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Abstract— Advanced Rider Assistance Systems (ARAS) for 7
powered two-wheelers improve driving behaviour and safety. \
Further developments of intelligent vehicles will also include .‘(‘,(\
video-based systems, which are successfully deployed in cars. é N
Porting such modules to motorcycles, the camera pose has \\; @ 4
to be taken into account, as e.g. large roll angles produce *zil

significant variations in the recorded images. Therefore, roll

angle estimation is an important task for the development

of various kinds of ARAS. This study introduces alternative

approaches based on inertial measurement units (IMU) as well X \\']“

as video only. The latter learns orientation distributions of ()

image gradients that code the current roll angle. Until now

only preliminary results on synthetic data have been published.

Here, an evaluation on real video data will be presented along

with three valuable improvements and an extensive parameter Fig. 1. lllustration of the motorcycle coordinate system.

optimisation using the Covariance Matrix Adaptation Evolution

Strategy. For comparison of the very dissimilar approaches a

test vehicle is equipped with IMU, camera and a highly accurate » ) .

reference sensor. The results state high performance of about instance, recognition of obstacles, lane keeping, or ¢raffi

2 degrees error for the improved vision method and, therefore sign classification. Almost all of those applications rely o

proofs the proposed concept on real-world data. The IMU-based g rather constant orientation of the camera, which applies

Kalman filter estimation performed on par. As a naive result to systems mounted on a car. Transferring camera-based

averaging of both estimates already increased performance an . L .

elaborate fusion of the proposed methods is expected to yield assistance SYSteme or at IeaS'F their functlpnal back-ends t

further improvements. motorcycles is desirable but gives again rise to the task of

estimating the vehicle orientation. In comparison to a car-

mounted camera the PTW's roll angle accounts for the most
Driver assistance systems increase safety and comfort agignificant change in the recorded images.

thus become more and more important also for powered two- Recently, Schlipsing et al. proposed a purely vision-based

wheelers (PTW). Anti-Lock and Combined Brake Systemgpproach to roll angle estimation [1]. The novel method

(ABS/CBS) as well as Traction Control Systems (TCSjs based on learning orientation distributions of the image

are the most common Advanced Rider Assistance Systemjfadient that code the roll angle of the camera. Preliminary

(ARAS) on modern PTW. These and other applications airgxperiments were conducted on synthetically rolled images

at the stability of the vehicle in order to improve drivingfrom a car-mounted camera and stated an error of about

behaviour and safety. In this context the estimation of thg degrees.

vehicle’s orientation and particularly the roll angle,. itee In this study, three alternative approaches are introduced

angle between the road plane and the inclined vehicle, is @pg evaluated — two different IMU-based methods and an

essential task. Algorithms based on an inertial measuremesktension to [1], only relying on video images from a front-

unit (IMU) estimate the orientation of a vehicle by comb@in mounted camera. For the latter, three valuable enhancement

multiple sensory inputs, i. e. roll rate, velocity, accatén, are proposed and an evolutionary optimisation is applied

and GPS information. o _ to the essential parameters using the Covariance Matrix
For current and future developments in driver assistanCRdaptation Evolution Strategy (CMA-ES). The evaluation

video-based systems are very popular and promise to provigedone on real data, recorded from the same test vehicle,

information needed for safe, comfortable, and economighich at the same time collects ground truth data from a

driving. Many applications deployed in cars and truck$jghly accurate IMU (i. e. ADMA-sensor) as a reference.

already make use of video sensors in order to realise, for there are approaches to estimate vehicle states by in-

tegration of several sensor responses, i.e. velocity,l-acce

I. INTRODUCTION
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The upcoming section briefly recalls the video—basetﬁ
method and points out its limitations, proposed extensionssz
and the applied evolutionary optimisation strategy. Sedil s
presents two novel approaches to IMU-based roll-angle estg
mation. The experimental setup including the descriptibn 02
used sensors, the driving site and the applied test proeeduf atatan: ‘ ; ; ! ! !
will be given in Sec. IV. Experimental results in Sec. V. o 20 40 60 80 100 120 140 160 180
will briefly compare the performance of the methods based angle/ degree
on independent sensors and evaluate the performance gained
from the extension and optimisation of the video-base
approach. In the final Sec. VI findings are summarised ar
conclusions concerning the problem of roll angle estinmatio
for motorcycles are drawn.

