for a derivation). The memory trace could thus be 

viewed as a process for how neural representations build probabilistic priors from their history of 

activation much as postulated by adherents to Bayesian thinking in cognition.  
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The history of activation may, more dramatically, lead to the emergence of categories. In 

Figure 2.11 we suggested that activation peaks occur repeatedly in different, non-overlapping 

locations. The memory trace thus consists of distinct patches, which pre-shape the activation 

field in distinct locations. We have argued above, that the boost-driven detection instability may 

amplify such pre-shape into full-blown, self-stabilized peaks. Figure 2.12 illustrates that this may 

lead to categorical responding, so that the memory trace becomes a mechanism for category 

formation. In the figure, the field is pre-shaped by a memory trace with sub-threshold hills at two 

locations. The imperative stimulus contains both a boost (a homogeneous input to the entire 

field) and a small, localized input that overlaps with one of the two pre-activated locations. The 

localized input is sufficient to bias the field toward selecting the location with which this input 

overlaps over the alternative location, but is not sufficient to drive peak formation and is weaker 

than input from the memory trace. As a result, the field generates a self-stabilized peak 

positioned over the location pre-activated by the memory trace rather than over the location 

specified by the localized input. Were we to vary the precise location of the localized input, the 

location of the self-stabilized peak would remain largely invariant, dictated by the pattern of pre-

shape. Only when the cue shifts enough to now bias the field toward selection of the alternate 

choice does the self-stabilized peak shift. In this sense, the field responds categorically to the 

imperative stimulus, the categories being the distinct locations at which the memory trace has 

been built up, pre-shaping the activation field.  

 
Figure 2.12 Categorical responding based on the memory trace: A field is pre-shaped (dashed line) by a memory trace at 
two locations, at which peaks of activation have been frequently encountered. Other regions of the field are at resting 
level. When a weak localized input is applied jointly with a boost to the field (grey solid line), a self-stabilized peak (black 
solid line) is generated at the pre-activated location that best overlaps with the small, localized input. Elsewhere, the field 
is suppressed below resting level, including at the precise location of the small, localized input. 
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The memory trace is an unsupervised form of learning, analogous to the Hebbian 

principle, in which the activation patterns experienced in a neural network change the network’s 

functionality. Unlike the Hebbian rule, the memory trace is not based on correlation, but only on 

activation itself. It could be viewed as a first order form of facilitation that drives “bias” units of 

activation variables, while the Hebbian rule is a second order form of facilitation that drives 

connections between inputs and activation variables. Continuous time versions of Hebbian 

learning rules analogous to the memory trace used here have been proposed from the earliest 

days of neural network modeling (Grossberg, 1970). In Chapter 14 we will unify Hebbian and 

memory trace learning through a formally analogous dynamics. Learning is covered extensively 

in third part of the book.  

 

2.6 Illustration: Dynamic Field model of perseverative reaching 

 

To illustrate how Dynamic Fields and the associated memory trace can be used to 

understand elementary forms of embodied cognition, we will take you now through an 

exemplary model, the DFT account for perseverative reaching in the A-not-B task. This example 

is particularly attractive, because it happens to involve all four basic instabilities, detection, 

selection, memory, and boost-driven detection, as well as the dynamics of the memory trace.  

 

The A-not-B task was first developed by Piaget as a measure of infants understanding of 

object permanence (Piaget, 1954). In the canonical task, infants watch as an experimenter hides a 

toy in one of two wells in the top of a box. After a delay, the experimenter pushes the box 

forward and allows the infant to search for the toy. In the first couple of “A”-trials, the toy is 

hidden in one well, the “A” location, and most infants successfully reach for it. Then the 

experimenter switches to a “B”-trial, hiding the toy in the other well at the “B” location. Young 

infants who make the A-not-B error reach to the A location on the B trials, despite having just 

seen the toy hidden at B. This only happens when a delay of a few seconds is imposed between 

hiding the toy and enabling the infant to reach. Around one year of age infants stop making the 

error and search correctly at B on the B trials. 

