
An Organic Computing Perspective on
Self-Improving System Interweaving at Runtime

Sven Tomforde∗, Stefan Rudolph†, Kirstie Bellman‡ and Rolf P. Würtz§
∗University of Kassel, Intelligent Embedded Systems Group, Kassel, Germany

Email: stomforde@uni-kassel.de
†University of Augsburg, Organic Computing Group, Augsburg, Germany

Email: stefan.rudolph@informatik.uni-augsburg.de
‡Topcy House Consulting, Thousand Oaks CA, USA

Email: bellmanhome@yahoo.com
§Ruhr Universität Bochum, Institute for Neural Computation

Email: rolf.wuertz@ini.ruhr-uni-bochum.de

Abstract—The complexity of today’s technical systems evolves
over long periods of time. For example, systems may join or
split, while subsystems may change their behaviour. We often
observe that subsystems not intended to interact get coupled and
influence each other. Apart from ICT-based coupling, as via the
Internet, we also observe both direct and indirect interaction
via the physical and social world as systems explicitly react to
human behaviour and environmental conditions - and influence
both through their actions. Thus, any two (sub-)systems coming
into contact with the same part of the environment or group
of users can influence each other in ways that can hardly
be anticipated at design-time. Undesired effects may be the
consequence of unintended, implicit interaction of elements that
were not fully predictable or relevant beforehand. The existence
of such effects is not a design decision, they are already present
in the richness of our complex systems and components and their
number is increasing. In previous work, we discussed some of the
problems in continually integrating these complex systems, and
in this paper, we dig deeper into both the challenges entailed in
’interwoven systems’ and discuss some of the necessary aspects
to developing architectures that will address these challenges.

I. INTRODUCTION

The vision of Ubiquitous Computing as formulated by Marc

Weiser in 1991 [1] is becoming increasingly realistic. Technol-

ogy has become a fundamental part of life and is embedded in

the environments that support us in our daily lives. Information

and communication technology (ICT) pervades every aspect

of our daily activities, e.g., in household appliances [2], au-

tonomous and self-driving cars [3], smart metering technology

[4], [5], or intelligent spaces [6], [7]. Another driving force

of this development is the ubiquitous usage of smart cell

phones – nearly everybody in the industrialised countries is

carrying a mobile Internet-compliant device that can constantly

be connected to local services1. This inclusion has changed our

communities and human interaction in a significant manner.

Based on the motivation to bring more comfort into our daily

routine or to add capabilities to our work, this increasing

1The International Data Group says that since 2010 the amount of mobile
devices has increased more than 15% per quarter, see “Market Analysis
Perspective: Worldwide Mobile Phone Market”, available online at http:
//www.idc.com/getdoc.jsp?containerId=245240 (last access: July 12th, 2015).

interconnectedness fundamentally modifies our way to control

and manage technical systems – it also entails a dramatic

change in the way we design and integrate these utilised

systems. As a result, we can observe tremendous complexity

that evolves over long periods of time [8], [9].

In all phases of a system’s lifetime (i.e. design, integration,

operation, maintenance, disintegration), we face novel prob-

lems that are mainly a result of the massive interconnectedness

and the corresponding dependencies that evolve between dis-

tributed subsystems. Because of these interdependencies and

side-effects, we face a variety of outages and failures of indi-

vidual subsystems and cascading failures among subsystems;

the underlying causes are often difficult to identify. Most of

today’s systems evolve continuously over long periods of time

[10]. During that time, they have to cooperate with changing

and even completely novel devices and environments. This

system of systems integration is further complicated by the

lack of knowledge or the authority to control other cooperating

systems [11]. Even carefully designed and tested solutions are

not able to react properly to all the kinds of problems that

might be entailed by such a continuously changing integration

status. This is especially difficult due to the dependence

of operating conditions on human, social or environmental

factors — we will refer to systems with these properties as

‘Interwoven Systems’ (IwS) [10].

Section II of this paper discusses a set of prominent ex-

amples where the aforementioned issues have already led to

outages and failures. Afterwards, we summarise the common

characteristics of those examples and highlight the existence

of the class of systems that we want to treat in Interwoven

Systems: IwS (Section III). We propose a self-improving

runtime integration process as a solution to the challenges

arising with IwS and present an architectural concept following

the ideas of Organic Computing [12] in Section IV. Finally,

we summarise the paper and give an outlook to future work

(Section V).

2016 IEEE International Conference on Autonomic Computing

978-1-5090-1654-9/16 $31.00 © 2016 IEEE

DOI 10.1109/ICAC.2016.15

276

II. MOTIVATING EXAMPLES

Over the last two decades, computer scientists and many

others have seen the tremendous increase in complexity due

to the increasing interconnection and interaction of distributed

systems, components, and services. There are many expres-

sions of this complexity, such as seen in the law of Glass

(An increase of 25% functionality in software doubles its

complexity [13]) and the law of Moore (The complexity of

integrated circuits is doubled with minimal component costs

every one to two years [14]). There have also been many

notorious failures in our technical systems, where one can

see some of the risks and vulnerabilities of how we currently

integrate our very large, distributed systems. We will briefly

introduce some of these examples in the following paragraphs.

1) Skype: The Peer-to-Peer-based network Skype ran into

an outage of significant impact in 2007. Initially, the network

– mainly used for telephone calls and instant messaging –

became unstable before experiencing a critical disruption2.

Skype’s engineers found that this disruption was caused by

massive parallel rebooting of users’ machines all across the

world. The reason for this synchronised down-time of user

machines was a routing patch issued by Microsoft for their

current Windows installation. Due to this high-priority update,

a massive number of computers went down at the same time,

which affected Skype’s network resources and routing algo-

rithms. Machine relaunching after re-booting in combination

with other Skype users that had become temporarily separated

from the network led to a rapid peak in flooding of log-in

requests. Simultaneously, the network itself was running with

noticeably limited resources. A chain reaction was triggered

that affected the whole network and resulted in disturbing

the automated recovery routines built into Skype to correct

malfunctions. Objective testimony of this disturbance was that

Skype’s services were not available for approximately two

days. This example demonstrates an indirect coupling of two
supposedly independent systems: the Skype communication

infrastructure on the one hand and the Windows operating

systems on the other.

