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Abstract

Traffic signs are characterized by a wide variability in their visual appearance in real-world environments. For example, changes
of illumination, varying weather conditions and partial occlusions impact the perception of road signs. In practice, alarge number
of different sign classes needs to be recognized with very high accuracy. Traffic signs have been designed to be easily readable
for humans, who perform very well at this task. For computer systems, however, classifying traffic signs still seems to pose a
challenging pattern recognition problem. Both image processing and machine learning algorithms are continuously refined to
improve on this task. But little systematic comparison of such systems exist. What is the status quo? Do today’s algorithms reach
human performance? For assessing the performance of state-of-the-art machine learning algorithms, we present a publicly available
traffic sign dataset with more than 50,000 images of German road signs in 43 classes. The data was considered in the second stage
of the German Traffic Sign Recognition Benchmark held at IJCNN 2011. The results of this competition are reported and the
best-performing algorithms are briefly described. Convolutional neural networks (CNNs) showed particularly high classification
accuracies in the competition. We measured the performanceof human subjects on the same data — and the CNNs outperformed
the human test persons.
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1. Introduction

Traffic sign recognition is a multi-category classification
problem with unbalanced class frequencies. It is a challenging
real-world computer vision problem of high practical relevance,
which has been a research topic for several decades. Many stud-
ies have been published on this subject and multiple systems,
which often restrict themselves to a subset of relevant signs,
are already commercially available in new high- and mid-range
vehicles. Nevertheless, there has been little systematic unbi-
ased comparison of approaches and comprehensive benchmark
datasets are not publicly available.

Road signs are designed to be easily detected and recog-
nized by human drivers. They follow clear design principlesus-
ing color, shape, icons and text. These allow for a wide rangeof
variations between classes. Signs with the same general mean-
ing, such as the various speed limits, have a common general
appearance, leading to subsets of traffic signs that are verysim-
ilar to each other. Illumination changes, partial occlusions, ro-
tations, and weather conditions further increase the rangeof
variations in visual appearance a classifier has to cope with.

Humans are capable of recognizing the large variety of ex-
isting road signs in most situations with near-perfect accuracy.
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This does not only apply to real-world driving, where rich con-
text information and multiple views of a single traffic sign are
available, but also to the recognition from individual, clipped
images.

In this paper, we compare the traffic sign recognition per-
formance of humans to that of state-of-the-art machine learning
algorithms. These results were generated in the context of the
second stage of theGerman Traffic Sign Recognition Bench-
mark (GTSRB) held at IJCNN 2011. We present the extended
GTSRB dataset with 51,840 images of German road signs in 43
classes. A website with a public leaderboard was set up and will
be permanently available for submission of new results. Details
about the competition design and analysis of the results of the
first stage are described by Stallkamp et al. (2011).

The paper is organized as follows: Section 2 presents re-
lated work. Section 3 provides details about the benchmark
dataset. Section 4 explains how the human traffic sign recogni-
tion performance is determined, whereas the benchmarked ma-
chine learning algorithms are presented in Sec. 5. The evalua-
tion procedure is described in Sec. 6, together with the associ-
ated public leaderboard. Benchmarking results are reported and
discussed in Sec. 7 before conclusions are drawn in Sec. 8.

2. Related work

It is difficult to compare the published work on traffic sign
recognition. Studies are based on different data and eithercon-
sider the complete task chain of detection, classification and
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tracking or focus on the classification part only. Some articles
concentrate on subclasses of signs, for example on speed limit
signs and digit recognition.

Bahlmann et al. (2005) present a holistic system covering
all three processing steps. The classifier itself is claimedto
operate with a correct classification rate of 94 % on images from
23 classes. Training was conducted on 4,000 traffic sign images
featuring an unbalanced class frequency of 30 to 600 examples.
The individual performance of the classification componentis
evaluated on a test set of 1,700 samples.

Moutarde et al. (2007) present a system for recognition of
European and U. S. speed limit signs. Their approach is based
on single digit recognition using a neural network. Including
detection and tracking, the proposed system obtains a perfor-
mance of 89 % for U. S. and 90 % for European speed limits,
respectively, on 281 traffic signs. Individual classification re-
sults are not provided.

Another traffic sign detection framework is presented by
Ruta et al. (2010). The overall system including detection and
classification of 48 different signs achieves a performanceof
85.3% while obtaining classification error rates below9%.

Broggi et al. (2007) apply multiple neural networks to clas-
sify different traffic signs. In order to choose the appropriate
network, shape and color information from the detection stage
is used. The authors only provide qualitative classification re-
sults.