Smith and colleagues (1999) developed a variant of the A-not-B task in which instead of 

hiding a toy they simply waved a lid, put it down, and allowed the infant to reach. Infants 
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typically reach for one of the lids, lift it up, and sometimes put it into their mouths. In this 

version of the task there is no hidden toy. This toy-less version of the task is thus simply about 

how infants’ decide where to reach when there are two possible targets that afford reaching and 

grasping. 

Thelen and colleagues (2001) proposed a Dynamic Field model of the A-not-B task. The 

motor planning field represents the possible reaching directions and is governed by Equation 2.1 

with four sources of input illustrated in Figure 2.13. The evolution of the motor planning field 

over the course of an A trial is illustrated Figure 2.14 together with the time courses of three of 

the sources of input. Task input has two modes, each stimulating movement directions oriented 

toward the two locations of the two lids or objects. The specific input is centered on the 

movement direction toward the cued location and is only transiently presented while the cuing 

occurs. The memory trace reflects the history of activation of the field and pre-activates the 

movement direction of earlier reaches. These inputs are integrated over time in the motor 

planning field. At the start of the trial, before the cue is provided, only task input and input from 

the memory trace are present, together not strong enough to generate a self-stabilizing peak, so 

that the field remains in the sub-threshold state. When specific input arrives, it pushes the field 

through a detection instability. The field generates a peak at the cued location in the motor 

planning field. In the model of the young infants who make perseverative errors, we postulate 

that interactions in the field are not strong enough to sustain the peak after the specific input 

ceases at the end of the cueing action. Thus, during the delay the field goes through a reverse 

detection instability, the peak decays, and the field returns to the sub-threshold solution. At the 

end of the delay, the box is pushed into the reaching space of the infant. We model this by 

supplying an additive, homogeneous boost to the entire field (Schöner, Dineva, 2007). This 

moves the field through a boost driven detection instability, and a peak is generated at the 

location with most pre-activation, the A location. In other words, the field makes the decision to 

reach to A.  
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Figure 2.13 The A not B task entails a baby reaching for one of two objects (here, brown lids) presented on a movable 
box. The motor plan is represented by an activation field (green) defined over movement direction. A self-stabilized peak, 
here shown at the A location, drives reaching. Four sources of input to the field a sketched. Specific input arises (red) 
when attention is drawn to one location, for instance, by waving the object before setting it down on the box (here, at the 
A location). Task input (violet) reflects the visual layout of the scene, in which the two objects provide input at their 
respective locations. The memory trace (gray) pre-activates field locations at which peaks have previously been induced 
(here, the A location). The boost (cyan) broadly excites all field sites as soon as the box is pushed into the reaching range 
of the baby. 

 

 
Figure 2.14 Time courses of the inputs and the activation field of the model of perseverative reaching. This is a simulation 
for an A trial that models the behavior of young infants. The large frame shows the activation field defined over 
movement direction (horizontal axis) evolving in time (from front to back).  Task input (small panel on top left) and input 
from the memory trace (small panel bottom left) pre-shapes the field at the A (left) and B (right) locations. Transient 
specific input (small panel middle left) induces a peak early in the trial (peak on the left in front), which decays again 
after specific input has been removed. The homogeneous boost supplied late in the trial pushes activation up broadly. 
This induces a detection instability and a peak at the A location re-emerges. 

The first B trial for the model of young infants behavior is shown in Figure 2.15. At the 

start of the trial, the memory trace and the task input pre-shape the field such that there are two 

sub-threshold hills of activation, one centered over each hiding location. The peak at the A 

location, however, is stronger due to the input from the memory trace that has built up over the A 

trials. When the specific input stimulates the B location, a self-excited peak is built there, which 
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again decays once specific input ends. When the boost is provided at the end of the delay, the 

field again generates a peak at the A location, at which pre-activation is highest. The model thus 

makes the A-not-B error.  

