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Abstract. Estimation of optical flow is required in many computer viseppli-
cations. These applications often have to deal with sire tonstraints. There-
fore, flow algorithms with both high accuracy and computaicefficiency are
desirable. Accordingly, designing such a flow algorithnoires multi-objective
optimization. In this work, we build on a popular algorithreveéloped for real-
time applications. It is originally based on the Censusdimm and benefits
from this encoding for table-based matching and trackingniefrest points. We
propose to use the more universal Haar wavelet featuresaihsif the Census
transform within the same framework. The resulting appnaaanore flexible,
in particular it allows for sub-pixel accuracy. For comgan with the original
method and another baseline algorithm, we considered togihlar benchmark
datasets as well as a long synthetic video sequence. We wedpéyolutionary
multi-objective optimization to tune the algorithms. Thikkows to compare the
different approaches in a systematic and unbiased way.&3utts show that the
overall performance of our method is significantly highempared to the refer-
ence implementation.

1 Introduction

Optical flowcan be defined as the “the distribution of apparent velacdfenovement
of brightness patterns in an image” [1], which result frora fitojection of a 3D scene
onto an image plane. Estimating optical flow is common to n@myiputer vision ap-
plications since the resulting flow field is very valuable cangst others, for detection
and tracking of objects, deriving structure from motiortireation of ego-motion, and
collision avoidance. These problems often arise in theedrdf real-world applica-
tions (e.g., robotics, surveillance, automotive) wherelhme constraints have to be
met. Therefore, there is a special interest in flow algorithihat offer good accuracy
while being computationally efficient.

In this study, we propose to employ evolutionary multi-aibjee optimization for
tuning flow algorithms with respect to these two partiallynflizcting objectives. This
allows analysis of different possible trade-off soluti@msl therefore systematic com-
parisons.

We consider #eature-basedlgorithm [2], which was designed for driver assistance
systems. This approach combines computational efficidngk, accuracy, robustness,



and ease of implementation. The Census transform [3] is fmeithe description of
small image patches. This allows for table-based matchimyteacking of interest
points over time, resulting in a sparse flow vector field. lis thork, we show how
to modify the algorithm in order to make it more flexible andveoful. We suggest to
replace the Census transform by Haar wavelet features hverie state-of-the-art for
real-time computer vision.

This article is organized as follows. In the next section,gite an overview over
related work. In section 3, the reference algorithm is idtroed. Section 4 presents our
approach. Multi-objective optimization is introduced gtton 5. Our experiments are
described in section 6, finally the results are discussed.

2 Related Work

For a detailed overview and comparison of many different fidgorithms, we refer to
Barron et al. [4] and Baker et al. [5] and references thendare, we focus only on
approaches closely related to our method, namely realtapable and feature-based
flow algorithms.

Lucas and Kanade [6] proposed an iterative method that wasted by Bouguet [7]
for pyramid based feature tracking. His implementation ubljzly available in the
OpenCMibrary®. We consider this algorithm as a baseline for our experimdioimasi
and Kanade [8] proposed tracking of features obtained basezigenvalues of small
image patches. Optical flow algorithms based on this priacipe fast and accurate [9].
Similar results can also be obtained with correlation-dagmroaches [10], or block-
matching algorithms [11]. Stein proposed the algorithnm seaves as starting point for
our method [2]. It uses the Census transform to generatatsiggs for image patches
that can be used likeash valueso handle interesting points. This allows for very effi-
cient temporal analysis. This approach is described in metail in the next section.

The local, feature-based approaches mentioned abovdatalsparse flow vector
fields. While these algorithms are able to handle large digphents, they may produce
noisy results depending on local structure. It is essettdiattach great importance to
temporal integration and evaluation of pixel neighbortmod

Dense optical flow can be obtained based on the variationtiodgroposed by
Horn and Schunck [1]. Implementations of this basic techeiare likely to fail for large
displacements and for small moving objects because of tleomess constraints.
Moreover, such implementations typically are not welladitor real-time applications.
However, different improvements and extensions have beapoged recently which
address these issues [12-15].