In the work by Keller et al. (2008), a number-based speed
limit classifier is trained on 2,880 images. It achieves a correct
classification rate of92.4% on 1,233 images. However, it is
not clear whether images of the same traffic sign instance are
shared between sets.

Gao et al. (2006) propose a system based on color features
inspired by human vision. They report recognition rates up to
95% on 98 British traffic sign images.

Various approaches are compared on a dataset containing
1,300 preprocessed examples from 6 classes (5 speed limits and
1 noise class) by Muhammad et al. (2009). The best classifica-
tion performance observed was97%.

In the study by Maldonado Bascón et al. (2010), a classi-
fication performance of95.5% is achieved using support vec-
tor machines. The database comprises∼36,000 Spanish traf-
fic sign samples of 193 sign classes. However, it is not clear
whether the training and test sets can be assumed to be inde-
pendent, as the random split only took care of maintaining the
distribution of traffic sign classes (see Sec. 3). To our knowl-
edge, this database is not publicly available.

Obviously, the results reported above are not comparable, as
all systems are evaluated on proprietary data, most of whichis
not publicly available. Therefore, we present a freely available,
extensive traffic sign data set to allow unbiased comparisonof
traffic sign recognition approaches.

3. Dataset

This section describes our publicly available benchmark
dataset. We explain the process of data collection and the pro-
vided data representation.

3.1. Data collection

The dataset was created from approx. 10 hours of video
that were recorded while driving on different road types in Ger-
many during daytime. The sequences were recorded in March,
October and November 2010. For data collection, aProsilica
GC 1380CHcamera was used with automatic exposure control
and a frame rate of 25 fps. The camera images, from which the
traffic sign images are extracted, have a resolution of1360×

1024 pixels. The video sequences are stored in rawBayer-
pattern format (Bayer, 1975).

Data collection, annotation and image extraction was per-
formed using theNISYS Advanced Development and Analysis
Framework (ADAF)1, an easily extensible, module-based soft-
ware system (see Fig. 1).

Figure 1: Screenshot of the software used for the manual annotation. We made
use of the NISYS Advanced Development and Analysis Framework (ADAF).

We will use the termtraffic sign instanceto refer to a physi-
cal real-world traffic sign in order to discriminate againsttraffic
sign imageswhich are captured when passing the traffic sign by
car. The sequence of images originating from one traffic sign
instance will be referred to astrack. Each instance is unique.
In other words, the dataset only contains a single track for each
physical traffic sign.

3.2. Data organization

From 144,769 labelled traffic sign images of 2,416 traffic
sign instances in 70 classes, the GTSRB dataset was compiled
according to the following criteria:

1. Discard tracks with less than 30 images.

2. Discard classes with less than 9 tracks.

3. For the remaining tracks: If the track contains more than
30 images, equidistantly sample 30 images.

Step 3 was performed for two reasons. First of all, the car passes
different traffic sign instances with different velocitiesdepend-
ing on sign position and the overall traffic situation. In the
recording, this leads to different numbers of traffic sign images
per track (approximately 5–250 images per track). Consecutive

1http://www.nisys.de
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Figure 2: A traffic signtrack, which containstraffic sign imagescaptured when
passing a particulartraffic sign instance.

images of a traffic sign that was passed with low velocity are
very similar to each other. They do not contribute to the diver-
sity of the dataset. On the contrary, they cause an undesiredim-
balance of dependent images. Since the different velocities are
not uniformly distributed over all traffic sign types, this would
strongly favour image classes that are present in low-speedtraf-
fic (Stop, Yield-right-of-way, low speed limits).

Secondly, the question arises why to keep multiple images
per track at all. Although consecutive images in long tracks
are nearly identical, the visual appearance of a traffic signcan
vary significantly over the complete track, as can be seen in
Fig. 2. Traffic signs at high distance result in low resolution
while closer ones are prone to motion blur. The illumination
may change, and the motion of the car affects the perspec-
tive with respect to occlusions and background. Selecting a
fixed number of images per traffic sign both increases the di-
versity of the dataset in terms of the variations mentioned above
and avoids an undesired imbalance caused by large numbers of
nearly identical images.

The selection procedure outlined above reduced the number
to 51,840 images of the 43 classes that are shown in Fig. 3.
The relative class frequencies of the classes are shown in Fig. 4.

Figure 3: Random representatives of the 43 traffic sign classes in the GTSRB
dataset.
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Figure 4: Relative class frequencies in the dataset. The class ID results from
enumerating the classes in Fig. 3 from top-left to bottom-right.