2) Google Mail: A second example was reported roughly

one and a half years later3. On February 24th 2009, the

prominent mail service ’Google Mail’ was not available for

about 150 minutes, meaning that a large number of people

world-wide had no access to their emails. What happened

was a routine maintenance event that had been performed

in one of Google’s European data centres. Under undisturbed

conditions, email accounts are automatically served by other

data-centres – and users do not experience any disruption.

In this particular case, the service developed a cascading

outage due to unexpected side-effects. The take-over routine

had been configured to keep data geographically close to its

owner – turning one data-centre after the other down due to

2See e.g. Skype’s own report at http://heartbeat.skype.com/2007/08/what
happened on august 16.html (accessed on December 22nd, 2014).

3See e.g. GMail’s own report at http://gmailblog.blogspot.de/2009/02/
update-on-todays-gmail-outage.html (accessed on December 24th, 2014).

overload reasons. After about 150 minutes, the service was

re-initiated and all data-centres had been brought back to

operation. What we can observe here is an emergent effect

[15], [16]. Hence, there is a coupling between (local) data-

centres and their escalation schemes on the one hand and

user behaviour in combination with location-specific business

strategies on the other hand. From a more global perspective,

business had been affected world-wide, since GMail provides

email services to professional customers. This means that

those customers’ services had not been available. Obviously,

today’s communication services depend largely and critically

on the sustained and uninterrupted existence of services such

as GMail.

3) US Blackout: The third example shifts the focus from

pure ICT cases to those where ICT is used as an enabler

for more hardware-oriented solutions. Northeastern America

experienced one of the largest energy blackouts in history

on August 14th, 20034. Following the shutdown of a single

nuclear power station in Eastlake, Ohio, cascading outages of

voltage transmission lines shut down a large part of the net-

work. This slow, but effective and viral failure resulted in more

than 55 million households in the US and Canada missing

electricity for roughly 18 hours. The final reports investigating

the incident named several reasons, the most important being

the initial shutdown of the nuclear plant in combination with

the network utilisation at the time. Another major finding

of the report was that “[...] internal and external links from

Supervisory Control and Data Acquisition (SCADA) networks

to other systems introduced vulnerabilities [...]”5. Hence, there

are dependencies between ICT solutions that have a different

and presumedly isolated scope and – by intuition – no clear

relation to each other (in this case: grid control strategy and

data acquisition).

These three specific examples demonstrate the challenges

issued by the ongoing interweaving of systems. That is,

users and developers often build pathways and interfaces

from one system to another for many legitimate benefits and

conveniences, but unwittingly open the door to new types

of risks and interaction points that can lead, under the right

operational conditions to new failure modes. In addition to

providing new points of failures, the current trends in ICT

development fuel the raise of complexity, interconnectedness,

and hidden mutual influences. In order to understand the new

characteristics introduced into interwoven systems (and that

we therefore will need to address in any architectural and

technical solutions), we examine several examples.

Consider for instance the Smart Grid as an example of new

hidden mutual influences. We used to have strictly centralised

and pre-planned systems a decade ago. The rise of renewable

energies (such as biogas plants, solar plants, and wind farms),

4See e.g. report by history.com at http://www.history.com/
this-day-in-history/blackout-hits-northeast-united-states (accessed on
December 25th, 2014).

5See the final report by the US energy department (i.e. recommendation 34,
page 165) at http://energy.gov/sites/prod/files/oeprod/DocumentsandMedia/
BlackoutFinal-Web.pdf (accessed on December 25th, 2014).

277

the introduction of electrical vehicles, the possibility to control

demands (e.g., due to smart meters), and similar developments

have triggered a dramatic change in the overall energy sys-

tems [17]. Where formerly such systems were governed by

the principle of “separation of concerns”, they now exhibit

an interwoven system structure. A dramatic growth in the

number of independently operating power plants belonging

to a variety of operational authorities is accompanied by a

direct (i.e., large-scale European) and indirect coupling via

the previously unconsidered communication network [18].

Specific challenges are raised by re-charging electrical vehicles

(simultaneous charging) or the potential effects of price-based

incentives to change consumption policies. Besides these ap-

parent impacts, the coupling of formerly independent systems

becomes even more obvious when considering the ongoing

integration process of different energy carriers: One prominent

prediction is that the next severe power grid outage will be

caused by the gas network, see e.g. [19]). This example shows

the types of challenges we face with an uncontrolled (or poorly

controlled) integration across systems with behaviour that is

largely unpredictable.

Another case where a formerly isolated system attains a

more coupled and complex structure is the railway system.

Until about two decades ago, the German rail system – the

same holds for most of the other national railway systems in

Europe as well – was run as a public institution operating

all trains and the rail network itself. This changed due to

the European Union’s demand for deregulation. As a first

step, the formerly integrated national railway operator, the

’incumbent’, was split into an infrastructure manager (IM) and

railway undertakings (RU). Several new RUs emerged that

are responsible for freight services, long-distance passenger

services, and local passenger transport. In contrast, the IM is

in charge of network operation and maintaining the network.

Cooperation works on the basis that RUs are operating trains,

for which they rent routes or slots from the IM. In general,

deregulation and a market driven by heterogeneous partici-

pants is not necessarily problematic. However, in the context

of the German railway system, there have been new difficulties

in correctly integrating these newly formed subsystems. For

instance, the underlying dependencies and coupling effects that

arise when regional operation of local passenger connections

are offered to RUs through public bid invitations. Here, the

RU winning the auction is normally founding a new subsidiary

which is then becoming a new independent element that has to

be integrated into the rail system – with a duration of typically

10 to 15 years. Such a new element has its own operations

department, which again has to be integrated in the overall

operations system. The dynamics of this change in structure

lead to control and communication problems for the shared

resource railway track, with non-conforming interfaces and

processes worsening the impact.

Similar challenges are found in various application domains,

where the impact of mutual influences and dependencies

among distributed entities is continuously increasing. For

instance, current highly sophisticated traffic guidance in road

networks for vehicles (i.e., cars or lorries) provide up-to-date

information obtained by, e.g., the infrastructure. Either the

driver or an automated system acting on her behalf adapts

the route selection behaviour and consequently impacts the

traffic situation. This behaviour in turn influences the control

strategy of the infrastructure (e.g., traffic light control or

road management as a reaction to the traffic conditions) [20].