II. VIDEO-BASED ROLL ANGLE ESTIMATION (a) red /14° (b) green /1° (c) blue / 14°

. . Fig. 2. Normalised orientation histograms of three closetyrded images
Typical road scenes feature recurring geometry and COMag their corresponding ground truth roll angle.

positions of objects. Recording those scenes, charaateris

orientation distributions can be found and learnt from imag

gradients that code the roll angle of the motorcycle. B¥B. Limitations

correlating the statistics (orientation histogram) of aghs Due to the following considerations, it was unclear, to
image with the learnt counterpart, the displacement canat extent the method would also perform well on real-
be derived. This novel approach was introduced in [llyorig data: Evaluation was conducted on data from a car-
The main motivation was a cost-efficient porting of videooynted camera — simulating the rolling behaviour by simple

based assistance modules originally developed for cars ji3age rotations, which is not sufficient to model the record-
motorcycles. Preliminary results showed great promlseaforing under a specific roll angle. Given various angles, the

robust estimation from video only. camera will record different parts of the scene in different
perspectives. Moreover, the driving behaviour was modelle
A. Original method by a sine-wave, which is not sufficiently realistic. Vibrats

The learning algorithm is divided into training and testand pitch angles_due to accelerations are more intense on a
maotorcycle than in a car.

phase. Each processed image is represented by its gradlen{.hus the approach was now evaluated on a two-wheeled

orientation distribution. It is therefor transformed tocavt . . . .
. : : ) test vehicle in order to quantify the error on realistic data
dimensional angle histogram, capturing the occurrence fre : .
i X and propose valuable extensions to the base algorithm.
guency of reasonable angle intervals (see Fig. 2). In order

to favour meaningful gradients, each orientation entry i§. Extensions

weighted by its energy. In some situations the main gradient orientations can
During training, which is performed offline, the orientatio e isturbed by strong local gradients, e.g. introduced by
of the gradients are shifted by the corresponding roll anglgyecial lane markings or patterns. Those situations cam oft
(ground truth) towards a horizontal alignment. Thus, a meagaq to very incorrect measurements, still featuring a high
histogram, coding the orientation distribution with resp®  ¢qrelation coefficient. In order to increase robustneiss, t
the horizon, can be derived over time. roll angle search algorithm was therefore extended by -ntro
During the test phase one is able to correlate each imageg{icing a priority interval around the current estimate. The
histogram with the learnt one. Therefor it is translated by gjze of that range is introduced as an additional parameter
range of reasonable roll angles, i[e40°,40°]. The straight for optimisation. As a side-effect, processing time desesa
forward solution is to pick the translation with the maximumsigniﬁcanuy_
normalised cross-correlation (NCC) and perform quadratic The Kalman filter used to integrate and stabilise the indi-
interpolation within the direct neighbourhood. vidual estimates of angle and rate was originally initiadis
Similarly, the roll rate is estimated. However, instead ofuith physically reasonable and constant covariances é&e st
the comparison with the learnt histogram, the correlationoise and observation noises. The optimisation of those pa-
with one of the preceding images is maximised. Given theameters is discussed in the following subsection. Morgove
recording frequency of the camera, the measured roll anglge behaviour of the filter is enhanced by dynamically adjust
can be derived in degree per second. Finally, both values argy the noise covariances depending on the normalised-cross
fed into a linear Kalman filter which is able to produce acorrelation coefficient of each measurement. For tramgjati
smooth estimate of the roll angle, considering the physicAlCC measures to noise (standard deviatior)
relationship between the observed measures. For a detailed
description and relevant formulas please refer to [1]. o= f(¢): [-1,1] = (0, omay )



an inverse linear mapping starting at an NCC threslag|d

) I1l. IMU- BASED ROLL ANGLE ESTIMATION
is proposed.

After stating the involved driving dynamics, this section
o) = {pr;‘mixl(c — Cmin) + Tmax ;€ > Cmin @ introduces the two approaches based on inertial sensors.
Tmax , Otherwise A. Motorcycle Driving Dynamics
One way to calculate the roll angkeis the integration of
the roll rate\. This is described by the following equation:

|
AN A= / A dt ©)
|
- ‘ According to Weidele [2], the tangent of the physical
1 0 Cmin roll angle \,, is equal to the ratio of lateral force and
NCC coefficient gravitational force (for steady-state rides). This yiettle

Fig. 3. Linear mapping of correlation measure to the Kalmanriflte fOIlOWIng relat|0n', dgpendmg on lateral acceleration and
observation noise. gravity acceleratiory:
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As negative correlation should never be regarded as a good tan App = = _ (4)

match,cmin > 0 is a reasonable limitation (see Fig. 3). . Fo g o

A third enhancement is proposed in order to filter the cor- 1N€ lateral accelerationy depends on the longitudinal
relation results. Due to the discretisation introducedugh ~Vehicle velocityux and the horizontal yaw ratg as follow-
the fixed histogram resolution (i.e. degree per histograffd (neglecting a side slip rate of the motorcycle):
bin), artefacts are likely to emerge when correlating two ay = —vx - ) (5)

histograms. Therefore, a one-dimensional binomial filter . . ) )
is applied to the correlation array during angle and rate 'NSerting equation (5) into (4) and transforming the hor-
estimation izontal yaw ratey into the measured body yaw ratg,

results:

