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Abstract. Estimation of optical flow is required in many computer vision appli-
cations. These applications often have to deal with strict time constraints. There-
fore, flow algorithms with both high accuracy and computational efficiency are
desirable. Accordingly, designing such a flow algorithm involves multi-objective
optimization. In this work, we build on a popular algorithm developed for real-
time applications. It is originally based on the Census transform and benefits
from this encoding for table-based matching and tracking ofinterest points. We
propose to use the more universal Haar wavelet features instead of the Census
transform within the same framework. The resulting approach is more flexible,
in particular it allows for sub-pixel accuracy. For comparison with the original
method and another baseline algorithm, we considered both popular benchmark
datasets as well as a long synthetic video sequence. We employed evolutionary
multi-objective optimization to tune the algorithms. Thisallows to compare the
different approaches in a systematic and unbiased way. Our results show that the
overall performance of our method is significantly higher compared to the refer-
ence implementation.

1 Introduction

Optical flowcan be defined as the “the distribution of apparent velocities of movement
of brightness patterns in an image” [1], which result from the projection of a 3D scene
onto an image plane. Estimating optical flow is common to manycomputer vision ap-
plications since the resulting flow field is very valuable, amongst others, for detection
and tracking of objects, deriving structure from motion, estimation of ego-motion, and
collision avoidance. These problems often arise in the context of real-world applica-
tions (e.g., robotics, surveillance, automotive) where hard time constraints have to be
met. Therefore, there is a special interest in flow algorithms that offer good accuracy
while being computationally efficient.

In this study, we propose to employ evolutionary multi-objective optimization for
tuning flow algorithms with respect to these two partially conflicting objectives. This
allows analysis of different possible trade-off solutionsand therefore systematic com-
parisons.

We consider afeature-basedalgorithm [2], which was designed for driver assistance
systems. This approach combines computational efficiency,high accuracy, robustness,
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and ease of implementation. The Census transform [3] is usedfor the description of
small image patches. This allows for table-based matching and tracking of interest
points over time, resulting in a sparse flow vector field. In this work, we show how
to modify the algorithm in order to make it more flexible and powerful. We suggest to
replace the Census transform by Haar wavelet features, which are state-of-the-art for
real-time computer vision.

This article is organized as follows. In the next section, wegive an overview over
related work. In section 3, the reference algorithm is introduced. Section 4 presents our
approach. Multi-objective optimization is introduced in section 5. Our experiments are
described in section 6, finally the results are discussed.

2 Related Work

For a detailed overview and comparison of many different flowalgorithms, we refer to
Barron et al. [4] and Baker et al. [5] and references therein.Here, we focus only on
approaches closely related to our method, namely real-timecapable and feature-based
flow algorithms.

Lucas and Kanade [6] proposed an iterative method that was adapted by Bouguet [7]
for pyramid based feature tracking. His implementation is publicly available in the
OpenCVlibrary3. We consider this algorithm as a baseline for our experiments. Tomasi
and Kanade [8] proposed tracking of features obtained basedon eigenvalues of small
image patches. Optical flow algorithms based on this principle are fast and accurate [9].
Similar results can also be obtained with correlation-based approaches [10], or block-
matching algorithms [11]. Stein proposed the algorithm that serves as starting point for
our method [2]. It uses the Census transform to generate signatures for image patches
that can be used likehash valuesto handle interesting points. This allows for very effi-
cient temporal analysis. This approach is described in moredetail in the next section.

The local, feature-based approaches mentioned above calculate sparse flow vector
fields. While these algorithms are able to handle large displacements, they may produce
noisy results depending on local structure. It is essentialto attach great importance to
temporal integration and evaluation of pixel neighborhoods.

Dense optical flow can be obtained based on the variational method proposed by
Horn and Schunck [1]. Implementations of this basic technique are likely to fail for large
displacements and for small moving objects because of the smoothness constraints.
Moreover, such implementations typically are not well suited for real-time applications.
However, different improvements and extensions have been proposed recently which
address these issues [12–15].