These mutual influences between infrastructure and driving

behaviour had not been that severe when announcements or

the radio’s Traffic Message Channel were the only publicly

available instance of traffic status information.

Another domain to consider is the smart household. Here,

previously independent systems (such as TVs, fridges, or shut-

ters) are combined into an integrated system that adjusts the

behaviour of its elements according to the (estimated) needs of

the users. The resulting solution consists of varying devices of

different manufacturers – those that were explicitly made for

smart environments are combined with legacy devices or other

systems of limited functionality. In addition, devices typically

rely on a variety of communication interfaces [2].

New challenges are brought to the fore when we extend the

’system’ boundaries by taking into account human-computer

interaction; collaboration tools utilised in software develop-

ment processes further contribute to mutual influence effects.

These tools help to coordinate the work of a potentially large

group of developers in a highly distributed manner. Such a

tool is used to allow for interaction and cooperation between

software developers. We can observe that interaction through

such a tool also influences the social layer, i.e., cooperation and

concurrency in the technical world may entail similar social

relationships. The reverse influence has been shown to be

simultaneously present, while happening on a different time-

scale (i.e., from the social to the technical layer): A result of

this influence is an increasing adoption of systems that are

socially aware in the sense that they monitor structure and

dynamics of social organisations and adapt their behaviour

accordingly in real-time. Given the existence of these effects,

we face hidden influences through existing social relations

that depress (or support) the success of a project although the

management cycle may not even be aware of these influences.

What we can observe from the above examples is: Systems

increasingly consist of heterogeneous, often geographically
distributed subsystems with a high degree of independence
and autonomy. More precisely, this means that subsystems
exist and are operated independently from others although,

in real operation, they mutually influence each other. These

subsystems may share some goals, but they may also have
opposing goals. Interaction of subsystems takes place on

different scales and in multiple direct and indirect ways, which

may be purely technical, but may also involve humans, their

decisions, and communication. Decisions of the subsystems,

which often must be taken under more or less strict real-
time constraints, are based on uncertain information (e.g.,

incomplete or imprecise information) and thus, the behaviour

of the overall system can often not be fully anticipated. In

this sense its behaviour is emergent. Moreover, structure,

278

organisation, and functionality of subsystems and the overall
system evolve continuously making the guarantee of global

functionality a moving target.

III. INTERWOVEN SYSTEMS

Within the previous section, we identified a set of

formidable challenges in the control and operation of tech-

nical systems. In this section, we develop a definition of the

corresponding system class, to which we will refer to as IwS

in the following.

Defined interface Explicit call / usage

a) Hierarchy b) Modular systems c) Systems of Systems (SoS) d) Interwoven System (IwS)

System 1 System 2

System 3

Environment Environment

Indirect influence

System 1

System 2

System 3

Environment

System 1

System 3

Environment

System 2

Overall system
System 2

Sy
st

em
 1

Sy
st

em
 4

System 3

Fig. 1. From isolated systems towards Interwoven Systems.

The definition of an Interwoven System (IwS) [10] is driven

by the fact that not all interfaces between system elements6

are defined explicitly at design-time, because they do not

only interact through conventional ICT interfaces, but also

through the physical world including humans (cf. Figure 1 d).

Therefore, the term interaction in this definition refers to these

various kinds of interdependencies. We emphasise that system

interweaving is already a fact and propose to guide this process

explicitly at runtime by providing interweaving capabilities

that allow for a self-improving self-integration throughout all

phases of the design and maintenance cycle.

Definition: IwS are systems where as many elements

(subsystems) as possible are equipped with interweaving ca-

pabilities7 In general, the overall system has the following

properties: (1) mutual influences (i.e., there exist a number

of interactions not defined at design-time that shall be made

explicit at runtime), (2) heterogeneity of system elements (i.e.

system elements may belong to different application domains

or authorities), (3) uncertainty8 (i.e., the predictability of the

entire system and its parts is usually incomplete and inac-

curate), and (4) soft or hard real-time aspects (i.e., elements

must operate complying to deadlines9). The interweaving

capabilities of an element are based on techniques for (i) online

6Instead of subsystem we use the term system element, because there is
not necessarily a strict hierarchy in the system.

7As we cannot expect that all elements are accessible to equip them with
interweaving capabilities, the goal is to reduce failures in operation or even
the chance of catastrophic outages as far as possible and to reduce costs in
terms of system development and operation.

8The term uncertainty is used according to [21]. There, ”uncertain“ is
a generic term for other terms such as ”likely“, ”doubtful“, ”plausible“,
”reliable“, ”imprecise“, ”inconsistent“, or ”vague“.

9These deadlines are not always in the order of, for example, milliseconds.
They may also be in larger magnitudes, such as minutes, hours, days, or
even years (as in maintainability and evolvability, which can pose different
problems to large IwS.

dependency detection and modelling to reveal the various

kinds of interactions, (ii) online goal adaptation (e.g., goal

negotiation or re-weighting of subgoals), (iii) continuous re-

design (e.g., parameters or internal structure of an element),

and (iv) long-term self-improvement.

Note that IwS are not necessarily complex by themselves.

Instead, simple instances might exist that can be handled ap-

propriately with current methods – due to their understandable

and reasonable size and structure. However, combining IwS

elements of unknown structure and complexity quickly results

in barely manageable systems. Therefore, the challenge we

are facing in the context of IwS is to provide methods for

improving the manageability of complex IwS.

Introducing the term IwS is not meant to define a novel

class of systems; it is used to identify a dramatically increasing

set of systems that have the properties that we have defined

above and to focus the research community’s attention on

the development of strategies for meeting the challenges we

have noted with respect to their controllability and manage-

ability. Additionally, although IwS have much in common

with the challenges of managing and maintaining relatively

open Systems-of-Systems (SoS) [22] (see Figure 1c)), they

also differ in several important ways: first, in many SoS,

there is a well-specified purpose or set of functions for the

integration of the separate systems, whereas IwS can be the

result of temporary conditions (an emergency) or occur almost

accidentally over time, as the result of individual interfacing

of components across the systems; second, unlike most SoSs,

there may be no system components that are knowledgeable

in depth about other systems’ components and there may be

no decision-making authority over all of the systems in the

SoS (cf. [23]).