D. Parameter optimisation fan Ay = X Yy ©)
P g - Ccos A

During training and testing the described algorithm re-
quires the choice of parameters. Some parameters result fro With the assumptioni,, = 0.9-A, equation (6) delivers the
the experimental setup (cf. Sec. IV), e.g. the maximurfPllowing relation between roll anglg, longitudinal vehicle
possible roll angle and rate. The following settings wer&e€locity vx and body yaw rate)y:
optimised in order to approximate the optimal configuration

Roll rate lookback: The number of frames between the tan (0.9 A) - cos A = —
current and the past image, that are used to estimate the roll . )
rate. For the sake of real-valued optimisation the estisnate” Combined Filter Method
of the two closest integer values are interpolated linearly ~ In & former study, Seiniger et al. [3] developed a method

Angle search range; The radius of the search interval for calculating the roll angle that combines informatioorfr
around the current estimate (cf. Sec. 1I-C). multiple vehicle dynamics sensors. In this paper, a sinaglifi

Observation noises; Maximal noise of the observations Version of this method is used, employing the equations (3)
used for Kalman filtering (given in standard deviations)eThand (7).
observation noises are tuned with respect to a constaet statA roll angle calculation based on equation (7) is valid
noise of 1. during steady-state riding. During dynamic manoeuvres, a

NCC thresholds: Minimal correlation of a measurement c@lculation by using equation (3) yields good results. In
for which the observation noise is decreased (for both angf¥her situations, integration errors are not negligible. A
and rate individually). cgmblnatlon Iby using a low pass and a high pass filter (see

The optimisation goal is the minimisation of the root mearf19- 4) exploits the advantages of both calculation methods
squared error (RMSE) of the angle estimate over a sequence
of images. As the gradient of the fithess function cannot

be computed, direct search is performed in a real-valued X Low
parameter space. Pass
Covariance Matrix Adaption evolution strategy (CMA- Y Filter

vx v
Y

()

ES [10] is a variable-metric evolutionary algorithm which A
represents the “state-of-the-art in evolutionary optatien . High
in real-valued search spaces” [11]. Several runs were con- A— '[ Pass
ducted in parallel, each with a random starting point, ob- Filter

serving the median RMSE until convergence. Results of the
parameter evolution will be presented in Sec. V. Fig. 4. Basic Principle of Combined Filter Method



C. Kalman Filter Method

A new approach employs the same equations (3) and
as the presented Combined Filter Method. However, inste
of a combination of low and high pass filters, an Extende
Kalman Filter with the following state vector is used:

X = [vx,aX,A,}\]T (8)

Equation (3) is implemented by using a Constant Tur
Rate Model for describing the roll motion. Equation (7)

is implemented by introducing the “artificial” measure- Fig. 6. Satellite image of the test site (sourGzogle Maps)
menty,;. :
Yjy = Vx -y = —tan(0.9-A) -cosA- g C) The video recordings were acquired independent from the

gn—board hardware. The used CCD-camera iBrasilica
GC1380CH with a resolution ofl.3 Mpixels and a Gigabit
ethernet interface. It was mounted on the vehicle in front
of the wind-shield, facing ahead. Data was recorded with a
frame rate of 30 images per second on a standard laptop

With respect to the measurement of longitudinal vehicl
velocity vx and the roll rate), this yields the following
measurement model:

A A placed in the backpack of the rider. For later synchronisa-
Y= 1% | =[—tan(0.9-1) -cosA-g (10)  tion with ground truth data an additional GPS signal was
vxX (55'¢ recorded.
IV. EXPERIMENTAL SETUP B. Test Environment and Manoeuvres

This section will explain the sensory setup of the test test drives were conducted on TU Darmstadt's proving
vehicle, introduce the driving environment and point 0@ th 5.ound, Griesheim Airfield, in foggy cold conditions. While
conditions of the conducted experimental session. diffused light is helpful for a good scene contrast, watepdr
on the lens blur the view. The test site offers a large runway,

A. Motorcycle Sensors, Video and Data Acquisition _ h ) -
taxiway, a turning circle and the area in front of the cdntro

The' on-board mgasdure;ne?t Senép’ iIIustrateiﬂgMFigb % er with several buildings nearby (cf. Fig. 6). The asphal
comprises wo standard wheel spee sensors, a S- a¥frace partly features straight and circular lane masking
low-cost IMU mounted closely to the vehicle Center ofIi e they can be found on urban streets or motorways
G_raV|ty (C.:QG) below the rider’s seat, and.a GPS-support evertheless, in comparison to the acquisition of vide@ dat
high-precision IMU (Genesys ADMA-G) in the left side- .

n real traffic scenarios the test site has a limited diversit
case for reference measurements of ground truth data. Tlh ki

measured signals are transferred with individually optedi
sampling rates via a CAN-Bus-System. A modified Car-P
in the right side-case is running carhs vii@bsoftware,
serving for data-acquisition and control of the test vedicl
HMI.