The set contains images of more than 1,700 traffic sign in-
stances. The size of the traffic signs varies between15× 15

and 222× 193 pixels. The images contain 10 % margin (at
least 5 pixels) around the traffic sign to allow for the usage of
edge detectors. The original size and location of the trafficsign
within the image (region of interest, ROI) is preserved in the
provided annotations. The images are not necessarily squared.
Figure 5 shows the distribution of traffic sign sizes taking into
account the larger of both dimensions of the traffic sign ROI.

The GTSRB dataset was split into three subsets according to
Fig. 6. We applied stratified sampling. The split was performed
at random, but taking into account class and track membership.
This makes sure that (a) the overall class distribution is pre-
served for each individual set and that (b) all images of one
traffic sign instance are assigned to the same set, as otherwise
the datasets could not be considered stochastically independent.

The main split separates the data in to thefull training set
and thetest set. The training set is ordered by class. Further-
more, the images are grouped by tracks to preserve temporal in-
formation, which may be exploited by algorithms that are capa-
ble of using privileged information (Vapnik and Vashist, 2009).
It can be used for final training of the classifier after all neces-
sary design decisions were made or for training of parameter-
free classifiers.

For thetest set, in contrast to the training set, temporal in-
formation is not available. It is consecutively numbered and
shuffled to prevent deduction of class membership from other
images of the same track.
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Figure 5: Distribution of traffic sign sizes (in pixel).
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Full training set Test set

Figure 6: For the two stages of the competition, the data was split into three
sets.

For the first stage of the GTSRB (see Sec. 5 and Stallkamp
et al., 2011), the full training set was partitioned into twosets.
The validation setis a subset of the full training set and is
still provided for convenience. It is generated according to the
aforementioned criteria and, thus, ensures consistent class dis-
tribution and clean separation from the other sets. It allows for
classifier selection, parameter search and optimization. Data in
the validation set is available in two different configurations:
(a) shuffled like the test set which allows a fixed system setup
for training and testing and (b) appended to thebasic training
set— sorted by class and grouped by track — as part of thefull
training set. The validation set played the role of the test set in
the online competition (see Stallkamp et al., 2011 and Sec. 5).

3.3. Data representation

To allow participants without image processing background
to benchmark their machine learning approaches on the data,
all sets are provided in different representations. The following
pre-calculated features are included:

3.3.1. Color images
Originally, the videos are recorded by aBayersensor array.

All extracted traffic sign images are converted intoRGBcolor
images employing an edge-adaptive, constant-hue demosaick-
ing method (Gunturk et al., 2005; Ramanath et al., 2002). The
images are stored inPPM format alongside the corresponding
annotations in a text file.

3.3.2. HOG features
Histograms of Oriented Gradient (HOG) descriptors have

been proposed by Dalal and Triggs (2005) for pedestrian de-
tection. Based on gradients of color images, different weighted
and normalized histograms are calculated: first for small non-
overlappingcellsof multiple pixels that cover the whole image
and then for larger overlappingblocksthat integrate over multi-
ple cells.

We provided three sets of features from differently con-
figured HOG descriptors, which we expected to perform well
when used for classification. To compute HOG features, all im-
ages were scaled to a size of40×40 pixels. For sets 1 and 3
the sign of the gradient response was ignored. Sets 1 and 2 use
cells of size5×5 pixels, a block size of2×2 cells and an ori-
entation resolution of 8, resulting in feature vectors of length
1568. In contrast, for “HOG 3” cells of size4×4 pixels and
9 orientations resulted in 2916 features.
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Figure 7: The “HOG1” training data projected on its first two principal compo-
nents.

HOG descriptors provide a good representation of the traffic
signs. As can be seen in Fig. 7, the first two principal compo-
nents provide already a clear and meaningful separation of dif-
ferent sign shapes (e.g., the diamond shaped signs are located
between the upwards and downwards pointing triangular signs).

3.3.3. Haar-like features
The popularity of Haar features is mainly due to the efficient

computation using theintegral imageproposed by Viola and
Jones (2001) and their outstanding performance in real-time ob-
ject detection employing a cascade of weak classifiers.

Figure 8: Haar features types used to generate one of the representations pro-
vided by the competition organizers.

Just as for the HOG features, images were rescaled to40×40

pixels. In order to compute Haar features, they were converted
to grayscale after rescaling. We computed five different types
(see Fig. 8) in different sizes to a total of 11,584 features per im-
age. While one would usually apply feature selection (Salmen
et al., 2010) we provide all Haar-feature responses in the set.