We propose to guide this process by allowing for active in-

terweaving, controlled and negotiated by participating systems

at runtime. We outline an architectural concept following the

ideas of Organic Computing in the next section.

IV. AN ORGANIC COMPUTING PERSPECTIVE ON RUNTIME

SYSTEM INTERWEAVING

The Organic Computing (OC) initiative [12] (and others

such as Autonomic Computing [24]) postulate that the in-

creasing complexity in technical systems has to be mastered by

means of self-organisation. The basic idea is to equip technical

systems with autonomous and self-organising or ‘life-like’
properties, enabling adaptive and self-improving behaviour

that results in desired characteristics such as robustness, flex-

ibility, and resilience.

From a technical point of view, this means moving tradi-

tional design-time decisions to runtime and to the respon-

sibility of the systems themselves. One early OC approach

for doing this was to introduce the Observer/Controller (O/C)

design pattern [25] that establishes a runtime feedback loop

on top of a productive system (the System under Observation
and Control – SuOC). This O/C unit monitors the conditions

and performance of the SuOC and intervenes if necessary to

maintain a goal-compliant and self-optimising behaviour (the

279

concept is similar to the Monitor-Analyse-Plan-Execute cycle

– MAPE – known from Autonomic Computing [24]). In the

following paragraphs, we extend and augment this basic design

pattern with components necessary for an interweaving process

active at runtime.
The goal of the control loop presented here is to equip the

SuOC with interweaving capabilities, meaning to analyse and

self-improve its integration status. From a technical perspec-

tive, integration is considered from both an engineering and

an ICT perspective. In engineering, the notion of integration

describes a process in which several component subsystems

are brought together and merged towards one unified system.

Thereby, the focus is set on achieving a correctly working

unit, meaning that the subsystems work together and function

correctly, see [26]. In ICT, the focus is shifted towards different

computation and processing units. Here, system integration

is defined as a process of linking a potentially large set of

heterogeneous computing systems and software applications.

The linking itself is done physically or functionally. The

process is finished as soon as all contained elements (i.e.,

software and hardware) act together as a coordinated whole,

see e.g. [27]. Parts of this linking rely on the availability

and correct functioning of a communication medium, typically

realised on basis of network connections such as the Internet.

In both of these perspectives, integration is understood as a

clearly defined process with fixed starting and end points. In

“integration science” [28], which grew from work on space

systems and focuses on the integration in very large, complex

heterogeneous systems, integration is considered to be a set of

diverse and continual processes across many levels of the com-

plex system or enterprise; this led to integration approaches

that emphasised continual re-evaluation, self-monitoring, and

self-testing as the system adds new capabilities and new

operational environments.
Finally, the system is autonomous, meaning the O/C unit

belonging to the system itself is responsible for maintaining

the integration status. We refine this control loop with its

functionalities in the following ways.

�������	
��������������

���������

�����

������	����������
��
��
��
�

������	�����	�����������	���	�������	������

�������	
������

������	���������

��������

���������

��
��
��

��
��

��
�
�

��
����

���	�
�

�����������	�����

��������

������� ���������

�	
�

�	
�
�

!�������������"	
�������������#	$����#	��
�������

%���	&	�'���

Fig. 2. Framework for Self-integration: View on a single element.

Figure 2 illustrates the architectural concept for an individ-

ual entity with interweaving capabilities. Following the O/C

pattern, we distinguish between three components: the SuOC,

an observer, and a controller. In addition, we introduce a

distributed middleware solution that provides basic services

including communication mechanisms, neighbour discovery,

security, and trust.

!�������������"	�������������#	
$����#	��
�������

%���	&	�'���	� %���	&	�'���	* %���	&	�'���	�

������	�+ ������	�, ������	*+ ������	�+

Fig. 3. Framework for Self-integration: View on a set of elements connected
via the middleware.

In general, we assume that a potentially large set of het-

erogeneous, autonomous entities participate in an open system

structure. For instance, this means that various entities interact

with each other, although they might belong to different

authorities or users (cf. Figure 3). In the following paragraphs,

we provide more details on the components middleware,

observer, and controller. However, we neglect the SuOC since

we do not interfere with the internal logic of any individual

system/component and only assume the existence of interfaces

to observe and manipulate it (i.e. configuration parameters).

A. Observer Component

Figure 4 illustrates the schematic architecture of the ob-

server component. It highlights the contained components and

shows the connections between them. In the following, these

components and their tasks are briefly introduced.

��������

��
��

��
���

�

-����	.	&	����

��'	����

�
��

���
�

������	
����

����
����

���������	
������
���

���������	
������
����

!�
���

��
��

��
��

�"
	�

��
�

��
���

���
�#

	
$�

��
�#	

��

�

��
���

�

0��������

0����������	
5��������

5�������	
6�������

������	!��������	
6�������

0����������	
�����������

0��7
��������

���������	
��������

8������

Fig. 4. Detailed view on the observer component.

Monitoring: The internal status of the system and the exter-

nal conditions (i.e., the environment, the status of cooperation

partners, and further influencing factors) are monitored and

aggregated towards an appropriate situation description (which

serves as the basis for the controller’s decision process).

Therefore, access to the local status variables of the SuOC

is needed (in case of a SoS structure of the SuOC, this holds

280

for all contained SuOCs). In addition, the current local sensor

readings must be available. This is accompanied by access

to the information basis provided by the middleware, i.e.,

neighbour discovery or trust management. The corresponding

values have to be monitored frequently and in response to the

decision interval of the controller [29], [25].

Observation model: Based on the ability to monitor status

variables, the observer has to decide which of them are needed

when building a situation description. This is accompanied

by a required specification of the values’ resolution (i.e. the

accuracy of the particular values). Therefore, the observer pos-

sesses an observation model that is configured by the controller

according to the current needs. A dynamic adaptation may

continue work presented in [30].

Preprocessing: Most of the values from the monitoring

process are based on sensor data (although there may also

be data archives for longer term reasoning and modelling).