3 Original Method

The Census transform as proposed by Zabih and Woodfill [3] is based on the3 × 3
neighborhoodP of a pixel. We denote the center pixel byP0 and the eight ones sur-
rounding it byP1, . . . , P8. The signatureξ(P) is calculatedbitwise, where thei-th digit

3
http://sourceforge.net/projects/opencvlibrary



3

ξi is set to0 or 1 depending on the intensities ofPi:

ξi(P0, Pi) =

{

0, Pi > P0

1, Pi ≤ P0

. (1)

This is extended in [2] in order to distinguish “similar” pixels by introducing a new
parameterǫ and computing the signature as

ξi(P0, Pi) =











0, P0 − Pi > ǫ

1, |P0 − Pi| ≤ ǫ

2, Pi − P0 > ǫ

. (2)

Additionally, Stein proposed to consider larger neighborhoods and therefore not only
pixels directly adjacent to the center. For his experiments, he used signatures with up to
20 digits.

This signature is computed for every pixel in a camera image.The positions of all
image patches with signatures in framet are stored in a tableTt(s). Flow hypotheses
between framest−1 andt are computed by considering all pairs of entries fromTt−1(s)
andTt(s) for all relevant signaturess. In this step, two restrictions are considered: The
lengths of flow vectors can be limited and the relative brightness difference between
the center pixels is restricted to avoid bad flow hypothesis.All resulting hypotheses in
framet are stored in a listHt.

v0

v1

v2

v3

v4

Fig. 1. Temporal analysis in framet. v1, . . . v4 from Ht−1 are possible predecessors forv0 from
Ht. The vectorv1 is not valid because it is outside the search radius,v2 because of the angular
difference tov0, andv4 because of the relative length difference.v3 is the only valid predecessor.

To increase speed and robustness of the approach, not all possible signatures have to
be processed. Stein proposed to use a so-called black-list to exclude signatures that code
for infeasible image patches (e.g., homogeneous image regions or regions related to the
aperture problem). Furthermore, lists table entriesTt(s) with more thanmdp (maxi-
mum discriminative power) elements are ignored for the calculation of flow hypothesis
because the number of possible hypothesis increases exponentially.

The hypotheses calculated between two frames are generallynot unique and there-
fore not reliable. In order to compute final flow vectors for framet, longer-term tempo-
ral analysis is performed based onHt−1 andHt. For each hypothesesh in framet, it is
checked if there was another hypothesis from framet−1 with similar length and similar
orientation ending approximately where the new vector starts. Figure 1 illustrates this
analysis. Finally, reliable flow vectors are obtained from current hypotheses which have
more thanpmin predecessors.
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4 Proposed Algorithm

In this section, we present our new flow algorithm. It is basedon the one described in
the previous section but is more flexible. In particular, we show that it can optionally
allow for sub-pixel accuracy.

4.1 Haar features for index-based matching

Haar wavelet features are state-of-the-art for real-time computer vision. Their popu-
larity is mainly based upon the efficient computation using the integral imagepro-
posed by Viola and Jones [16]. Haar wavelet features were successfully applied in many
computer vision applications, especially for object detection, classification, and track-
ing [16–19]. Figure 2 shows examples of six basic types of Haar Wavelet features. Their
responses can be calculated with 6 to 9 look-ups in the integral image, independently
of their absolute sizes.

It stands to reason to consider Haar wavelet features also for the calculation of opti-
cal flow. They could offer a corporate preprocessing for evenmore different applications
and therefore serve as a universal basis for real-time computer vision systems.

Fig. 2. Basic types of Haar wavelet features.

In the original flow algorithm, a feature-based index is obtained for every pixel
through the Census transform. We calculate a similar value based on responsesR of
a bunch of different Haar wavelet features centered on that pixel. The signature for a
pixel is calculated as

ξi(R) =











0, Ri < −ǫi

1, |Ri| ≤ ǫi

2, Ri > ǫi

, (3)

whereǫi now are individual thresholds used for discretization of the continuous feature
responses. We further extend this by allowing for more than oneǫ per feature. For the
example of two thresholds,ǫ(0)i andǫ

(1)
i , the discretization is

ξi(R) =































0, |Ri| ≤ ǫ
(0)
i

1, ǫ
(1)
i > Ri > ǫ

(0)
i

2, Ri > ǫ
(1)
i

3, −ǫ
(1)
i < Ri < −ǫ

(0)
i

4, Ri < −ǫ
(1)
i

. (4)
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The temporal analysis (i.e., interest point matching and tracking) can be done analo-
gously to the original approach. The Census-based method isembedded in our approach
as a special case, because the definition of Haar-like wavelets allows for regions with
size of a single pixel. That is, the calculations for the Census transform can be modeled
with Haar wavelet features. Of course, in this case, calculation of the integral image
would not lead to any gain in speed.