3.3.4. Color histograms
This set of features was provided to complement the grad-

ient-based feature sets with color information. It contains a
global histogram of the hue values in HSV color space, result-
ing in 256 features per image.

4. Human Performance

Traffic signs are designed to be easily distinguishable and
readable by humans. Once spotted, recognition of the majority
of traffic signs is not a challenging problem for them. Although
real-life traffic provides rich context, it is not required for the
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task of pure classification. Humans are well capable to recog-
nize the type of a traffic sign from clipped images such as in the
GTSRB dataset (e.g., see Fig. 3).

In order to determine the human traffic sign recognition per-
formance, two experiments were conducted. During these ex-
periments, images were presented to the test person in three
different versions (see Fig. 9): the original image, an enlarged

Figure 9: User interface of the human performance application.

version to improve readability of small images and a contrast-
enhanced, enlarged version to improve readability of dark and
low-contrast samples like the example in the Fig. 9. The test
person assigned a class ID by clicking the corresponding but-
ton. Please note that this class ID assignment was for testing
purposes only, not for generation of the ground-truth data,as
this was done on the original camera images (see Sec. 3.1 and
Fig. 1).

For the first experiment, the images in the test set were pre-
sented in chunks of 400 randomly chosen images each to 32 test
persons. Over the complete course of the experiment, each im-
age was presented exactly once for classification. This yielded
an averagetraffic sign recognition performance over all sub-
jects. This experiment was executed in analogy to the online
competition (Stallkamp et al., 2011).

As shown in Fig. 10, there is some variance w.r.t. the indi-
vidual performance. To some extent, this can be explained by
the random selection of images that were presented to each of
the subjects. Somebody with a lower performance might just
have got more difficult images than somebody else with higher
performance.

To eliminate this possibility, we set up another experiment
to determine the traffic sign recognition performance of indi-
vidual subjects on the full test set (12,630 images). As man-
ual classification of this amount of data is a very tedious, time-
consuming and concentration-demanding task, the experiment
was limited to a singlewell-performingtest person.

To find a suitable candidate, we performed amodel selec-
tion step, very much in the same sense as it is used when choos-
ing or tuning a classifier for a problem. Eight test persons
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Figure 10: Distribution of individual performance inaveragehuman perfor-
mance experiment.

were confronted with a randomly selected, but fixed subset of
500 images of the validation set. The best-performing one was
selected to classify the test set. In addition to selecting acandi-
date, the model selection step served as an initial trainingphase
to get used to the sometimes unfamiliar appearance of traffic
signs in the dataset. To reduce a negative impact of decreasing
concentration on recognition performance, the experimenton
the full test set was split into multiple sessions.

5. Benchmarked methods

This section describes the machine learning algorithms that
were evaluated on the GTSRB dataset. This evaluation consti-
tuted the second stage of the IJCNN 2011 competitionThe Ger-
man Traffic Sign Recognition Benchmarkand was performed at
the conference. The first stage of the competition — conducted
online before the conference — attracted more than 20 teams
from all around the world (Stallkamp et al., 2011). A wide
range of state-of-the-art machine learning methods was em-
ployed, including (but not limited to) several kinds of neural
networks, support vector machines, linear discriminant analy-
sis, subspace analysis, ensemble classifiers, slow featureanaly-
sis, kd-trees, and random forests. The top teams were invited to
the conference for a final competition session. However, partic-
ipation was not limited to these teams. Any researcher or team
could enter regardless of their participation or performance in
the first stage of competition. The second stage was set to re-
produce or improve the results of the online stage and to prevent
potential cheating.

In addition to a baseline algorithm, we present the approaches
of the three best-performing teams.

5.1. Baseline: LDA

As a baseline for comparison, we provide results of a linear
classifier trained by linear discriminant analysis (LDA). Linear
discriminant analysis is based on amaximum a posterioriesti-
mate of the class membership. The classification rule is derived
under the assumption that the class densities are multi-variate
Gaussians having a common covariance matrix. Linear dis-
crimination using LDA gives surprisingly good results in prac-
tice despite its simplicity (Hastie et al., 2001). The LDA was
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Figure 11: CNN architecture employed by Sermanet and LeCun (2011), who
kindly provided this figure.

based on the implementation in the Shark Machine Learning
Library (Igel et al., 2008), which is publicly available2.