Thus, they may be noisy, incomplete or subject to disturbances

(i.e., malfunctions of sensors), for instance. As a result, the

perceived data is characterised by different degrees of unrelia-

bility. Some of these effects can be countered by preprocessing

the data, e.g. filtering outlier values, estimating missing values,

calculating sliding averages. Hence, the raw data is processed

towards more consistent values – which can be done using

standard techniques such as Exponential Smoothing or Kalman

Filters (see e.g. [31] for an overview).

Prediction: Besides smoothing and preprocessing, a further

data-oriented task is to provide a sophisticated estimation of

how the values will develop in the near future. More precisely,

forecasts and predictions may be derived for time-series data

(or in some cases, model-driven simulation data). Here, a

variety of standard techniques is available. Recently, ensemble

concepts that combine several approaches at runtime and learn

the most promising combination strategy have been proposed

and can be used for this task [32].

Detection of mutual influences: Already in the examples

discussed in Section II, the existence of other systems with

direct and indirect influence on the system’s status and perfor-

mance has been identified as core challenge for mastering IwS.

Based on knowledge about available neighbours (i.e. those

systems that might have a certain influence or impact on the

system of interest), techniques to find correlations in behaviour

and mechanisms to detect hidden effects among these systems

and their behaviours are utilised to identify such influences.

First attempts to develop techniques that are able to fulfil this

task have been presented in [33] and can serve as basis for

more sophisticated solutions.

Emergence detection: As outlined in [15], systems that are

based on self-organised behaviour may entail emergent effects.

Since self-integration also controls the structural composition

of the overall system organisation, self-organisation appears

and emergence has to be considered. For this purpose, existing

work from the OC domain can be utilised, see [15], [16].

These techniques are applicable to detect emergent behaviour

in self-organised systems – based on such a detection, adap-

tive reactions need to be brought into operation to suppress

negative and support positive emergent effects.

Logging and data analysis: In order to allow users to com-

prehend and reconstruct the system’s behaviour, a history of

past situations and the corresponding actions is needed. In line

with the other methods discussed here, learning algorithms and

more sophisticated data mining methods could be used here

to identify new unexpected patterns (such as with manifold

discovery methods) or to generate new rules (such as with

grammatical inference methods) for reasoning and planning

programs to utilise in determining next actions and adaptations

by the system.

B. Controller Component

Figure 5 illustrates the schematic architecture of the con-

troller component. Technically, the control process is triggered

by the observer when providing the two input values: the

situation description and the performance measurement. The

former is typically realised as a data structure encapsulating

a set of values (i.e., a vector) – this is passed to the three

major control components: the sandbox rule generation, the

behaviour control, and the structure control units. Thereby, the

situation description serves as a basis for the corresponding

decision process as well as necessary modifications of the

utilised models (i.e., rule-base for SuOC adaptation, environ-

ment model, and entity model) according to correctness and

completeness. The latter input (the performance measure) is

utilised for adapting the models with respect to accuracy –

it is taken into account when evaluating the past action(s) or

delayed.

����������

��
��

��
��

-����	.	&	����

������

5�
��

��
��

����
����

������
����

!�
���

��
��

��
��

�"
	�

��
�

��
���

���
�#

	$
��

��
#	

��

�

��
���

�

8������

����7����	
���	����

5�����	
������

5����������	
������

���������	�������

-������	���
�����

*�9������	�������

-������	���
�����

�������	����	����������

�
����������	���
�����

����76�����
����

0����������	
�����������

���������	
������
����

Fig. 5. Detailed view on the controller component. The notation of relations
between components (i.e. highlighting the consecutive processing of inputs)
distinguishes between grey and black as well as solid and dashed lines. This
has been chosen to allow for better readability of the figure and the intention
to code a certain semantic meaning.

The first model base, the rule-base, provides a mapping

of situations to possible actions used to influence the SuOC.

Additionally, it contains evaluation criteria that estimate the

quality of this mapping. The second model base, the entity

models, contains knowledge about possible cooperation part-

ners. Most importantly, this incorporates predictions about the

expected behaviour of the entity. Such a prediction is necessary

to (a) select the most appropriate cooperation partner, and (b)

consider others’ behaviour for the own strategy. The third

281

model base, the environment model, contains all knowledge

that is neither related to its own status (including control

mechanism and SuOC), nor known to other entities. In ad-

dition to these control elements and models, the controller

maintains a model of itself that allows for understanding the

behaviour and determine the capabilities – this is found in the

self-description component. The information provided by this

component is used by the other entities when discovering and

selecting cooperation partners, and by the user to track the

system’s behaviour. In the following, components contained

in Figure 5 and their tasks are briefly introduced.

Model building and maintenance: As a fundamental part

of the controller component, models are needed that encap-

sulate the estimated knowledge about successful strategies,

expected outcome for certain actions, and predicted behaviour

of others. In order to establish such models in the first place,

design-time models can be used as a basis (see, e.g., the do-

main of Models@Runtime [34]), since a variety of design and

development processes makes use of model-driven engineering

in terms of behaviour modelling [35]. In addition, these models

have to be updated according to observed conditions – with

the goal to have as appropriate descriptions as possible that

can be used to derive highly accurate predictions. Therefore,

machine learning techniques can be utilised as well as standard

statistics. These can be augmented by trust and reliability

measures provided by the observer.

Behaviour control: Based on the models that reflect their

own behaviour and its success, the first control loop of the

controller decides about necessary adaptations of the SuOC’s

behaviour, i.e., the productive part of the system. Therefore,

the control interfaces access parameter settings and choose

techniques (algorithms) to be applied. Such a decision can be

realised using pre-defined logic (if the situation description

conforms to a given class, a certain action is applied) or

enhanced with learning capabilities. In OC systems, typically

rule-based reinforcement learning techniques are applied to

cover this task [25], [36]. This concept can be reused here.

Structure control: The relations to other systems depend on

varying influence factors, e.g., the degree to which a specific

input is needed (which might be only available from a limited

number of other entities), the reliability of an entity based on

own experiences, the reputation of an entity based on others’

ratings, its location, its availability, and so on. Furthermore,

the detection of influences of another element’s actions on

the system itself turns an indirect relation into a direct one

and consequently might allow for changing the impact. The

intended modification of relationships and the selection of

cooperation partners based on the aforementioned attributes

allows for a continuous control process. Depending on the

currently active goal function, the structural integration status

is evaluated continuously. Therefore, metrics such as robust-

ness [37], degree of self-organisation [38], or trustworthiness

[39] can be utilised.