4.2 Optional sub-pixel refinement

Using Haar wavelet features allows to perform flow computation with sub-pixel accu-
racy by employing an optional refinement step: The position of the end points of all flow
hypothesis in framet are refined in a way that the feature responses are most similar to
the responses at the start point in framet − 1.

We propose to performbilinear interpolationin the radius of one pixel around the
original (pixel-accurate) end point in order to find the bestmatching position. The res-
olution between pixels can be chosen arbitrarily. For our experiments, we used steps of
one-tenth pixel. To calculate matching costsc for two feature vectorsR andS with n
components each we used thesum of absolute differencesc (R, S) = |R1−S1|+ |R2−
S2| + . . . + |Rn − Sn|.

The proposed sub-pixel refinement requires that the raw feature responses are either
stored for start points of all correspondence hypothesis orthat they are calculated anew
only for final flow hypothesis. It depends on the problem at hand which of these two
solutions is preferable in terms of efficiency. Here, we recalculate feature responses
when needed for refinement.

5 Multi-objective optimization

In our experiments, we evaluate the performances of variousapproaches on different
datasets. For a fair and meaningful comparison, all algorithms must be setup “as good
as possible”. Adapting parameters in such cases is typically done manually in a more
or less systematic way. We propose to use rely on evolutionary optimization instead. It
allows to do a more extensive search in an impartial manner.

We give a short overview over evolutionary multi-objectiveoptimization with an
emphasis on sorting candidate solutions in section 5.1. Thevariation of candidate solu-
tions is described in section 5.2. Of course, results obtained by automatic optimization
have to be watched as critically as results obtained by manual tuning. We discuss these
issues in section 6.3.

5.1 Evolutionary multi-objective optimization

Optimizing parameters of sparse optical flow algorithms is not straightforward as their
performance cannot be quantified by a single measure: maximization of the number
of flow vectors and maximization of their mean accuracy are two conflicting goals.
Therefore, we suggest to performmulti-objective optimization(MOO, vector optimiza-
tion) [20]. The goal of vector optimization is to find a diverse setof solutions that
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approximates the set ofPareto-optimaltrade-offs. A solution is Pareto-optimal if it is
not dominatedby another solution. In our application a solution is not dominated if on
the one hand no other solution exists with more flow vectors and at least as good accu-
racy and on the other hand each solution with better accuracydoes not have more flow
vectors.

We consider evolutionary MOO. The crucial step in this process is selection. Here,
we adopt the selection procedure from the MO-CMA-ES [21] forcomparing and sorting
candidate solutions to determine the parents for the next generation.

For the problem at hand, the vector valued quality of a solutiong is given byΦ(g) =
(n, 1/e), wheren is the mean number of flow vectors ande is the mean endpoint error as
proposed by [5]. Both objectives are to be maximized. A solution g (weakly) dominates
another solutiong′ iff it is better in one of the two objectives and is not worse inthe
second.

Based on this concept, each candidate solutiongi in a setM = {g0, . . . , gn} can be
assigned a rankr(gi) that expresses its level of non-dominance.The setM is partitioned
into subsetsM1, M2, . . . , Mnlevels. Candidate solutions inM1 are not dominated by any
other solution inM , solutions inM2 are only dominated by members ofM1, solutions
in M3 are only dominated by solutions inM1 ∪ M2, and so on. The rankr(g) of a
candidate solutiong is defined as the index of the set containing it.
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Fig. 3. The concepts of hypervolume and contributing hypervolume.Left: Dominated hyper-
volume of solutiong and dominated hypervolume of setM . Right: Contributing hypervolume
of g ∈ M and dominated hypervolume of setM\ {g}.

A second criterion is needed in order to sort solutions having the same rank in-
dexr. We do this based on theircontributing hypervolumeas proposed in [21–23]. The
dominated hypervolumeV(g) of a candidate solutiong is defined as the volume of all
points in the objective space (hereR

2
≥0) that are dominated byΦ(g). The dominated

hypervolume of a setMi is defined as the volume of the union of the dominated hy-
pervolumes of all points inMi. The contributing hypervolumeVcont

Mi
(g) for a candidate

solutiong ∈ Mi is given by the share of the total dominated hypervolume thatis lost
if the solution is removed:Vcont

Mi
(g) = |V(Mi) − V(Mi\ {g})|. Figure 3 illustrates this

concept.
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A setM∗ only containing non-dominated solutions is called aPareto set, the cor-
responding vectors{Φ(g) | g ∈ M∗} a Pareto front. After optimization,M∗ represents
different possible trade-offs. This does not only give insights into the characteristics of
the problem at hand, but can be useful in practice, for instance, to adapt the behavior of
an application online.