 
Figure 2.15 Time courses of the inputs and the activation field of the model of perseverative reaching as in Figure 2.14, 
but now for a B trial of the “young” model. 

Thelen and colleagues (2001) modeled development by postulating that older infants had 

higher resting levels of the motor planning field. A higher resting level (ℎ in Equation 2.1) 

means that activation can more easily reach the threshold level of the sigmoid and interaction can 

be engaged more easily. The shift to higher resting level is thus a shift to stronger interaction, 

and may push the system through the memory instability, beyond which sustained peaks of 

activation in the absence of localized input become possible. Figure 2.16 shows the first B trial 

for such an “older” model. At the start of the trial, task input and memory trace pre-shape the 

field as before. Specific input at B induces a peak at B through the detection instability. When 

specific input ends, however, a sustained peak remains at the B location as the system is now in 

the regime that enables working memory. When the boost is supplied at the end of the delay, the 

peak at B is further strengthened and a correct reach to B is implied.  
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Figure 2.16 Time courses of the inputs and the activation field of the model of perseverative reaching as in Figure 2.14, 
but now for a B trial of the “old” model. 

This model has been used to make several predictions that have been tested empirically. 

One prediction is that spontaneous errors, in which infants reach to B on an A trial, will 

influence whether or not the infant makes the A-not-B error (Schöner, Dineva, 2007). This 

prediction probes a core property of DFT. The Dynamic Field model provides a process account 

for making the decision to reach to either A or B. A macroscopic neural state is formed when 

that decision occurs, a peak positioned over either location. This macroscopic neural event leaves 

a trace, literally, the memory trace, which then in turn may impact future decisions. Thus, in the 

model, noise may induce a peak to form at the B location rather than the A location on an A trial, 

inducing a spontaneous error (Dineva, 2005). That peak lays down a memory trace at the B 

location. This makes it more likely that the spontaneous error will be repeated on later A trials, 

and it reduces the probability that the infant will make the A-not-B error! On the first B trial, 

both A and B locations have some pre-activation from the respective memory traces there, so 

that the boost does not necessarily induce a peak at A.  

This is in contrast to many connectionist models, in which the selection of one out of 

multiple possible choices is often assumed to occur in a “read-out” process. For instance, an 

alternative connectionist model of the A-not-B error (Munakata et al., 1997) features two 

neurons that represent the two choices, one neuron standing for reaches to A, the other for 

reaches to B. The activation levels of the two neurons at the end of the delay are then interpreted 

as the probabilities with which either reach is realized. A spontaneous error occurs when the less 
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activated neuron is selected, on read out, to determine the outcome of the trial. Clearly, such a 

decision taken outside the model does not leave a memory trace and thus does not impact on 

future outcomes.  

Schutte, Spencer, and Schöner (2003) extended the Dynamic Field model of 

perseverative reaching to capture the behavior of older children in an A-not-B sandbox task. In 

the task, children watch as a toy is buried in a long, narrow sandbox. There is a short delay and 

then the child searches for the toy. In the first 6 trials the toy is buried at one location, the A 

location. In the last 3 trials it is buried at a second location, the B location. Even the youngest 

children tested in this task, 18-month-olds, would not make the A-not-B error in the canonical A-

not-B task. In the sandbox version, they dig for the toy on a B trial at a location that is strongly 

shifted toward the A location. Four-year-olds show this metric attraction to A and, under some 

conditions, even children as old as 6 years show the bias.  

An important difference between this task and the canonical A-not-B task is, of course, 

that no lids mark the hiding locations. Therefore, the location at which children search for the toy 

is a graded measure of their representation of the planned motor act. At the developmental stage 

of these children, it is plausible that they are already able to create a working memory of a 

planned action. The model should, therefore, be in the regime in which it may sustain peaks in 

the absence of localized input. Figure 2.17 shows simulations of the model on the first B trial. 