3 Original Method

The Census transform as proposed by Zabih and Woodfill [3h&ed on thed x 3
neighborhoodP of a pixel. We denote the center pixel 5% and the eight ones sur-
rounding it byP, ..., Ps. The signaturé(P) is calculateditwise where the-th digit
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&; is set to0 or 1 depending on the intensities 6f:
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This is extended in [2] in order to distinguish “similar” g by introducing a new
parameter and computing the signature as
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Additionally, Stein proposed to consider larger neighloads and therefore not only
pixels directly adjacent to the center. For his experimdmaised signatures with up to
20 digits.

This signature is computed for every pixel in a camera image. positions of all
image patches with signatusen framet are stored in a tabl&;(s). Flow hypotheses
between frames—1 andt are computed by considering all pairs of entries ffBm, (s)
andT;(s) for all relevant signatures In this step, two restrictions are considered: The
lengths of flow vectors can be limited and the relative bngiss difference between
the center pixels is restricted to avoid bad flow hypothésisiesulting hypotheses in
framet are stored in a list;.

Vo

Fig. 1. Temporal analysis in frame v4, .. . v4 from H,_, are possible predecessors forfrom
H:. The vectorv; is not valid because it is outside the search radiudyecause of the angular
difference tovg, andvs because of the relative length differenegis the only valid predecessor.

To increase speed and robustness of the approach, not silhjgosignatures have to
be processed. Stein proposed to use a so-called blac&-¢isttude signatures that code
for infeasible image patches (e.g., homogeneous imagenggr regions related to the
aperture problem). Furthermore, lists table entfiigs) with more thanmdp (maxi-
mum discriminative powgelements are ignored for the calculation of flow hypothesis
because the number of possible hypothesis increases exjailye

The hypotheses calculated between two frames are geneatliynique and there-
fore not reliable. In order to compute final flow vectors farfret, longer-term tempo-
ral analysis is performed based &f_; and H,. For each hypothesésin framet, it is
checked if there was another hypothesis from frame with similar length and similar
orientation ending approximately where the new vectoitsté&igure 1 illustrates this
analysis. Finally, reliable flow vectors are obtained franmrent hypotheses which have
more tharpmin, predecessors.
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4 Proposed Algorithm

In this section, we present our new flow algorithm. It is basedhe one described in
the previous section but is more flexible. In particular, Wwevg that it can optionally
allow for sub-pixel accuracy.

4.1 Haar features for index-based matching

Haar wavelet features are state-of-the-art for real-tim@puter vision. Their popu-
larity is mainly based upon the efficient computation usihg ibtegral imagepro-
posed by Viola and Jones [16]. Haar wavelet features weesstully applied in many
computer vision applications, especially for object détex classification, and track-
ing [16—19]. Figure 2 shows examples of six basic types of Mé&velet features. Their
responses can be calculated with 6 to 9 look-ups in the iatémage, independently
of their absolute sizes.

It stands to reason to consider Haar wavelet features alsbdaalculation of opti-
cal flow. They could offer a corporate preprocessing for eaere different applications
and therefore serve as a universal basis for real-time ctenpision systems.

B ull L

Fig. 2. Basic types of Haar wavelet features.

In the original flow algorithm, a feature-based index is aidd for every pixel
through the Census transform. We calculate a similar vahsedh on responsés of
a bunch of different Haar wavelet features centered on tixat.prhe signature for a
pixel is calculated as

0, R; < —¢;
G(R)=141, |Ri|<e, (3)
2, R;>¢

wheree; now are individual thresholds used for discretization ef¢bntinuous feature
responses. We further extend this by allowing for more thameqer feature. For the
example of two thresholdsgo) andegl), the discretization is

|| < e
651) > R; > 61(-0)

Ri > 651) . (4)
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The temporal analysis (i.e., interest point matching aacking) can be done analo-
gously to the original approach. The Census-based mettemadbhedded in our approach
as a special case, because the definition of Haar-like wiavallews for regions with
size of a single pixel. That s, the calculations for the @ertsansform can be modeled
with Haar wavelet features. Of course, in this case, caliculaof the integral image
would not lead to any gain in speed.

4.2 Optional sub-pixel refinement

Using Haar wavelet features allows to perform flow compatatvith sub-pixel accu-
racy by employing an optional refinement step: The positfdh@end points of all flow
hypothesis in frameé are refined in a way that the feature responses are mostisimila
the responses at the start point in fraime 1.