Runtime learning: In order to improve the decisions over

time (i.e. behaviour and structure control), a feedback learning

mechanism is utilised. The current performance as quantified

by the observer in relation to the current goal is taken into

account and used as reward in reinforcement learning [40]. To

allow for user-understandable behaviour (i.e., traceable and

human-repeatable decisions), rule-based systems that make

use of a condition-to-action mapping are utilised [25]. This

can be combined with sandbox learning concepts similar to

the ‘anytime learning’ approach presented by Grefenstette and

Ramsey [41].

Observation model adaptation: The observation model

within the observer component defines which attributes are

currently monitored, which data is gathered, and in what

resolution. This model is dynamically adapted at runtime

by the controller part. The idea here is that in some cases

a dynamic adaptation may reduce effort since it allows for

switching between abstract (or high-level; reduced number

of observations, reduced frequency, reduced resolution, and

consequently reduced storage and computation demands) to

more precise low-level descriptions. Therefore, concepts such

as the OC-based ideas presented in [30] can be used.

Self-description: As a basis for the system discovery

service as provided by the middleware (and possibly the

model building taking place in each entity), each system

has to provide a self-description of capabilities and actual

status. This is closely related to how the middleware solution

provides access to the information and which protocol is used.

Reflection capabilities, as seen in [42] can be used to support

this.

C. Distributed Middleware

The third fundamental part of the framework is a middle-

ware solution that allows for several distributed tasks. From an

architectural point of view, it encapsulates the communication

infrastructure and provides well-designed interfaces to all

participating entities. In the following paragraphs, the main

tasks are outlined and possible approaches to implement these

tasks are briefly highlighted.

Communication platform: As a fundamental basis for

the cooperation of distributed entities, data communication

mechanisms are required. The rise of mobile and stationary

communication, especially using the Internet, made distributed

and remote data ubiquitously available. In addition, current

trends such as the Internet-of-Things [43] showed that a

large part of formerly isolated systems are coupled together

using standard communication technology. In this work, we

assume availability of a communication medium, such as cable

or WiFi, as well as the corresponding data communication

protocols, such as the ubiquitous TCP/IP standards. We further

assume that encryption technology is in place allowing for

identification and authorisation of elements.

Trust Management: Trust and reliability information are

perceived based on one’s experiences. In addition, distributed

entities need to exchange information to be able to deal

with unknown elements or those with limited experiences.

Therefore, computational trust [44] and reliability estimations

need to be established in a distributed manner, potentially

augmented with a reputation system. Several concepts are

282

available in literature that can be utilised to cover this task,

e.g., [45], [46].

Neighbour Discovery: One major problem when consid-

ering indirect influences and dependencies among distributed

elements is the missing awareness of others’ influence. A

prerequisite to allow for such an awareness is initial in-

formation about which elements might potentially impact

a system’s own behaviour; accordingly, the system has to

become, in the first place, of its neighbours10 Hence, the

middleware has to provide a neighbour discovery mechanism

that updates a (local) neighbour cache. In order to allow for

such a mechanism, existing techniques can be applied: Either

simply by using broadcast procedures or by more advanced

neighbour discovery routines from the data networking domain

(especially from mobile ad-hoc networks, see [47]). More

speculatively, new data mining techniques may enable one

to gauge the most important variables impacting a complex

system and to use those most ’important variables’ as the

defining metric for determining nearest neighbour given that

specific operational context.

Capability description: In order to allow for an appropriate

selection of interaction partners, an up-to-date description has

to be provided as a basis for this decision process. Technically,

solutions such as ontologies [48] from the semantic web

domain [49] can be utilised: the current capabilities and further

properties of a system can be expressed in such a way that

all other elements that are familiar with the same terminology

understand the information in an automated (i.e., machine-

processable) way.

V. CONCLUSION

This paper has motivated the need for novel solutions for

mastering Interwoven Systems (IwS) by developing active

interweaving capabilities. We briefly discussed several specific

examples where the complexity of interconnected, indirectly

coupled systems led to outages and failures. Afterwards, we

argued that the underlying trend towards coupling and mutual

influences is expected to increase dramatically in the near

future.

As a reaction to these challenges, we initially defined

common characteristics of the underlying problem class, to

which we refer as IwS. Based on these characteristics, we

have developed an architectural concept for self-interweaving

entities that follows the ideas of the Organic Computing

Observer/Controller approach. This architectural concept dis-

tinguishes between the productive part, control mechanism,

and distributed middleware. We have specified the necessary

components and outlined how the desired functionality can

be achieved. In future work, we will develop corresponding

solutions and demonstrate the benefit within appropriate ap-

plication scenarios.

10The term “neighbour” is used as representative for all other systems that
either directly interact with the particular IwS element or indirectly influence
it. This does not necessarily require a spatial or functional neighbourhood.

REFERENCES

[1] M. Weiser, “The computer for the 21st century,” Scientific American,
vol. 265, no. 3, pp. 66–75, September 1991.

[2] F. Allerding, B. Becker, and H. Schmeck, “Integration intelligenter
Steuerungskomponenten in reale smart-home-Umgebungen,” in Infor-
matik 2010: Service Science – neue Perspektiven für die Informatik, GI
Jahrestagung, held September 2010 in Leipzig, Germany, vol. 1, Bonn,
Germany, 2010, pp. 455–460.

[3] E. Guizzo. (2011, October) How google’s self-
driving car works. IEEE. [Online]. Avail-
able: http://spectrum.ieee.org/automaton/robotics/artificial-intelligence/
how-google-self-driving-car-works(accessed2015-12-12)

[4] E. McKenna, I. Richardson, and M. Thomson, “Smart meter data:
Balancing consumer privacy concerns with legitimate applications,”
Energy Policy, vol. 41, no. 0, pp. 807 – 814, 2012.