There is no task input. Specific input at the B location is transient early in the trial, and input 

from the memory trace around the A location reflects previous searches. Specific input induces a 

self-stabilized peak at the B location, which is sustained after specific input ends. When the A 

and B locations are sufficiently close to each other (top of Figure 2.17), the sustained peak at B is 

affected by the input from the memory trace at the A location. That input drives activation up in 

the flank of the peak that overlaps with the A location. This increases activation in the peak, so 

that inhibitory interaction compensates, suppressing the flank turned away from the A location 

more than the flank turned toward the A location due to the asymmetry of input. The peak is 

slowly attracted to the A location. This drift induces the metric bias toward the A location that is 

a signature of the A-not-B error. Note that the cause of this form of the A-not-B error is different 

from the canonical task. Rather than “forgetting” about the cue at the B location, working 

memory for the motor intention drifts over the delay toward the A location because there is no 

input at the B location to keep the peak anchored there. 
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Figure 2.17 Time courses of the inputs and the activation field of the model of the sandbox version of the A-not-B task, 
using the same conventions as Figure 2.14. Through the absence of task input in the sandbox (small panel top left in both 
parts of the figure), the peak is not locked in place. Top: A and B locations relatively close to each other. Bottom: A and B 
locations further removed form each other. Note that the memory trace is a little bit broader in the top portion of the 
Figure: the drifting peak leaves a broader memory trace. 

When the A and B locations are further apart (bottom of Figure 2.17), the sustained peak 

at B does not overlap the memory trace input at A. Pre-activation around the A location is 

suppressed by the inhibition from the peak at B, and that peak remains stationary at the B 

location. The model does not make an error.  

Both signatures are seen in experiment. Young children show strong metric bias, and the 

bias increases as the delay increases. When the A and B locations are further apart, metric bias 

toward A is reduced.  

 



 107 

2.7 Conclusion 

 

This chapter has introduced the core concepts of Dynamic Field Theory: (1) the 

continuous spaces of possible percepts, possible actions, and possible representations; (2) the 

time-space continuous activation fields and their neural dynamics; (3) self-stabilized activation 

peaks as units of representation and the instabilities through which peaks emerge and bring about 

detection and selection decisions, working memory, and categorization; (4) the dynamics of the 

memory trace as the simplest form of learning. In the next Chapter 3 we will show how DFT is 

firmly grounded in neurophysiology, essentially, by capturing the dynamics of population 

activity in the higher nervous system. 

That the units of representation in DFT are stable states is of central importance to DFT. 

In Chapter 4, the last of this first part of the book about the foundations of DFT, we will see how 

the stability of activation peaks enables linking representations to sensory and motor processes 

and thus supports the embodiment of cognition. Stability is linked to robustness: When the 

neural dynamics of an activation field changes, for instance, through coupling to other parts of a 

larger neural architecture, stable peak solutions resist change. This makes it possible that 

Dynamic Fields retain their dynamic regime, enabling detection, selection, and working memory, 

even as they are coupled into neural architectures. This will be a theme in the second part of the 

book. Stability is also critical for learning. In the present chapter we showed how instabilities of 

the sub-threshold states of Dynamic Fields can amplify small inputs or in homogeneities in the 

field into full, self-stabilized peaks. This changes what learning processes need to achieve. They 

need to nudge neural processes to self-stabilize new representations, rather than learn such 

representations completely. This theme will be important in the third part of the book.  
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Exercises for Chapter 2 

The interactive simulator launcherOneLayerField_preset solves numerically 

the Dynamic Field Equation 2.1 with added random noise, repeated here in full detail: 

𝜏𝑢 𝑥, 𝑡 = −𝑢 𝑥, 𝑡 + ℎ + 𝑠 𝑥, 𝑡 + 𝑘 𝑥 − 𝑥! 𝑔 𝑢 𝑥!, 𝑡 𝑑𝑥! + 𝑞𝜉(𝑥, 𝑡)                        (A2.1)  

where the sigmoidal function is given by 

𝑔 𝑢 =
1

1+ exp  (−𝛽𝑢) .                                                                                                                                                                            (A2.2)  

The interaction kernel is given by 

𝑘 𝑥 − 𝑥! =
𝑐exc
2𝜋𝜎exc

exp −
𝑥 − 𝑥! !