5.2 Mutating solutions

In our optimization problem, we allow the number of features, their individual parame-
ters, and the flow algorithm parameters to vary. This calls for a variable length represen-
tation. We use an encoding and variation operators resembling those proposed in [18].
In the following, we briefly outline the tailored mutation procedure using the example
of a Haar feature based algorithm.

Each time when mutating an individual, tossing a coin decides whether the param-
eters of the flow algorithm are varied or the feature set. The flow algorithm parameters
comprisemdp, dint, lmax, r, dang, dl , andpmin (see Table 1). They are mutated using
standard operators.

If the feature set is mutated, it is decided whether the number of features is changed
or the individual features are varied. The former happens with a probability ofpsize =
0.20. Features are then added or removed with equal probability.New features are cre-
ated with a random type (see Figure 2) and width and height each between2 and12.

Alternatively, with a probability of1 − psize = 0.80, we mutate the features. Each
Haar feature has real-valued, integer, and nominal parameters. The mutation operators
changeSize, changeType, andmutateEpsilonsare applied to each Haar feature with a
probability of pmut = 0.50 each. InchangeSize, the width and height of the feature
are changed independently by+1 or −1. In changeType, a new random basic type is
assigned to the feature. InmutateEpsilons, the thresholdsǫ(0)i , ǫ

(1)
i , . . . are mutated. This

also includes mutating the number of thresholds used. We allowed up to three of these
thresholds per feature.

A repair mechanism ensures that only feasible solutions aregenerated: For each
parameter, we defined a minimal and maximal value according to their meaning. For
example, it is not reasonable to have negative values for differences (e.g.,dint andr) or
Haar features smaller than2 × 2 pixels.

6 Experiments

We compare the original Census based and our Haar wavelet based approach in two
different scenarios. As a baseline for comparison, we also evaluate the performance of
the pyramid based Lucas and Kanade algorithm [7] usinggood features to track[9]
from OpenCV. The setup of our experiments is described in section 6.1, the results in
section 6.2. We discuss these results as well as crucial points of our experiments in
section 6.3.
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Fig. 4.Frames out of the Middlebury datasets considered for experiments.

6.1 Setup

The first comparison is performed on Middlebury benchmark datasets4. The Middle-
bury benchmark [5] was designed to evaluate only dense flow algorithms. However,
there are some additional datasets available that we can usefor evaluation:Rubber-
Whale, Hydrangea, Grove2, Grove3, Urban2, andUrban3. All these sets consist of
eight frames and evaluation is performed only for the last frame in each case. We use a
common parameter set for all sequences. Figure 4 shows threeexample frames out of
the datasets.

The second comparison is performed on anEnpedabenchmark sequence5. Long
synthetic video sequences have recently been introduced byVaudrey et al. [24]. We con-
sider the second sequence which has complex textures and hard shadows. Optimization
is performed on frames 80 to 180. The subsequent frames are used after optimization to
test how the optimized solutions generalize. Figure 5 showsthree example frames out
of the sequence.

Fig. 5. Frames out of the synthetic Enpeda sequence considered for experiments.

For the Middlebury as well as the Enpeda benchmark, we perform MOO for all three
approaches. For theOpenCValgorithm, there are 8 parameters to be optimized. For the
Census based as well as the Haar feature based approach, we optimize the features used
and the algorithm parameters. As the temporal analysis is the same in both methods,
many parameters that are optimized are identical, see Table1. For the Census based ap-
proach, we used a setup with12 digits and therefore additionally optimized individual

4
http://vision.middlebury.edu/flow

5
http://www.mi.auckland.ac.nz/index.php?option=com_content&view=article&id=52
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thresholds for each digit. For the new approach based on Haarfeatures, we addition-
ally optimized the thresholdsǫ(0)i , ǫ

(1)
i , . . ., types, and sizes of features as described in

section 5.2.

Table 1.Parameters of the flow algorithm used.