We propose to perforrpilinear interpolationin the radius of one pixel around the
original (pixel-accurate) end point in order to find the bresitching position. The res-
olution between pixels can be chosen arbitrarily. For opeginents, we used steps of
one-tenth pixel. To calculate matching coster two feature vectord? and.S with n
components each we used tham of absolute difference$R, S) = |R; — S1|+|R2—
Sal + ...+ |R, — Syl

The proposed sub-pixel refinement requires that the rawirfea¢sponses are either
stored for start points of all correspondence hypothedisairthey are calculated anew
only for final flow hypothesis. It depends on the problem atchamich of these two
solutions is preferable in terms of efficiency. Here, we lmdate feature responses
when needed for refinement.

5 Multi-objective optimization

In our experiments, we evaluate the performances of vaappsoaches on different
datasets. For a fair and meaningful comparison, all algostmust be setup “as good
as possible”. Adapting parameters in such cases is typidathe manually in a more
or less systematic way. We propose to use rely on evolutyomatimization instead. It
allows to do a more extensive search in an impartial manner.

We give a short overview over evolutionary multi-objectmatimization with an
emphasis on sorting candidate solutions in section 5.1va@hation of candidate solu-
tions is described in section 5.2. Of course, results obthby automatic optimization
have to be watched as critically as results obtained by mamoiag. We discuss these
issues in section 6.3.

5.1 Evolutionary multi-objective optimization

Optimizing parameters of sparse optical flow algorithmsaisstraightforward as their
performance cannot be quantified by a single measure: mzadimin of the number
of flow vectors and maximization of their mean accuracy are tenflicting goals

Therefore, we suggest to perfomulti-objective optimizatio@ OO, vector optimiza-
tion) [20]. The goal of vector optimization is to find a diverse sétsolutions that



approximates the set ¢fareto-optimalrade-offs. A solution is Pareto-optimal if it is
not dominatedy another solution. In our application a solution is not duwated if on
the one hand no other solution exists with more flow vectodsadrteast as good accu-
racy and on the other hand each solution with better accutaey not have more flow
vectors.

We consider evolutionary MOO. The crucial step in this pesds selection. Here,
we adopt the selection procedure from the MO-CMA-ES [21tfumparing and sorting
candidate solutions to determine the parents for the nexdrgdion.

For the problem at hand, the vector valued quality of a sofutiis given by®(g) =
(n,1/e), wheren is the mean number of flow vectors anis the mean endpoint error as
proposed by [5]. Both objectives are to be maximized. A soiug (weakly) dominates
another solutiory’ iff it is better in one of the two objectives and is not worsehe
second.

Based on this concept, each candidate solugjdn a setM = {gy, ..., g, } can be
assigned arank(g; ) that expressesits level of non-dominance. Thé$és partitioned
into subsets\fy, Mo, ..., M,,.... Candidate solutions if/; are not dominated by any
other solution inM, solutions inM, are only dominated by members &f;, solutions
in M5 are only dominated by solutions it/; U M,, and so on. The rank(g) of a
candidate solutiog is defined as the index of the set containing it.

V(M)

%\ V(M\ {g})

first objective, first objective,
to be maximized to be maximized

VEEt(o)

second objective

to be maximized
Q

second objective

to be maximized

|

Fig. 3. The concepts of hypervolume and contributing hypervolubedt: Dominated hyper-
volume of solutiong and dominated hypervolume of skf. Right: Contributing hypervolume
of g € M and dominated hypervolume of sef\ {g}.

A second criterion is needed in order to sort solutions tgatire same rank in-
dexr. We do this based on theipontributing hypervolumas proposed in [21-23]. The
dominated hypervolum¥(g) of a candidate solution is defined as the volume of all
points in the objective space (heR& ) that are dominated b$(g). The dominated
hypervolume of a sed/; is defined as the volume of the union of the dominated hy-
pervolumes of all points id/;. The contributing hypervolumEﬁ??‘(g) for a candidate
solutiong € M; is given by the share of the total dominated hypervolumeithkatst
if the solution is removed?§?"(g) = [V(M;) — V(M;\ {g})|. Figure 3 illustrates this
concept.



A set M* only containing non-dominated solutions is calleBaeto setthe cor-
responding vector§®(g) | g € M*} aPareto front After optimization,M* represents
different possible trade-offs. This does not only give@hss into the characteristics of
the problem at hand, but can be useful in practice, for ingtato adapt the behavior of
an application online.