2𝜎exc!
−

𝑐inh
2𝜋𝜎inh

exp −
𝑥 − 𝑥! !

2𝜎inh!
− 𝑐glob.              (A2. 3)  

Note that in this formulation of the kernel, the amplitudes of the two Gaussian components are 

normalized, such that a change in the interaction widths 𝜎 does not change the total strength of 

the interaction. Localized input is supplied in the form 

𝑠 𝑥, 𝑡 = 𝑎! exp −
𝑥 − 𝑝! !

2𝑤!!!

.                                                                                                                                              (A2.4)    

Sliders at the bottom of the GUI provided by the program enable you to control the widths, 𝑤!", 

locations, 𝑝!", and amplitudes, 𝑎!", of three such inputs (𝑖 = 1,2,3). You also have sliders to vary 

the parameters, ℎ, 𝑞, 𝑐exc, 𝑐inh, and 𝑐glob. Additional parameters can be accessed via the 

Parameters button. Pre-defined sets of parameter values can be loaded by clicking on the 

pop-up menu in the bottom right of the GUI, highlighting the appropriate choice, and then 

clicking the Select button. 

The state of the field is shown in the top set of axes in the GUI. The blue line shows the 

current distribution of activation, 𝑢(𝑥, 𝑡). The green line is the input shifted by the resting level, 

ℎ + 𝑠(𝑥, 𝑡), and the red line shows the field output (sigmoidal function of the field activation) at 

each position, 𝑔(𝑢(𝑥, 𝑡)), scaled up by a factor of 10 for better visibility. In the bottom set of 

axis, the shape of the interaction kernel is displayed. Note that the kernel is plotted over distances 

in the feature dimension, with zero at the center of the plot. These interaction pattern is then 

applied homogenously for all positions in the field. 

The goal of this exercise is to explore and reproduce the instabilities discussed in the text. 

 



 112 

Exercise 1: Detection instability 

This works best with the pre-defined parameter set “stabilized”. Start out with the field in 

the resting state (the default) and now introduce a localized input by increasing one of the 

stimulus amplitudes. For small input strengths, observe how the field (blue line) tracks the 

changing input (green line); this is the sub-threshold solution.  When activation first reaches zero 

from below, the field output at that location rises (red line). Observe how at this point, very small 

changes in input strength lead to a new solution, the self-stabilized peak, which has more 

activation at its peak than input (blue line exceeds green line).  

a) Convince yourself that up to the detection instability, the system is bi-stable, by lowering 

input again to a level at which you saw previously the sub-threshold solution. You can 

reset the field to the initial condition by pressing the Reset button. You will find that 

from the resting level the field converges to the sub-threshold solution again.  

While a self-stabilized peak stands in the field, move the inducing input laterally with the 

slider that changes the location of the input function. If you do this slowly enough, the 

peak will track input. If you do this too fast, the peak disappears at the old location in a 

reverse detection instability and reappears at the new location in a detection instability.  

After having induced a peak again by increasing localized input, observe the reverse 

detection instability by lowering the input strength gradually. Close to where activation 

reaches zero from above you may observe the collapse of the self-stabilized peak and a 

quick relaxation to the sub-threshold solution. 