Description unit

Maximum discriminative power mdp

Maximum intensity difference dint [%]
Maximum vector length lmax [pixel]
Radius for predecessors r [pixel]

Maximum angular difference dang [◦]
Maximum length difference dl [%]

Minimal number of predecessorspmin

For the Census based and the Haar feature based approach, we do not use a blacklist
as proposed in the original work. The setup of such a list would make statistical analysis
necessary, which would be performed after optimization andonly improve the results.
As this is the same for both methods, no bias is introduced in our comparison.

As framework for the evolutionary multi-objective optimization, we use theShark
open-source machine learning library [25], which is freelyavailable6. It provides imple-
mentations of efficient algorithms for computing the (contributing) hypervolume used
for selection.

We performed 5 independent optimization runs for each experiment. In every opti-
mization run, we considered1000 generations. We used elitist(µ+λ)-selection. In each
generation,λ = 15 new candidate solutions result from recombination and mutation
of µ = 15 parent solutions. We made sure that all parameters remain within a reason-
able domain. Solutions generated during optimization which are not feasible regarding
our application, namely solutions having less than500 flow vectors or mean endpoint
error larger5 pixels, are discarded. We selected the best solutions (according to the
definitions from Sec. 5.1) from all runs in order to obtain final sets for comparison.
For further details, we refer to the source code and its documentation which is made
publicly available.

6.2 Results

The resulting sets of optimized solutions for the Middlebury datasets are shown in Fig-
ure 6. They visualize different trade-offs betweenΦ1, the mean number of flow vectors,
and1/Φ2, the mean endpoint error.

Using the original Census based approach, it was possible tofind up to 22, 286
flow vectors per frame (with mean endpoint error of4.95). Using the new Haar feature
based approach, it was possible to find up to46, 999 flow vectors per frame (with mean
endpoint error of2.89). Sub-pixel refinement allowed to further increase the accuracy

6
http://shark-project.sourceforge.net
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Fig. 6. Results of optimization for Middlebury datasets: Pareto fronts for Census based approach
(triangles), Haar feature based approach with pixel (squares) and sub-pixel (circles) accuracy, and
OpenCValgorithm (diamonds).

of our approach. TheOpenCVapproaches allowed to find up to13, 669 flow vectors
per frame (with mean endpoint error of1.46).
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Fig. 7. Results of optimization for Enpeda sequence: Pareto frontsfor Census based approach
(triangles), Haar feature based approach with pixel (squares) and sub-pixel (circles) accuracy,
andOpenCValgorithm (diamonds).

Figure 7 shows the Pareto fronts after optimization for the Enpeda sequence. The
OpenCValgorithm allowed to find up to12, 415 flow vectors. For the Census- based
approach the maximum number of flow vectors found was13, 545 and for the Haar fea-
ture based approach51, 434. Sub-pixel refinement improved the mean endpoint error in
our approach by0.4 pixels on average. Optimized Haar wavelet features for two differ-
ent solutions are shown in Figure 8. Table 2 shows the optimized parameter settings for
different trade-offs for both approaches.

The generalization performances of the solutions on the rest of the sequence are
shown in Figure 9. The Census based approach and theOpenCValgorithm performed
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Fig. 8.Optimized feature sets from two different solutions. The features have sizes of (a)11×11,
5×11, 12×12, 12×10, 11×12, and7×7. (b) 12×11, 3×11, 13×13, 12×10, 13×13, and11×11.
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Fig. 9. Generalization results of optimized solutions on the rest of the Enpeda sequence: Cen-
sus based approach (triangles), Haar feature based approach with pixel (squares) and sub-pixel
(circles) accuracy, andOpenCValgorithm (diamonds).

significantly better in the test than in the training. Therefore one can conclude that
this latter part of the sequence is “easier”. The Haar feature based approach performed
slightly better for solutions up to4×104 flow vectors and slightly worse for solutions
with more flow vectors.

Table 2.Optimized parameters from different trade-off solutions for the Enpeda sequence.

Φ1 1/Φ2 mdp dint lmax r dang dl pmin

Census based
502 0.57 33 1.2 43 0.8 0.32 0.11 2
6569 2.03 70 0.5 40 5 0.05 0.1 1
13545 3.72 70 1 45 5 0.23 0.1 1

Haar feature based
521 0.53 33 0.6 80 0.6 0.23 0.1 3

12264 0.93 70 1.6 40 1.6 0.05 0.15 3
25940 1.63 70 2 40 5 0.05 0.1 2
39709 2.12 70 2 40 3.3 0.05 0.1 1
51435 4.03 69 2 46 4.6 0.15 0.74 1

The optimized solutions for the Census based approach result in runtimes between
200 ms and400 ms on a standard desktop PC with2.2 GHz . The solutions of the Haar
wavelet based approach result in runtimes between250 ms and600 ms. It is not sur-
prising that these runtimes are comparable as the implementation of temporal analysis
is identical for both approaches. The optimized solutions for theOpenCValgorithm
resulted in runtimes between200 ms and1100 ms.
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Fig. 10.Camera image from the Enpeda sequence (left) and resulting flow field (right), final flow
vectors shown in black.