5.2. Team Sermanet: Multi-Scale CNN

Sermanet and LeCun (2011) employed a multi-scale con-
volutional neural network (CNN or ConvNet). CNNs are bi-
ologically inspired multi-layer feed-forward networks that are
able to learn task-specific invariant features in a hierarchical
manner, as sketched in Fig. 11. The multiple feature extraction
stages are trained using supervised learning. The raw images
are used as input. Each feature extraction stage of the network
consists of a convolutional layer, a non-linear transformation
layer and a spatial pooling layer. The latter reduces the spa-
tial resolution which leads to improved robustness againstsmall
translations, similar to “complex cells” in the standard models
of the visual cortex. In contrast to traditional CNNs, not only
the output of the last stage but of all feature extraction stages
are fed into the classifier. This results in a combination of dif-
ferent scales of the receptive field, providing both global and
local features. Moreover, Sermanet and LeCun employed alter-
native non-linearities. They used a combination of a rectified
sigmoid followed by subtractive and divisive local normaliza-
tion inspired by computational neuroscience models of vision
(Lyu and Simoncelli, 2008; Pinto et al., 2008).

The input was scaled to a size of32×32 pixels. Color infor-
mation was discarded and the resulting grayscale images were
contrast-normalized. To increase the robustness of the classi-
fier, Sermanet and LeCun increased the training set size five-
fold by perturbing the available samples with small, random
changes of translation, rotation and scale.

5.3. Team IDSIA: Committee of CNNs

TeamIDSIA used a committee of CNNs in the form of a
multi-column deep neural network (MCDNN). It is based on
a flexible, high-performance GPU implementation. The ap-
proach in Ciresan et al. (2011) won the first stage of the GT-
SRB competition by using a committee of CNNs trained on
raw image pixels and multi-layer perceptrons (MLP) trainedon
the three provided HOG feature sets. For the second and final
competition stage, for which results are presented in this paper,
the authors dropped the MLPs. In turn, they increased the num-
ber of DNNs, because MCDNN with more columns showed

2http://shark-project.sourceforge.net

improved performance. The details on the architecture for one
DNN is shown in Tab. 1.

Table 1: 8-layer DNN architecture used by Team IDSIA.

Layer Type # Maps Neurons/Map Kernel

0 input 3 48×48

1 convolutional 100 42×42 7×7

2 max pooling 100 21×21 2×2

3 convolutional 150 18×18 4×4

4 max pooling 150 9×9 2×2

5 convolutional 250 6×6 4×4

6 max pooling 250 3×3 2×2

7 fully connected 300 1×1

8 fully connected 43 1×1

In contrast to teamSermanet(see 5.2), teamIDSIA only
uses the central ROI containing the traffic sign and ignores the
margin. This region is scaled to a size of48×48 pixels. In
comparison to their approach for the online competition, the au-
thors improved the preprocessing of the data by using four im-
age adjustments methods. Histogram stretching increases im-
age contrast by remapping pixel intensities so use the full range
of available values. Histogram equalization transforms pixel
intensities so that the histogram of the resulting image is ap-
proximately uniform. Adaptive histogram equalization applies
the same principle, but to non-overlapping tiles rather than the
full image. Contrast normalization enhances edges by filtering
the image with a difference of Gaussians. The latter was in-
spired by the approach of teamSermanet. Each preprocessing
step was applied individually to the training data, resulting in a
five-fold increase of the number of training samples. The gen-
eralization of the individual networks is further increased by
random perturbations of the training data in terms of transla-
tion, rotation and scale. However, in contrast to teamSermanet,
these distortions are computed on-the-fly every time an image is
passed through the network during training. Thus, every image
is distorted differently in each epoch. The training of eachDNN
requires about 25 epochs and takes about 2 hours. This leads to
total training time of approximately 50 hours for MCDNN.

5.4. Team CAOR: Random Forests

The competition entry of teamCAORis based on a Random
Forest of 500 trees. A Random Forest is an ensemble classi-
fier that is based on a set of non-pruned random decision trees
(Breiman, 2001). Each decision tree is built on a randomly cho-
sen subset of the training data. The remaining data is used to
estimate the classification error. In each node of a tree, a small,
randomly chosen subset of features is selected and the best split
of the data is determined based on this selection. For classifica-
tion, a sample is passed through all decision trees. The outcome
of the Random Forest is a majority vote over all trees. Team
CAORused the official HOG 2 dataset. More details on this
approach are reported by Zaklouta et al. (2011).
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Figure 12: The GTSRB submission website, which is open for newcontribu-
tions.

6. Evaluation procedure

Participating algorithms need to classify the single images
of the GTSRB test set. For model selection and training of
the final classifier, the basic training set and the validation set
(cf. Sec. 3) can be used either independently or combined (full
training set).