 

Exercise 2: Memory instability 

Vary the resting level, ℎ, increasing it step-wise. At each level, induce a peak as in the 

first exercise and then try to destabilize it through the reverse detection instability by returning 

localized input strength to zero. At a critical value of the resting level, you will find that the peak 

decays slowly, then not at all after you have returned the localized input strength to zero. This is 

the memory instability, leading to a regime in which peaks can be sustained without localized 

input. 

a) You can load a convenient parameter set within the memory regime by selecting the pre-

defined parameter set “memory”. Induce a peak, remove localized input, then reintroduce 

such input in a location close to the sustained peak. In which way is the peak updated?  
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Do the same, but now reintroduce input at a location far from the sustained peak. What 

happens?  

 

Exercise 3: Selection 

Choose the pre-defined parameter set “selection”. Provide two localized inputs by 

increasing two stimulus amplitudes to intermediate values (between 6 and 8). Observe how only 

the location first receiving input develops a peak.  

a) Increase the input strength at the second location until you observe the selection 

instability. 

Return that input strength to the original values. Convince yourself that the system is bi-

stable. 

Make the symmetric exercise, increasing the input strength at the first location.  

Adjust two input strengths to be exactly the same, and make sure that there is some random 

noise in the field (𝑞 > 0). Use the Reset button to restart the field from the resting 

level.  Observe how one of the two locations with input is selected. Repeat several times 

and convince yourself that selection is stochastic. 

 

Exercise 4: Boost-induced detection 

Supply small sub-threshold input that is not sufficient to induce peaks at three locations. 

Then slowly increase the resting level until a detection instability is triggered somewhere in the 

field. Observe how a peak is generated at one of the three locations that have small input. Try out 

how small you can make that localized input and still observe the peak at one of the three 

locations. You can do this with or without noise. 
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[Begin Box 2.1] 

 

Box 2.1 Convolutions [with Sebastian Schneegans] 

 

Activation fields are continuous in space, but when we numerically solve the integro-

differential equations of DFT, we approximate continuous space in discrete steps, just as we did 

for continuous time (Box 1.4). This box explains how the convolution of the field with the 

interaction kernel is computed, which gives us the opportunity to help create better intuitions 

about the meaning of the convolution. We are talking about this contribution to the neural 

dynamics, Equation (2.1): 

[𝑘 ∗ 𝑔(𝑢)](𝑥) = 𝑘 𝑥 − 𝑥! 𝑔 𝑢 𝑥!, 𝑡 𝑑𝑥!.                       (B2.1)  

where 𝑘 is the interaction kernel listed in Equation (A2.2) and 𝑔 is the sigmoidal threshold 

function of Equation (A2.3). The interaction kernel is analogous in DFT to synaptic weights in 

neural networks. These would be the weights with which “neurons” at locations, 𝑥!, project onto 

the “neuron” at location 𝑥. The integral has a particular form. It is a function of one argument, 𝑥, 

and integrates over the product of two functions. One function depends only on the integration 

variable, 𝑥!, the other depends on the difference between the outer variable, 𝑥, and the 

integration variable, 𝑥!. Integrals with this form are called convolutions. The asterisk in the new 

notation, [𝑘 ∗ 𝑔(𝑢)](𝑥), stands for “convolve”, here, convolve the kernel, 𝑘, with the function, 

𝑔(𝑢).  

We haven’t marked the range over which the integral extends, implying that it extends 

over the entire space spanned by the variable, 𝑥!. In some cases, such as for spatial memory, this 

may be a linear space, e.g., the spatial positions along a line that may, a priori, extend to infinity 

in both directions. In other cases, this may be a circular space, e.g., the space of heading 

directions, in which case it extends over the complete circle. In either case, we would like the 

boundary of the space over which the activation field is defined to play no particular role, as 

nothing is known in most cases that we model, about boundary effects. Your visual field, for 

instance, is limited, but the boundaries play no particular role. Vision just “peters out” near the 

boundary.  
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When we compute the integral of Equation (B2.1) concretely, we need to commit to a 

particular range of integration and need to address the boundary issue. This is true, in particular, 

when we compute the integral numerically. The best way to make the boundaries “neutral” is to 

impose periodic boundary conditions on the activation field: Activation at the left boundary of 

the field is equal to activation at the right boundary of the field. This is natural for circular space, 

in which there is no boundary, so the cut we make when we compute the integral should not 

matter. It is useful also for spaces at the boundaries of which activation peters out. The periodic 

boundary condition is the most neutral, in a sense. And if activation values are low near the 

boundary, the precise boundary condition doesn’t matter.   