[5] S. Tomforde, I. Zgeras, J. Hähner, and C. Müller-Schloer, “Adaptive
control of Wireless Sensor Networks,” in Proceedings of the 7th Inter-
national Conference on Autonomic and Trusted Computing (ATC’10),
held in Xi’an, China (October 26-29, 2010), 2010, pp. 77 – 91.

[6] J. Augusto, V. Callaghan, D. Cook, A. Kameas, and I. Satoh, “Intelligent
environments: a manifesto,” Springer Open Access: Human-centric
Computing and Information Sciences, vol. 3, no. 12, 2013.

[7] H. Elzabadani, A. Helal, B. Abdulrazak, and E. Jansen, “Self-sensing
Spaces: Smart Plugs For Smart Environments,” in From Smart Home to
Smart Care, S. Giroux and H. Pigot, Eds. IOS Press, 2005, pp. 91–98.

[8] P. McKinley, S. Sadjadi, E. Kasten, and B. Cheng, “Composing Adaptive
Software,” IEEE Computer, vol. 37, no. 7, pp. 56–64, Jul. 2004.

[9] C. Müller-Schloer, H. Schmeck, and T. Ungerer, Eds., Organic Comput-
ing – A Paradigm Shift for Complex Systems, ser. Autonomic Systems.
Basel, CH: Birkhäuser Verlag, 2011.

[10] S. Tomforde, J. Hähner, H. Seebach, W. Reif, B. Sick, A. Wacker,
and I. Scholtes, “Engineering and Mastering Interwoven Systems,”
in ARCS 2014 - 27th International Conference on Architecture of
Computing Systems, Workshop Proceedings, February 25-28, 2014,
Luebeck, Germany, University of Luebeck, Institute of Computer
Engineering, 2014, pp. 1–8. [Online]. Available: http://ieeexplore.ieee.
org/xpl/articleDetails.jsp?arnumber=6775093

[11] K. L. Bellman, S. Tomforde, and R. P. Würtz, “Interwoven Systems:
Self-Improving Systems Integration,” in Eighth IEEE International
Conference on Self-Adaptive and Self-Organizing Systems Workshops,
SASOW 2014, London, UK, Sept. 8-12, 2014, 2014, pp. 123–127.

[12] C. Müller-Schloer, “Organic Computing: On the feasibility of controlled
emergence,” in 2nd IEEE/ACM/IFIP Int. Conf. on Hardware/Software
Codesign and System Synthesis (CODES+ISSS), Sept. 8-10, 2004,
Stockholm, Sweden. ACM Press., 2004, pp. 2–5.

[13] R. L. Glass, Facts and Fallacies of Software Engineering, ser. Agile
Software Development. Boston, US: Addison Wesley, 2002.

[14] G. E. Moore, “Cramming more components onto integrated circuits,”
Electronics Magazine, vol. 38, no. 8, pp. 114–117, 1965.

[15] M. Mnif and C. Müller-Schloer, “Quantitative emergence,” in Proc. of
the 2006 IEEE Mountain Workshop on Adaptive and Learning Systems,
held 24 Jul - 26 Jul 2006, Utah State University College of Engineering
Logan, USA. IEEE, 2006, pp. 78–84.

[16] D. Fisch, M. Jänicke, B. Sick, and C. Müller-Schloer, “Quantitative
Emergence – A Refined Approach Based on Divergence Measures,” in
Proceedings of IEEE Conference on Self-Adaptive and Self-Organising
Systems (SASO10), held in Budapest, Hungary, September 27-October
1, 2010, Budapest, HU, 2010, pp. 94–103.

[17] J.-P. Steghöfer, G. Anders, F. Siefert, and W. Reif, “A System of Systems
Approach to the Evolutionary Transformation of Power Management
Systems,” in Informatik 2013, 43. Jahrestagung der Gesellschaft für
Informatik e.V. (GI), Informatik angepasst an Mensch, Organisation und
Umwelt, 16.-20. September 2013, Koblenz, ser. LNI, vol. 220, 2013, pp.
1500–1515.

[18] H.-J. Appelrath, H. Kagermann, and C. Mayer, “Future energy grid –
migration to the internet of energy (acatech STUDY),” acatech, Tech.
Rep., 2012.

[19] P. Rodriguez, “The - compromised? - future of natural gas (L’avenir -
compromis? - du gaz naturel),” Gaz d’Aujourd’hui (3), vol. 40, no. 30,
pp. 30–31, 2009.

[20] H. Prothmann, S. Tomforde, J. Branke, J. Hähner, C. Müller-Schloer,
and H. Schmeck, “Organic Traffic Control,” in Organic Computing – A

283

Paradigm Shift for Complex Systems, ser. Autonomic Systems. Basel,
CH: Birkhäuser Verlag, 2011, pp. 431–446.

[21] A. Motro and P. Smets, Uncertainty Management in Information Systems
– From Needs to Solutions. Springer Verlag, 1997.

[22] M. W. Maier, “Architecting principles for systems-of-systems,” Systems
Engineering, vol. 1, no. 4, pp. 267–284, 1998.

[23] A. P. Sage and C. Cuppan, “On the Systems Engineering and Manage-
ment of Systems of Systems and Federations of Systems,” Information,
Knowledge, Systems Management, vol. 2, no. 4, pp. 325–345, 2001.

[24] J. Kephart and D. Chess, “The Vision of Autonomic Computing,” IEEE
Computer, vol. 36, no. 1, pp. 41–50, 2003.

[25] S. Tomforde, H. Prothmann, J. Branke, J. Hähner, M. Mnif, C. Müller-
Schloer, U. Richter, and H. Schmeck, “Observation and Control of Or-
ganic Systems,” in Organic Computing – A Paradigm Shift for Complex
Systems, ser. Autonomic Systems, C. Müller-Schloer, H. Schmeck, and
T. Ungerer, Eds. Birkhäuser Verlag, 2011, pp. 325–338.

[26] H. T. Gilkey, “New Air Heating Methods,” in New methods of heating
buildings: a research correlation conference conducted by the Building
Research Institute, Division of Engineering and Industrial Research,
as one of the programs of the BRI fall conferences, November 1959.
Washigton D.C., USA: National Research Council / Building Research
Institute, 1960, pp. 47–56, oCLC 184031.