Here, we explain how the performance of the algorithms
is assessed and introduce the benchmark website featuring a
public leaderboard and detailed result analysis.

6.1. Performance metric

The performance is evaluated based on the 0/1 loss, that is,
by basically counting the number of misclassifications. There-
fore, we are able to rank algorithms based on their empirical
correct classification rate(CCR).

The loss is chosen equal for all misclassifications, although
the test set is strongly unbalanced w.r.t. the number of samples
per class. This accounts for the fact that every sign is equally
important independent of variable frequencies of appearance.
Nevertheless, the performance for the different subsets isaddi-
tionally considered separately (see Sec. 7.4).

6.2. Public leaderboard

In addition to the benchmark dataset itself, we provide an
evaluation website3 featuring a public leaderboard. It was in-
spired by a similar website for comparison of stereo vision al-
gorithms4 established by Scharstein and Szeliski (2002). Fig-
ure 12 shows a screenshot of the GTSRB submission website.

Our benchmark website will remain permanently open for
submissions. It allows participants to upload result files (in a
simple CSV format) and get immediate feedback about their

3http://benchmark.ini.rub.de
4http://vision.middlebury.edu/stereo

performance. The results can be made publicly visible as soon
as publication details are provided. Approaches are rankedbased
on their performance on the whole test dataset. Nevertheless,
we allow re-sorting based on subset evaluation.

The website provides a more detailed result analysis, for in-
stance online computation of the confusion matrix and a listof
all misclassified images. For even more detailed offline anal-
ysis, an open-source software application can be downloaded
that additionally enables participants to compare multiple ap-
proaches.

We encourage researchers to continue submitting their re-
sults. While different machine learning algorithms alreadyhave
been shown to achieve very high performance, there is a partic-
ular interest in having more real-time capable methods or ap-
proaches focusing on difficult subsets.

7. Results & Discussion

We report the classification performance of the three best-
performing machine learning approaches complemented with
the results of the baseline algorithm as described in Sec. 5.Fur-
thermore, we present the results of the experiments on human
traffic sign recognition performance (see Sec. 4). The results
that are reported in this section are summarized in Tab. 2.

Table 2: Result overview for the final stage of the GTSRB.

CCR (%) Team Method

99.46 IDSIA Committee of CNNs

99.22 INI-RTCV Human (best individual)

98.84 INI-RTCV Human (average)

98.31 Sermanet Multi-Scale CNN

96.14 CAOR Random Forests

95.68 INI-RTCV LDA (HOG 2)

93.18 INI-RTCV LDA (HOG 1)

92.34 INI-RTCV LDA (HOG 3)

7.1. Human performance

For a human observer, the images in the dataset vary strongly
in terms of quality and readability. This is, to a large extent,
caused by visual artifacts — such as low resolution, low con-
trast, motion blur, or reflections — which originate from the
data acquisition process and hardware. Although the machine
learning algorithms have to deal with these issues as well, the
visual appearance of traffic signs in deficient images can be very
unfamiliar to human observers compared to traffic signs they
encounter in reality.

As noted in Sec. 4, the first experiment on human perfor-
mance yields anaveragetraffic sign recognition rate over all
subjects. The distribution of individual classification perfor-
mances of the 32 test persons is shown in Fig. 10. However,
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this does not give a clear picture of human traffic sign recog-
nition performance as the individual image sets that were pre-
sented to the test subjects could vary significantly in difficulty
due to the aforementioned reasons. Although the test applica-
tion is designed to improve readability of low-quality images
and, thus, reduce the impact of this variation of difficulty,it
cannot resolve the issues completely. Therefore, the variations
of individual performance are caused both by varying difficulty
of the selected images and by differing ability of the subjects
to cope with these issues and to actually recognize the traffic
signs. The model selection step of the second human perfor-
mance experiment prevents the former issue by using a random
but fixeddataset. Thus, the varying performance in this exper-
iment is due to individual ability of the test persons. As can
be seen in Tab. 2, the single best test person performs signif-
icantly better (McNemar’s test,p < 0.001) than the average,
reaching an accuracy of 99.22 %. Therefore, future references
in this section refer to the human performance of the single best
individual.

7.2. Machine learning algorithms

As can be seen in Tab. 2, most of the machine learning al-
gorithms achieved a correct recognition rate of more than 95%,
with the committee of CNNs reaching near-perfect accuracy,
outperforming the human test persons.