How do we work with periodic boundary conditions? Figure 2.18 illustrates the key idea. 

On top you see a field over a finite range, here from 0 to 180 degrees. What is plotted is already 

the supra-threshold activation field, 𝑔(𝑢 𝑥! ), as a function of 𝑥!. The interaction kernel, plotted 

in the third row, has the same size, ranging from -90 to +90 degrees. Now let’s say we try to 

compute the convolution integral for a particular value, 𝑥, of the outer variable, say 𝑥 = 50 deg 

as suggested in the figure. In the graphical depiction of this computation, we have to align the 

center of the interaction kernel with this point in the field. The following problem arises: The 

kernel extends on the left into portions of the field that lie outside the boundaries. And the field 

extends on the right beyond the reach of the kernel. We can solve this problem by expanding the 

space over which the supra-threshold field is defined. This is illustrated in the top two rows. We 

simply copy the left half of the field and attach that half on the right, and copy the right half of 

the field and attach it on the left. This imposes periodic boundary conditions on the center part, 

which is the true field we are trying to model. And it now makes values available to those parts 

of the kernel or of the field that reached beyond the boundaries. On bottom of the figure you see 

the matching parts of kernel and supra-threshold field plotted on top of each other. Computing 

the convolution now simply consists of multiplying these two curves with each other at each 

field location, and then integrating across the shown range.  

This become even clearer when we replace the mysterious concept of “integrating” with 

“summing” by going to a discrete numerical approximation. On the computer, we sample the 

continuous field dimension, 𝑥!, by discrete steps in space,  𝑥! = 𝑖  𝛥𝑥, where 𝑖 = 0,1,2,… ,𝑛 and 

𝑛 = 𝐿/𝛥𝑥 (where we choose 𝛥𝑥 such that 𝑛 is an odd integer number). Here we have assumed 

that the range of 𝑥! is [0, 𝐿] (𝐿 = 180 in the figure). The convolution is then approximated as 
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𝑘 ∗ 𝑔 𝑢 𝑥! = 𝑘 𝑥! − 𝑥! 𝑔 𝑢 𝑥!

!!!!!

!!!!!

                    (B2.2) 

where 𝑙 = (𝑛 − 1)/2 is the half-width of the kernel. The sum extends to indices outside the 

original range of the field (e.g., for m=0 at 𝑖 = −𝑙). But that doesn’t cause problems because we 

extended the range of the field as shown in Figure 2.18.  

Note again that to determine the interaction effects for the whole field, this computation 

has to be repeated for each point 𝑥!. In COSIVINA all these problems have been solved for you, 

so you don’t need to worry about figuring out the indices in Equations like B2.2 ever again!  

[End Box 2.1] 

 
Figure 2.18 Top: The supra-threshold activation, 𝒈(𝒖(𝒙!)), of a field is shown over a finite range (from 0 to 180 deg). 
Second from top: The field is expanded to twice that range by attaching the left half of the field on the right and the right 
half on the left, imposing periodic boundary conditions. Third from top: The kernel has the same size as the original field 
and is plotted here centered on one particular field location, 𝒙 = 𝟓𝟎 deg. Bottom: The matching portions of supra-
threshold field (red line) and kernel (blue line) are plotted on top of each other. Multiplying the values of these two 
functions at every location returns the black line. The integral over the finite range of the function shown in black is the 
value of the convolution at the location 𝒙 = 𝟓𝟎. 
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