A typical result of the new Haar feature based flow algorithm is shown in Figure 10,
where an optimized solution was considered that combines very small mean endpoint
errors and an adequate number of flow vectors. This setup is suitable for real-world
applications in the context of driver assistance systems, for example, for object seg-
mentation and tracking, collision avoidance, or ego-motion estimation.

6.3 Discussion

In our experiments, the three algorithms were optimized in the same way for the same
scenarios. The Census based and the new Haar feature based approach share most of
their parameters because the temporal analysis is the same.Therefore the significant
differences in performance shown in our experiments solelyresult from the different
feature basis. The Haar feature based approach is more powerful in general: The mean
endpoint errors were the smallest for every number of flow vectors in all experiments,
especially when the optional sub-pixel refinement was performed. Our method addi-
tionally allowed to have a significantly higher number of flowvectors compared to the
other approaches, in particular almost the fivefold amount in the Enpeda benchmark.

One could argue that the Haar feature based approach has the most degrees of free-
dom (as feature types and sizes can be adapted) and thereforeprofits most from opti-
mization. While this might be true, it is exactly this flexibility that makes the approach
particularly attractive. Despite this flexibility, most ofthe optimized solutions showed
good generalization, there was noover-fitting.

The execution speed was not an objective in the optimizationperformed here, there-
fore the solutions found lead to comparatively slow execution speed, still most of them
meet real-time constraints. All optimized solutions for the new method use 6 Haar fea-
tures which was the maximal allowed number in the optimization. Nevertheless, the
algorithm can generally be used in real-time applications requiring higher frame rates,
especially as the table-based matching and the temporal analysis are suited very well
for implementation on embedded hardware.

Evaluation of different optimized solutions also allows for statements regarding on
how the parameters for the proposed flow algorithm should be set. Most of the opti-
mized features are relatively large,85 % in the final solutions have widths and heights
larger than10 pixels. This shows that considering relatively large neighborhoods is
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preferable in the given framework. Using Haar features, this is possible without any
drawbacks regarding computational cost. This is an advantage over other filters. Most
parameters are correlated to the trade-off between high number of flow vectors and high
accuracy in some degree. Nevertheless, dependencies are manifold and the interplay is
complex. Therefore, manual adjustment (e.g., for a fixed desired trade-off) is challeng-
ing and evolutionary optimization has shown to be a valuabletool.

Appropriate parameters are problem class specific. They clearly have to be differ-
ent for an automotive application (with many relatively large displacements) and for
entrance hall surveillance. Therefore the parameters found here are well suited for the
scenarios considered but have to be changed for other contexts. This can easily be done
for the proposed method.

7 Conclusion

Many computer vision applications benefit from fast and accurate estimation of optical
flow. We considered a popular feature-based method which relies on the Census trans-
form and table-based matching. We proposed to employ Haar wavelet features within
this framework in order to make it more flexible and powerful.

Haar wavelet features are state-of-the art for real-time computer vision, particularly
for object detection and classification. It is highly desirable to use them in more tasks
within the same application to benefit from a shared preprocessing. We showed how
Haar wavelet features can be applied for computation of optical flow after appropriate
discretization. The resulting approach is versatile and allows for solutions that satisfy
different trade-off requirements.

The performance of the new method was systematically assessed and compared to
the original approach considering two different benchmarks. This was possible by evo-
lutionary multi-objective optimization, which provides the opportunity to handle the
two conflicting goalshigh number of flow vectorsandhigh accuracy. In our experi-
ments, the new approach significantly outperformed the original one. For any bound on
the maximum mean error, the method can find a number of flow vectors several times
larger compared to the original approach.

Our experiments suggest how to set up the new flow algorithm ingeneral. In partic-
ular, considering relatively large neighborhoods has shown to be most successful. This
favors Haar wavelets features, because the computational cost of calculating them is
independent of their sizes.
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