From an application point of view, processing time and re-
source requirements are important aspects when choosing a clas-
sifier. In this context, it is notable how well LDA — a very sim-
ple and computationally cheap classifier — performs in com-
parison to the more complex approaches. Especially the convo-
lutional networks are computationally demanding, both during
training and testing. Not surprisingly, the performance ofLDA
was considerably dependent on the feature representation.In
the following, we just refer to the best LDA results achieved
with the HOG 2 representation.

The performance results of the machine learning algorithms
are all significantly different from each other. With exception
of the comparison of Random Forests and LDA (p = 0.00865),
all pairwisep-values are smaller than10−10. The values were
calculated with McNemar’s test for paired samples5

7.3. Man vs Computer

Both the best human individual and the best machine learn-
ing algorithm achieve a very high classification accuracy. The
Committee of CNNs performs significantly better than the best
human individual (McNemar’s test,p = 0.01366). However,
even without taking into account that the experimental setup
for the human performance was unfamiliar for the test subjects
and did not reflect real-life traffic scenarios, it needs to benoted
that the best human test person significantly outperformed all
other machine learning algorithms in this comparison. All pair-
wisep-values, as calculated with McNemar’s test, are smaller
than10−10.

5We provide and discussp-values instead of confidence levels to show that
correcting for multiple testing still leads to significant results.

7.4. Subsets
In order to gain a deeper insight into the results, we split

the dataset into groups of similar traffic sign classes as shown
in Fig. 13. The individual results per approach and subset are
listed in Tab. 3. A more detailed view is provided by the con-
fusion matrices for the different approaches in Fig. 14. The
classes are ordered by subsets as defined in Fig. 13a to 13f,
from left-to-right and top-to-bottom respectively. Rows denote
the true class, columns the assigned class. The subsets are sep-
arated by the grey lines. The confusion matrices show the dis-
tribution of error over the different classes.

Common to all approaches except the multi-scale CNN, al-
though to different extents, is a clustering in two areas: inthe
top-left corner, which corresponds to the subset ofspeed limit
signs (see Fig. 13a) and in the large area in the lower right (sec-
ond last row/column) which corresponds to the subset of trian-
gular dangersigns (see Fig. 13e). As can be seen in Fig. 14,
the signs in these subsets are mostly mistaken for signs in the
same subset. So the general shape is matched correctly, but the
contained number or icon can not be discriminated. If a traf-
fic sign provided less-detailed content, like the bluemandatory
signs (see Fig. 13d), or if the sign has a very distinct shape such
as theuniquesigns (see Fig. 13f), the recognition rate is usually
above average, with humans even achieving perfect accuracy.

The HOG-based LDA is able to discriminate the round signs
from the triangular ones. However, it easily confuses all round
signs (and some of the unique signs as well) forspeed limits.
This is caused by the strongly imbalanced dataset, in which a
third of all signs belong to this subset.

Although similar in overall performance, the Random For-
est approach is not affected by this imbalance. Each decision
tree in the forest is trained on a different, random sample ofthe
training data. Therefore, the class distribution in this sample
can be very different from the overall dataset.

7.5. Incorrectly classified images
Visual inspection of errors allows to better understand why

a certain approach failed at correct classification. Figure15
shows the images that were incorrectly classified by the best
machine learning approach and by the best individual in the
human performance experiment. For presentation purposes,all
images were contrast-enhanced and scaled to a fixed size.

It is notable that a large part of the error of the committee
of CNNs is caused by a single traffic sign instance, a diamond-
shapedright-of-waysign. It accounts for more than 15 % of the
total error. However, notall images of this traffic sign track
were misclassified, but only half of them. In fact, the commit-
tee misclassified those images in this track that were so over-
exposed that the yellow center is mostly lost. For humans, this
sign class generally poses no problem due to its unique shape.

Furthermore, the algorithm misclassified a few images due
to occlusion (such as reflections and graffiti) and two images
due to inaccurate annotation that resulted in a non-centered view
of the traffic sign. These images are easily classified by humans.

In contrast, the most difficult class for humans arespeed
limit signs, especially at low resolution which impairs discrimi-
nation of single digits and, thus, correct recognition. More than
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(a) Speed limit signs (b) Other prohibitory
signs

(c) Derestriction signs (d) Mandatory signs

(e) Danger signs (f) Unique signs

Figure 13: Subsets of traffic signs.

(a) IDSIA – Committee of CNNs (b) Human performance (best individual) (c) Human performance (average)

(d) Sermanet – Multi-Scale CNN (e) CAOR - Random Forests (f) LDA

Figure 14: Confusion matrices. The grid lines separate the traffic sign subsets defined in Fig. 13. The encoded values are normalized per class and in the range [0,1].