5.2 Mutating solutions

In our optimization problem, we allow the number of featythsir individual parame-
ters, and the flow algorithm parameters to vary. This caligfeariable length represen-
tation. We use an encoding and variation operators resegithibse proposed in [18].
In the following, we briefly outline the tailored mutationqmedure using the example
of a Haar feature based algorithm.

Each time when mutating an individual, tossing a coin dexigieether the param-
eters of the flow algorithm are varied or the feature set. Tdwe #8lgorithm parameters
comprisemdp, dint, lmax 7, dang di, andpmin (See Table 1). They are mutated using
standard operators.

If the feature set is mutated, it is decided whether the numtfeatures is changed
or the individual features are varied. The former happeitis aiprobability ofpgize =
0.20. Features are then added or removed with equal probablkty. features are cre-
ated with a random type (see Figure 2) and width and heiglit leeizveer? and12.

Alternatively, with a probability ofl — psize = 0.80, we mutate the features. Each
Haar feature has real-valued, integer, and nominal pasmeéthe mutation operators
changeSizechangeTypeand mutateEpsilonsre applied to each Haar feature with a
probability of pmyt = 0.50 each. InchangeSizethe width and height of the feature
are changed independently byi or —1. In changeTypea new random basic type is
assigned to the feature. imutateEpsilonghe thresholdsz(.o), ez(.l), ... are mutated. This
also includes mutating the number of thresholds used. Wevatl up to three of these
thresholds per feature.

A repair mechanism ensures that only feasible solutiongyanerated: For each
parameter, we defined a minimal and maximal value accordirigdir meaning. For
example, it is not reasonable to have negative values ftardiices (e.gdin: andr) or
Haar features smaller th&nx 2 pixels.

6 Experiments

We compare the original Census based and our Haar waveled lagproach in two
different scenarios. As a baseline for comparison, we alatuate the performance of
the pyramid based Lucas and Kanade algorithm [7] ugiogd features to track9]
from OpenCV The setup of our experiments is described in section 6elrghults in
section 6.2. We discuss these results as well as cruciatgpofrour experiments in
section 6.3.



Fig. 4. Frames out of the Middlebury datasets considered for exyeants.

6.1 Setup

The first comparison is performed on Middlebury benchmatiestté. The Middle-
bury benchmark [5] was designed to evaluate only dense flgarithms. However,
there are some additional datasets available that we cafouswaluation:Rubber-
Whale Hydrangea Grove2 Grove3 Urban2 andUrban3 All these sets consist of
eight frames and evaluation is performed only for the lastie in each case. We use a
common parameter set for all sequences. Figure 4 showsdhkageple frames out of
the datasets.

The second comparison is performed onEmpedabenchmark sequente.ong
synthetic video sequences have recently been introducealmjrey et al. [24]. We con-
sider the second sequence which has complex textures ashdhredows. Optimization
is performed on frames 80 to 180. The subsequent frames edeafter optimization to
test how the optimized solutions generalize. Figure 5 shtbwee example frames out
of the sequence.

Fig. 5. Frames out of the synthetic Enpeda sequence considerexderments.

For the Middlebury as well as the Enpeda benchmark, we parfid®O for all three
approaches. For tt@penCValgorithm, there are 8 parameters to be optimized. For the
Census based as well as the Haar feature based approachjweefhe features used
and the algorithm parameters. As the temporal analysieisdime in both methods,
many parameters that are optimized are identical, see Tablar the Census based ap-
proach, we used a setup witB digits and therefore additionally optimized individual

4 http://vision. mddl ebury. edu/fl ow
Shtt p:// ww. m . auckl and. ac. nz/ i ndex. php?opti on=com cont ent & i ew=arti cl e& d=52



thresholds for each digit. For the new approach based on fdaaures, we addition-
ally optimized the thresholdéo), egl), ..., types, and sizes of features as described in
section 5.2.

Table 1. Parameters of the flow algorithm used.

Description unit

Maximum discriminative power mdp
Maximum intensity difference  dint [%]

Maximum vector length Imax  [pixel]

Radius for predecessors r  [pixel]
Maximum angular difference  dang [°]
Maximum length difference d [%0]

Minimal number of predecessorspmin

For the Census based and the Haar feature based approaahnatuse a blacklist
as proposed in the original work. The setup of such a list dronudke statistical analysis
necessary, which would be performed after optimization@mlg improve the results.
As this is the same for both methods, no bias is introducedirtomparison.

