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Abstract— Video-based driver assistance systems are a key « Make the module invariant to rotations within the image

component for intelligent vehicles today. Applications fo lane plane. This will require at least a retraining or even

detection, traffic sign recognition, and collision avoidace have a redesign of the module and will generally lead to a
been successfully deployed in cars and trucks. State-of-ehart .
decrease in performance.

algorithms rely on machine learning and therefore depend on

invariance conditions, e.g. a fixed image perspective. In der o Try SeVe'_'a| Qisprete rotation an9|es to pre-process the
to apply current modules in two-wheeled vehicles one needs t input. This will increase the runtime by a multiple and
determine the roll angle, i.e. the angle between the road piee will nevertheless be of insufficient precision.

and the slanted vehicle. It can either be used for parametrigtion i dul h d Id |
of the algorithms or for rotation of the video image back to " @ multi-module system those procedures would apply to

a horizontal alignment. Using an inertial measurement unit €ach application.
to acquire this data is unreasonably expensive. We propose To apply the same algorithms to a motorcycle-mounted
a video-based module that estimates the current roll angle system one will need to compensate for the roll angle by

based on gradient orientation histograms to overcome thisdW. —  oiating the acquired images back to horizontal alignment.
Due to the visual structure of a traffic scene we are able

to derive possible roll angles from the gradient statisticsoy | heré are approaches to estimate vehicle states by integra-
correlation with learnt data. Analogously, we estimate theroll ~ tion of several sensor responses, i.e. velocity, accederat
rate by correlating subsequent image statistics and stabde roll/pitch/yaw rate, and distance to ground plane [1], [2],
both measures within a linear Kalman filter. Experiments on [3], [4], [5], [6]. Their set-ups include inertial measurent

real image data from various test scenarios show high accucy ; ; : :
of the proposed approach. Thus, estimating the roll angle /ate units (IMU) in order to analyse vehicle dynamics or rely on

from video only, enables us to employ established video- St€reo vision information [7]. But applying an IMU will —
based assistance modules for two-wheeled vehicles withcaty ~ in the given scenario — cause unreasonable high costs and/or

additional hardware expense. yet not deliver accurate results on motorcycles.
We propose the approach of estimating the roll angle/rate
. INTRODUCTION from gradient information of grey-value images only. Look-

In the last decad d technical svst inﬁg at road scenes one can find typical compositions and
nd 1€ 1as ecades,t_more r?’nl more 30 rt"c'? systems V}’%r apes that produce major gradients in the recorded images,
USEd In Mass-proguction venicles in orcer to increaseysa eé.g. horizon, vehicles, housing, lane borders and markings

for :‘” road fu;_?frs arlc: comfofrt for the driver. Suﬁh .Sé/Ster:Eig. 1 illustrates gradient orientations from a motorway
make use of different types of sensors, e.g., mechanide, uls.one Their orientations result in a characteristic gratdi

§()tunC;1, or '”{.rafte‘:: Al tfhesti s?nﬁorg have t)l(pu:tgl resinet angle histogram, which is similar for most images from a
introducing limitations for the following applications. vehicle-mounted camera.

For current and future developments, video-based systems
are the most popular and most promising approach. Cameras
mounted on vehicles provide all information needed fo
safe, comfortable, and economic driving: Human driverg rel
almost exclusively on visual information.

Based on camera data, very different applications c
be realized, e.g., detection, classification, and tracldhg
relevant objects, estimation of optical flow, and stere@nis