[27] W. Hasselbring, “Information System Integration,” Commun. ACM,
vol. 43, no. 6, pp. 32–38, Jun. 2000.

[28] K. L. Bellman and C. Landauer, “Integration science: more than putting
pieces together,” Aerospace Conference Proceedings, vol. 4, no. 1, p.
397 409, 2000.

[29] S. Tomforde, E. Cakar, and J. Hähner, “Dynamic Control of Network
Protocols - A new vision for future self-organised networks,” in Pro-
ceedings of the 6th International Conference on Informatics in Control,
Automation, and Robotics (ICINCO’09), held in Milan, Italy (2 - 5 July,
2009), J. Filipe, J. A. Cetto, and J.-L. Ferrier, Eds. Milan: INSTICC,
July 2009, pp. 285 – 290.

[30] Y. Bernard, Trust-aware Agents for Self-organising Computing Systems.
Herzogenrath, Germany: Shaker Verlag, 2014.

[31] F. M. Dekking, C. Kraaikamp, H. P. Lopuhaä, and L. E. Meester, A
Modern Introduction to Probability and Statistics: Understanding Why
and How, ser. Springer Texts in Statistics. London, UK: Springer
Verlag, 2007.

[32] S. Tomforde, M. Sommer, and J. Hähner, “Learning to Predict: Auto-
mated Management and Correction of Prediction Techniques for Traffic
Flows within a Self-organised Traffic Control System,” in Proc. of 11th
International Congress on Advances in Civil Engineering (ACE14), held
21–25 October, 2014 in Istanbul, Turkey, 2014, pp. 1–6.

[33] S. Rudolph, S. Tomforde, B. Sick, and J. Hähner, “A Mutual Influence
Detection Algorithm for Systems with Local Performance Measure-
ment,” in Proceedings of the 9th IEEE International Conference on
Self-adapting and Self-organising Systems (SASO15), held September
21st to September 25th in Boston, USA, 2015, pp. 144–150.

[34] U. Assmann, N. Bencomo, B. Cheng, and R. France, “Mod-
els@run.time,” Dagstuhl Reports, vol. 1, no. 11, pp. 91–123, 2011.

[35] H. J. Goldsby and B. Cheng, “Automatically Generating Behavioural
Models of Adaptive Systems to Address Uncertainty,” in Proc. of
Model Driven Engineering Languages and Systems. 11th International
Conference, MoDELS 2008, Toulouse, France, September 28 - October
3, ser. LNCS 5301. Springer, 2008, pp. 568–583.

[36] S. Tomforde, A. Brameshuber, J. Hähner, and C. Müller-Schloer, “Re-
stricted On-line Learning in Real-world Systems,” in Proc. of the IEEE
Congress on Evolutionary Computation (CEC11), held 05 Jun - 08 Jun
2011 in New Orleans, USA. IEEE, 2011, pp. 1628 – 1635.

[37] H. Schmeck, C. Müller-Schloer, E. Çakar, M. Mnif, and U. Richter,
“Adaptivity and Self-organisation in Organic Computing Systems,” ACM
Transactions on Autonomous and Adaptive Systems (TAAS), vol. 5, no. 3,
pp. 1–32, 2010.

[38] J. Kantert, S. Tomforde, and C. Müller-Schloer, “Measuring Self-
Organisation in Distributed Systems by External Observation,” in Proc.
of the 28th GI/ITG International Conference on Architecture of Com-
puting Systems – ARCS Workshops, held 24 - 27 March 2015 in Porto,
Portugal, Workshop on Self-Optimisation in Organic and Autonomic
Computing Systems (SAOS15). VDE, 2015, pp. 1–8.

[39] R. Kiefhaber, R. Jahr, N. Msadek, and T. Ungerer, “Ranking of Direct
Trust, Confidence, and Reputation in an Abstract System with Unreliable
Components,” in Proc. of ATC13, held in Vietri sul Mare, Sorrento
Peninsula, Italy, December 18-21, 2013, 2013, pp. 388–395.

[40] T. M. Mitchell, Machine Learning, ser. Computer Science Series.
Singapure: McGraw-Hill Companies, Inc., 1997.

[41] J. Grefenstette and C. L. Ramsey, “An Approach to Anytime Learning,”
in Proc. of 9th Int. Works. on Machine Learning, 1992, pp. 189–195.

[42] C. Landauer and K. L. Bellman, “Self-Modeling Systems,” in Self-
Adaptive Software, ser. LNCS. Srpringer, 2002, vol. 2614, pp. 238–256.

[43] S. Greengard, The Internet of Things, ser. MIT Press Essential Knowl-
edge. MIT Press, 2015, iSBN-13: 978-0262527736.

[44] C. Castelfranchi and R. Falcone, Trust Theory: A Socio-Cognitive and
Computational Model. John Wiley & Sons, 2010, vol. 18.

[45] J. Kantert, H. Scharf, S. Edenhofer, S. Tomforde, J. Hähner, and
C. Müller-Schloer, “A Graph Analysis Approach to Detect Attacks
in Trusted Desktop Grids at Runtime,” in Proceedings of SASO 2014
(IEEE International Conferences on Self-Adaptive and Self-Organizing
Systems), 08. - 12. September 2014, London, U.K., 2014, pp. 80 – 89.

[46] J. Kantert, S. Edenhofer, S. Tomforde, and C. Müller-Schloer, “Repre-
sentation of trust and reputation in self-managed computing systems,”
in 13th IEEE International Conference on Dependable, Autonomic and
Secure Computing, DASC 2015, Liverpool, UK, October 26-28, 2015,
2015, pp. 1827–1834.

[47] J. Loo, J. L. Mauri, and J. H. Ortiz, Mobile Ad Hoc Networks: Current
Status and Future Trends. CRC Press, 2011.

[48] T. Gruber, “A translation approach to portable ontologies,” Knowledge
Aquisition, vol. 5, no. 2, pp. 199–220, 1993.

[49] D. Oberle, N. Guarino, and S. Staab, “What is an ontology?” in
Handbook on Ontologies, ser. International Handbooks on Information
Systems, S. Staab and R. Studer, Eds. Springer, 2009, pp. 1–17.

284