As framework for the evolutionary multi-objective optiration, we use th&hark
open-source machine learning library [25], which is fremlgilablé. It provides imple-
mentations of efficient algorithms for computing the (cdmtting) hypervolume used
for selection.

We performed 5 independent optimization runs for each éxysat. In every opti-
mization run, we considereld00 generations. We used elitigi+\)-selection. In each
generation\ = 15 new candidate solutions result from recombination and tituta
of u = 15 parent solutions. We made sure that all parameters rem#imve reason-
able domain. Solutions generated during optimization tvlie not feasible regarding
our application, namely solutions having less ti380 flow vectors or mean endpoint
error larger5 pixels, are discarded. We selected the best solutions r@ogpto the
definitions from Sec. 5.1) from all runs in order to obtain firats for comparison.
For further details, we refer to the source code and its decation which is made
publicly available.

6.2 Results

The resulting sets of optimized solutions for the Middlgbdiatasets are shown in Fig-
ure 6. They visualize different trade-offs betweien the mean number of flow vectors,
and1/®,, the mean endpoint error.

Using the original Census based approach, it was possitfieadaup to 22, 286
flow vectors per frame (with mean endpoint errortdf5). Using the new Haar feature
based approach, it was possible to find updp999 flow vectors per frame (with mean
endpoint error 0£.89). Sub-pixel refinement allowed to further increase the emgu

6 htt p://shark- proj ect. sour cef or ge. net
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mean endpoint error 1/®2
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Fig. 6. Results of optimization for Middlebury datasets: Paretmfs for Census based approach

(triangles), Haar feature based approach with pixel (sg)and sub-pixel (circles) accuracy, and
OpenCValgorithm (diamonds).

of our approach. Th®penCVapproaches allowed to find up 18, 669 flow vectors
per frame (with mean endpoint error bfl6).
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Fig. 7. Results of optimization for Enpeda sequence: Pareto framt€ensus based approach

(triangles), Haar feature based approach with pixel (s&g)aand sub-pixel (circles) accuracy,
andOpenCValgorithm (diamonds).

Figure 7 shows the Pareto fronts after optimization for thedfila sequence. The
OpenCValgorithm allowed to find up ta2, 415 flow vectors. For the Census- based
approach the maximum number of flow vectors found Wa$45 and for the Haar fea-
ture based approaéh, 434. Sub-pixel refinement improved the mean endpoint error in
our approach by.4 pixels on average. Optimized Haar wavelet features for tifferel
ent solutions are shown in Figure 8. Table 2 shows the optidhiarameter settings for
different trade-offs for both approaches.

The generalization performances of the solutions on theafethe sequence are
shown in Figure 9. The Census based approach an@peaCValgorithm performed
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Fig. 8. Optimized feature sets from two different solutions. Thettdiees have sizes of (&) x 11,
5x11, 12x12,12x10, 11x12, and7x7. (b) 12x11, 3x11, 13x13, 12x10, 13x13, and11x11.

mean endpoint error 1/®2

0 1 2 3 4 5

%x10* mean number of flow vectors per frame &1

Fig. 9. Generalization results of optimized solutions on the réshe Enpeda sequence: Cen-
sus based approach (triangles), Haar feature based apprithcpixel (squares) and sub-pixel
(circles) accuracy, an@penCValgorithm (diamonds).

significantly better in the test than in the training. Therefone can conclude that
this latter part of the sequence is “easier”. The Haar fedbased approach performed
slightly better for solutions up tdé x 10* flow vectors and slightly worse for solutions
with more flow vectors.

Table 2. Optimized parameters from different trade-off solutioosthe Enpeda sequence.

P, 1/¢2 |mdp dint Imax T dang d Pmin
Census based

502 0.57| 33 1.2 43 0.8 0.32 0.11 2
6569 2.03| 70 0.5 40 5 0.05 0.1
13545 3.72| 70 1 45 5 0.23 0.1 1

Haar feature based

521 0.53| 33 0.6 80 0.6 0.23 0

12264 0.93| 70 1.6 40 1.6 0.05 0.