However, many systems and algorithms show limite
robustness against varying external conditions. Espgcia
when machine learning techniques are involved, methogs re
on an either constant or known scene perspective. For obije
detection tasks with car-mounted systems the perspecti
changes are usually small enough to be neglected. The laijis
interval of possible roll angles on two-wheeled vehicle S
enforces alternatives:
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Learning these statistics from numerous training images -1 =20 21
enables us to correlate the histogram of a single test image / — -2 -4 0 4 2 1)
with several translations of the learnt statistics. Thedta -1 -2 021
tions cover the interval of reasonable roll angles. Theentrr gz = IMgx f (2)
estimate is the one maximising the correlation measure. gy =imgx fT (3)
In a second step we independently estimate the roll rate, YRUEYS
i.e. the roll angle’s change per second, by maximising the*\") = 9:(1)g5(0) (4)
correlation of orientation histograms from two subsequent g2 (7) R .
images. Finally both angle and rate are fed into a Iineal‘i(l) - <gy(i)> £ €[0%,180°)
Kalman filter for robust integration over time. The filter is ‘ (5)
initialised with physically reasonable dynamics and noise E@), [4()] = a
covariances. o { 0. otherwise
We performed experiments on real-world video data coverk(a) = 27 EG) a €Ny (6)

ing different scenarios. The roll angle was simulated ireord _ . _ o _
to allow for a systematic evaluation with ground-truth datalhe convolution mask in (1) is a combination of a gradient
The experimental results substantiate robustness,aatsy ~filter and an orthogonal smoothing filter in order to avoid
precision and real-time capability of the presented apgoa t_he extraction of artefacts which emerge when using smaller
The upcoming section will introduce the types of hisfilter masks. _ , , _
tograms all estimation is based on. In Sec. Ill and Iv Given this normalised histogram (cf. Fig. 2) as image
we present the estimation process which is followed by fgature we are able to correlate either a test image with a
filtering step in Sec. V. Finally, experimental results (dd learnt histogram distribution (roll angle) or two subsemjue

the conclusion (VII) of the proposed approach are stated. Images (roll rate). Those approaches are exposed in the
following two sections.

II. ORIENTATION HISTOGRAMS

Image processing on grey-scale images is — due to mig
ing colour information — mainly driven by the analysis offjm—_=
structure. Many object recognition or scene categorisaticgs
algorithms make use of gradients, their orientation an
energy. Examples of popular images featureshasggram
of oriented gradients (H-OG) [8] and Ha&-‘r_”ke fea-tures [9] Fig. 2. A horizontally aligned input image and its corresgiog orientation
They are able to describe local properties for ObjeCtS dlsparhistlog'ram. Gradient orientation 60° correspond to horizontal edges.

Our approach uses the idea of HOG-features in a global
manner by building only a single histogram for the entire
image. Realistic roll angles for two-wheeled vehicles fie i
[—35°, 35°] for normal traffic situations. Thus, we cannotand The approach of roll angle estimation on unseen image
do not want to make assumptions concerning local imagiﬁta is based on learning the distribution of the discrete
properties. training histograms. The image sequences for training and

Nevertheless, all road scenarios contain main characteri§St data were generated from a car-mounted camera. In
tics featuring strong gradient responses. Many objects ca@fder to simulate possible roll angles the images weregdtat
tured from vehicle-mounted cameras are aligned with respe#ithin the image plane — obtaining the ground truth angles
to the ground plain and/or road, e.g. other vehicles, buildor the learning and evaluation phase at the same time. In
ings, walls and fences. Therefore, we assume the diswibuti later project stage we will be able to record data from an
of their orientation to code for the current roll angle of theeXperimental motor-cycle equipped with front view camera
camera with respect to the horizon. An orientation histagra @nd IMU. The temporal rolling behaviour was simulated by
is used to indicate that distribution — one histogram bin foft Sine-wave with varying amplitudemax and wave-length
each discrete angle il°, 180°). w-

From the image gradienig, and g, (cf. (2) and (3)) we : o L1
derive the orien?atigm. Fof%obust%egs o(ngz Want(s)t)o pro- alt) = amaxsin2mwt - amax < 35%w € [2_05’ %} 0
hibit small gradients to have large impact on the calculategh order to handle different scene properties we used record
histogramh. There are two ways to deal with the issue:  jgs of the following road scenarios for training and test

« Only consider image positions that exceed a certaifinages:
energy threshold or o motorway