Table 3: Individual results for subsets of traffic signs. Bold type denotes the best result(s) per subset.

Speed limits Other
prohibitions

Derestriction Mandatory Danger Unique

Committee of CNNs 99.47 99.93 99.72 99.89 99.07 99.22

Human (best individual) 98.32 99.87 98.89 100.00 99.21 100.00

Human (average) 97.63 99.93 98.89 99.72 98.67 100.00

Multi-Scale CNN 98.61 99.87 94.44 97.18 98.03 98.63

Random Forests (HOG 2) 95.95 99.13 87.50 99.27 92.08 98.73

LDA (HOG 2) 95.37 96.80 85.83 97.18 93.73 98.63
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(a) Committee of CNNs (b) Human Performance (best individual)

Figure 15: Incorrectly classified images.

70 % percent of the error can be accounted to this subset of
traffic signs. Misclassification ofdangersigns causes the ma-
jor part of the remaining error for the the same reasons. Typ-
ical examples for confusions are caused by similar structures,
for example the exclamation mark (generaldangersign) being
confused for thetraffic light sign and vice versa (second and
ninth traffic sign in Fig. 13e), or thecurvy roadsign being con-
fused withcrossing deer(fifth and last traffic sign in Fig. 13e),
which both show a diagonal distibution of black pixels in the
icon area.

7.6. Image size
As shown in Fig. 5, the images in the dataset vary strongly

in size. Smaller images provide lower resolution by defini-
tion, whereas the very large images, i.e., the ones of traffic
signs in close proximity to the ego vehicle, often show blurring
or ghost images (showing the sign twice, blurry and slightly
shifted) due to the larger relative motion in the image plane.
Figure 16 shows the classification performance of all presented
approaches in dependency of the image size. It is not surpris-
ing that, for all approaches, the recognition rate is the low-
est for the smallest images. The low resolution strongly im-
pairs discriminability of fine details such as the single digits
on speed limitsigns or the icons ondangersigns. The human
performance continuously increases with increasing imagesize,
reaching perfect accuracy for images larger than 45 pixels (in
the larger of both dimensions) for the best individual and for
images larger than 75 pixels in the average case. The algorith-
mic approaches, however, show reduced performance for very
close images. Possible reasons are the strong motion blur or
the presence of ghost images such as in the lower left images in
Fig. 15a.

This reduction of performance is strongest for Random For-
ests and LDA which generally show a very similar performance
when different image sizes are considered. In addition, both ap-
proaches show a major impact on recognition performance for
very small images. Contrary to expectation, the smallest error
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Figure 16: Recognition performance depending on image size.

does not occur for mid-size images which often are of good
quality in terms of resolution and blurring. As the number of
images per size level is strongly decreasing with increasing im-
age size (see Fig. 5), the sensitivity to single misclassified tracks
(or a large parts thereof) increases and impairs performance.

8. Conclusions

We presented a detailed comparison of the traffic sign recog-
nition performance of state-of-the-art machine learning algo-
rithms and humans. Although the best individual in the human
performance experiment achieved a close-to-perfect accuracy
of 99.22 %, it was outperformed in this challenging task by
the best-performing machine learning approach, a committee
of convolutional neural networks, with 99.46 % correct classifi-
cation rate. In contrast to traditional computer vision, where
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hand-crafted features are common, convolutional neural net-
works are able to learn task-specific features from raw data.
However, in return, “finding the optimal architecture of a Conv-
Net for a given task remains mainly empirical” (Sermanet and
LeCun, 2011, Sec. II.B).

Moreover, convolutional neural networks are still compu-
tationally very demanding. Taking into account potential con-
straints on hardware capabilities and processing time, as they
are common in the domain of driver assistance systems, it is
striking to see how well linear discriminant analysis, a compu-
tationally cheap classifier, performs on this problem, reaching a
correct recognition rate of 95.68 %.

However, none of the machine learning approaches is able
to handle input images of variable size and aspect ratio as present
in the dataset. The usual approach is scaling of the images to
a fixed size. This can cause problems when the aspect ratio is
different between the original and target sizes. Furthermore, it
discards information in larger images or introduces artifacts if
very small images are strongly magnified. Humans are well ca-
pable to recognize traffic signs of different size, even if viewed
from sharp angles.

The public leaderboard on the competition website will be
permanently open for submission and analysis of new results
on the GTSRB dataset. For the future, we plan to add more
benchmark tasks and data to the competition website. In partic-
ular, we are currently working on a benchmark dataset for the
detection of traffic signs in full camera images.
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