25940 1.63| 70 2 40 5 0.05 0.1
0.05 0.1
0.15 0

—

39709 2.12| 70 2 40
51435 4.03| 69 2 46

== N W W

The optimized solutions for the Census based approaclt iasuintimes between
200 ms and400 ms on a standard desktop PC witt2 GHz. The solutions of the Haar
wavelet based approach result in runtimes betw&@nns and 600 ms. It is not sur-
prising that these runtimes are comparable as the impleti@niof temporal analysis
is identical for both approaches. The optimized solutiarstiie OpenCValgorithm
resulted in runtimes betwe@00 ms and1100 ms.
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Fig. 10.Camera image from the Enpeda sequence (left) and resulbindiéld (right), final flow
vectors shown in black.

A typical result of the new Haar feature based flow algoriterstiown in Figure 10,
where an optimized solution was considered that combingssraall mean endpoint
errors and an adequate number of flow vectors. This setuptibtfor real-world
applications in the context of driver assistance systenrsexample, for object seg-
mentation and tracking, collision avoidance, or ego-nroéistimation.

6.3 Discussion

In our experiments, the three algorithms were optimizethéngame way for the same
scenarios. The Census based and the new Haar feature baseddpshare most of
their parameters because the temporal analysis is the Jdmagefore the significant
differences in performance shown in our experiments saketyult from the different
feature basis. The Haar feature based approach is morefopbimegeneral: The mean
endpoint errors were the smallest for every number of floworsdn all experiments,
especially when the optional sub-pixel refinement was peréal. Our method addi-
tionally allowed to have a significantly higher number of fleactors compared to the
other approaches, in particular almost the fivefold amauttié Enpeda benchmark.

One could argue that the Haar feature based approach hasstelegrees of free-
dom (as feature types and sizes can be adapted) and thepedfite most from opti-
mization. While this might be true, it is exactly this flexityi that makes the approach
particularly attractive. Despite this flexibility, most tife optimized solutions showed
good generalization, there was aeer-fitting

The execution speed was not an objective in the optimizgoformed here, there-
fore the solutions found lead to comparatively slow exexusipeed, still most of them
meet real-time constraints. All optimized solutions fog trew method use 6 Haar fea-
tures which was the maximal allowed number in the optimiratiNevertheless, the
algorithm can generally be used in real-time applicati@wiring higher frame rates,
especially as the table-based matching and the temporbisisare suited very well
for implementation on embedded hardware.

Evaluation of different optimized solutions also allows $tatements regarding on
how the parameters for the proposed flow algorithm shouldebheMost of the opti-
mized features are relatively larg&h % in the final solutions have widths and heights
larger thanl0 pixels. This shows that considering relatively large nbigthoods is
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preferable in the given framework. Using Haar features thipossible without any
drawbacks regarding computational cost. This is an adgaraer other filters. Most
parameters are correlated to the trade-off between higlbeauai flow vectors and high
accuracy in some degree. Nevertheless, dependencies aifelchand the interplay is
complex. Therefore, manual adjustment (e.qg., for a fixe@te¢rade-off) is challeng-
ing and evolutionary optimization has shown to be a valutdué

Appropriate parameters are problem class specific. Theylglbave to be differ-
ent for an automotive application (with many relativelygardisplacements) and for
entrance hall surveillance. Therefore the parametersdftwene are well suited for the
scenarios considered but have to be changed for other ¢sniédms can easily be done
for the proposed method.

7 Conclusion

Many computer vision applications benefit from fast and eateuestimation of optical
flow. We considered a popular feature-based method whiasreh the Census trans-
form and table-based matching. We proposed to employ Haeeletafeatures within
this framework in order to make it more flexible and powerful.

Haar wavelet features are state-of-the art for real-tirmepmder vision, particularly
for object detection and classification. It is highly delsieato use them in more tasks
within the same application to benefit from a shared premsing. We showed how
Haar wavelet features can be applied for computation otaptiow after appropriate
discretization. The resulting approach is versatile atalal for solutions that satisfy
different trade-off requirements.

The performance of the new method was systematically asdessl compared to
the original approach considering two different benchmaftkis was possible by evo-
lutionary multi-objective optimization, which providese opportunity to handle the
two conflicting goalshigh number of flow vectorand high accuracy In our experi-
ments, the new approach significantly outperformed theraigne. For any bound on
the maximum mean error, the method can find a number of flovoveseveral times
larger compared to the original approach.

Our experiments suggest how to set up the new flow algorithgeneral. In partic-
ular, considering relatively large neighborhoods has shimabe most successful. This
favors Haar wavelets features, because the computatiostlb€ calculating them is
independent of their sizes.
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