« all measured angles contribute with their corresponding « country road
energyFE (cf. (6)). e urban
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Details of the evaluation procedure will be documented in IV. ROLL RATE ESTIMATION
Sec. VI. ) ) -
Given the ground-truth angle one is able to rotate the As a second measure — mainly with the goal to stabilise

measured gradient vectors back to horizontal alignmeFrt'e_an_gle estimate — we ook at the roll rate. I_3e|ng the
derivative of the roll angle the rate is measured in degrees

which will be the reference for training. We then learn - :
the histogram distribution for each bin (angle) individyal PEr second. In contrast to the angle we will estimate the
rate from the orientation histograntg and h;_a; of two

by computing meary. and variances? over all training
examples’ histograma,,. subsquent fr_ames. Therefore,_we now_do nqt rely on the
learnt distributions but correlate images with mainly tame

1 N scene content which facilitates the task.
p@) = 5D hn(a) ®) .
n=1 v, = A7 Argmax r(he(a+ B), hi—at(a)) (12)
- ?
(@) = 5= 2 (hal@) —p(@)® (@) o |
= where r is a similarity measure, e.g. normalised cross-
) o correlation:
Fig. 3 shows the learnt statistics from threeuntry road
sequences where significant maxima arise ar@jrahd90°. 1 a) — Plala) — 7

Omax — 1 — op0g

The choice ofAt is a trade-off:

« With respect to the limited accuracy of the gradient
orientation and resolution of the histograms it is advis-
able to choose\t large enough to encounter an angle
differencey # 0.

» On the other hand, foy; to be a good estimate of the
rate at timet one should choosat small.

Experiments show that distances of about five video frames
(= At ~ 200 ms) work well.

0.002- | To overcome the lack of accuracy we approximateid
the neighbourhood of the maximum by a quadratic function
% 20 40 60 80 100 120 140 160 180 and chose its maximum. Fig. 4 compares histograms of the

same scene with slightly different rotations.

Fig. 3. Learnt mean and standard deviation for each orientditistogram
bin (one degree).

For a given test image we translate its histogragy by
a range of reasonable roll anglesand determine maximal
correlation with the learnt statistics.

htest<04 + '7) - M(a)

—35°,35°
(0) v €[ ,35°%]

“Yestim = argimax E
v (e}

(10)

This Sum-of-we|ghted-d|fference£ (SWD) procedure assumes_ 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180
the histogram bins to be independent and normally dis-
tributed which should be an appropriate approximation.

angle

h(a) ~ N (p(@), 0% (@) (11)

Alternatively, we evaluated sum-of-absolute-differences
(SAD) andnormalised cross-correlation (NCC) as similarity
measure (cf. Sec. VI).

To receive a robust estimate one should make use of
temporal integration. This will be done by a Kalman filter.Fig. 4. Normalised histograms of three consecutive imag#s awdistance
Thereby, we are able to integrate the roll rate and accouffte" frames £ 400 ms).
for their physical dependence.

(a) red (b) green (c) blue



V. KALMAN FILTERING with combinations of

In contrast to conventional time series filters the Kalman
filter supports an explicit separation of the system dynamic
and the process of measurement. Therefore, it is a suitéd tggq
for many sensor fusion problems that incorporate a physical
model [10]. we {L 11 i}, (21)

The process of Kalman filtering applied to the given 125’ 10s’ 8s’ 6s
problem can be outlined by the following initialisation: We generated 15 sequences with a length of at least one

Estimated angle and rate define the observation vect@ave up to one minute. This resulted in more than 6,000
zZ; = (’Yt %)T, wherey;, = 7esim from (10). Both are images. The sequences are a mixture of the three different
uncertain observations of the statecontaining noise, e.g., scenarios -motorway, country road, andurban (see Fig. 5).
due to sensor noise and the estimation procedure (histogramoreover, images were recorded under various weather and
resolution). lighting conditions.

amax € {20°,25°,30°,35°} (20)

Z; = HiX¢ + vy (14)

whereH,; = | is the observation model which maps stat
space to observed space (identical hergjs the observation
noise which is modelled as zero-mean Gaussian noise w
covarianceR.

Given the internal state at- 1 the filter dynamics assume
the following true state; to emerge according to

Fig. 5. Images of the three scene categories.

X = FiXe—1 + Wy (15) a) Training: Three of the country road sequences
were exclusively used for the training process where we
where the state transition modE} describes the physical estimated the distribution of the gradient orientation by
behaviour of our system and process naigse~ N(0,Q) calculating mean and standard deviation of all histograms bi
that is caused by acceleratiop with standard deviatios,. independently. The ground truth was employed to produce
1 At the histograms with _the horizontal reference _alig_nmeme (se
F. = (O 1 ) (16) Sec. lll. Note that this procedure can be applied in the same
T way for recordings from a motor-cycle.
0- AZN (AN, AL AR 17 b) Testing: The estimation was applied to the rest of the
o (At) (At) %a = ATtS A2 Ta (17) sequences including all three scenarios. We observedihe ra
estimates for the roll angle, the rate, and the filter behavio
A control input is not used in our scenario. for both. The following plots (Fig. 6 and 7) show results
After choosing physically reasonable noise paramefers of the estimation process in comparison to the ground-truth
ando, the filter is able to produce a smooth and robust estjata.
mate for the roll angle taklng into account the independentl C) Performance: In order to measure the performance
observed roll rate and their physical relationship. The folfor each sequence individually the mean-squared-errdref t
lowing section will illustrate this with several experinteh filtered roll angle was used. Table | states the performance
results. of the angle estimation grouped by scenarios and applied
For future enhancement one could work with dynamigorrelation methods. We are able to record that no coroeiati
uncertainty for each measurement. Translating the cord&lenmethod dominates any other — however its choice does not

of the angle and rate estimates to noise covaridRcen influence the performance significantly. A mean error of
each time step will support the filtering process. However,

the mapping from correlation results to an angle covariance
is not straight forward and needs further investigatior. Fo
now we choose

TABLE |
MEAN SQUARED ERRORS BY ROAD SCENARIOS AND CORRELATION
METHODS (NORMALISED CROSSCORRELATION,

R, =R = 2 0 (18) SUM-OF-ABSOLUTE-DIFFERENCESSUM-OF-WEIGHTED-DIFFERENCES).
¢ 0 1
VI. EXPERIMENTS Scenario NCC SAD SWD
As stated in Sec. Ill the experimental data was acquired Motor way 1.82 196 247

from rotated image sequences recorded from a car-mounted
camera. The ground-truth rotation angle was defined by a
sinusoidal wave Urban 212 204 241

Country road  2.40 2.47 2.43
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Fig. 6. Experimental results from a country road sequenteyusrmalised Fig. 7. Experimental results from a motor way sequence usimgof-
cross-correlation. absol ute-differences.

about 2 degrees can be regarded as low and especially 8@ne types were produced in order to learn the correlation o
fact that only sequences frooountry roads were used for grientation statistics in an image and the present roll@ng!
training documents good generalisation of our approach.  The evaluation of test sequences point out the robust
Finally the computational complexity of the applied methyehaviour of the estimation module at a mean precision
ods is small. After the determination of gradient and oriengf o degrees, which can be regarded as sufficient for
tation image all further computations are based on a loye targeted field of application. Moreover, the developed
dimensional histogram which makes it easily applicable i'[barning module generalises very well with respect to vegyi
t_he_ context of real-time driver as;istance systems whegternal conditions (scenario, weather, lighting) withaay
limited hardware resources are an issue. parameter adjustment. The proposed procedures do not rely
on camera calibration, but merely assume a constant camera
pose with respect to the vehicle in training and test phase.

We proposed a new method of roll angle estimation for In further project stages we will apply the proposed
two-wheeled vehicles based on video images only. Its applrethod to sequences captured on a motor-cycle equipped
cation is highly relevant to the progress of video-baseeedri With an IMU and extend the training procedure to all sce-
assistance systems for motor-cycles. Knowing the currengrios. In addition, we will further improve the Kalman fiite
roll angle one is able to apply existing image processingrocess by an online adjustment of the observation noise —
modules that were developed for cars and trucks expectifg@sed on estimation confidences. Yet, mapping correlation
horizontally aligned images. confidences to noise covariance for the Kalman update is

Current alternatives implicate the usage of an inertidlot straight forward.
measurement unit, stereo vision information or the fusion
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