®rhe cold and partially wet road surface did not allow
xtreme driving manoeuvres. However, a set of generic
anoeuvres with roll angles of up t®° was performed, in
order to simulate real driving on rural roads. Among others,
these are straight driving, constant and variable raditusere
ing, swerving, and slalom. All manoeuvres were conducted
in steady state or superimposed with acceleration or bgakin
Modified Car- which results in considerable pitch angles. Moreover, as th
PCrunning road-unevenness of the airfield is representative for rural

Camera data
acquisition on

i i ® . . . . . . .
Laptopwith | _ | carhs viilab roads, a realistic vertical excitation of the vehicle andied-
| separate GPS for vehicle X
5 sensor data- picture can be assumed.
acquisition and The goal of the experiments is an objective evaluation

HMI control

of the presented approaches to roll angle estimation and an
analysis of their error characteristics. In particulathahese
first experiments on real data, the feasibility of the novel

High-Precision

'S’L";’p‘;";:h GPS image processing method is assessed in practice.
(ADMA-G) V. RESULTS
. Experiments were conducted on five sequences — two
Low-CostIMUﬁ = for training and optlm_lsatlon of the cgmera—pased methods
Toretures:sensordynamics | Genesys)| Cl0S@ t0 COG 2 L ¥ and three for evaluation (I — Ill). This section features a

brief comparison of the presented approaches, followed by
Fig. 5. Setup of test motorcycle a detailed optimisation analysis of the vision methods.
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Fig. 7. Reference values (ADMA) and estimates of the roll arfgt the IMU-based Kalman filter method (IMU) and the Videodzhsnethod (Video)

A. Comparison

Figure 7 shows the determined values of the roll angle fog
an excerpt of sequence lll. Table | contains the root mea@
squared errors (RMSE) for all approaches and sequences.
Among the IMU-based approaches, the Kalman filter metho@
shows superior performance for the analysed test set. The
proposed extended image processing approach reaches | | | | | | | |
similar performance level and outperforms its original. (cf o 20 40 60 80 100 120 140 160 180
Sec. V-B). angle/degree

Fig. 8. Normalised histogram of the learnt gradient anglesdlution
TABLE | e
1/2°) from the training sequence.

rence

RESULTS(RMSE)FOR THREE DATASET GIVEN IN DEGREE

method / sequence | 1l 11 . i i L

. — Evolution starting points were chosen randomly within
Vision — original 3.57 | 5.48 | 3.60 . .

_ reasonable parameter intervals. In order to increase tie pr
LTS | [ [ 2 ability of finding the globally optimal solution, nine evaion
IMU — Combined filter | 3.75 | 4.06 | 3.73 runs were conducted in parallel for each experiment. Figure
IMU — Kalman filter 201 | 223 | 2.04 shows the median RMSE over the number of iteration. The
Mean Vision/ IMU ‘ 1.20 ‘ 137 ‘ 168 final training error for both methods is stated numericatly i

Tab. 1.

With regard to the ADMA reference, the Kalman filter _TWO conclusions can be. draw_n fTF’m those evidences.
method and the video-based method show their largeSt'Sty: the novel approach yields significantly lower eroo
deviations at different times. As indicated by the last ros€ training sequence and, secondly, the histogram résolut
of Tab. I, already a naive averaging of the independeﬂoes n_ot |r_1fluence the performance much. In_partlcu!ar, a
estimates causes a significant decrease in error. Therefdfgselution finer than 1/2does not pay off - especially taking
a more elaborate combination of the two methods, taking'€ Increasing computational complexity into account.
detailed error analysis into account, is expected to yield In order to assess the generalisation behaviour, both meth-

further improvements.

B. Analysis of video-based method TABLE I

. RESULTS(RMSE)OF ORIGINAL AND PROPOSED METHOD FOR EACH OF
One of the training sequences was used to learn the statis-
THE TESTED HISTOGRAM RESOLUTIONS{IN DEGREE) AFTER

tics of the given camera setup, the other for minimising the

error through CMA-ES for both original and extended (new) OPTIMISATION.
method. For computational efficiency of the search, several
fixed angle histogram resolutions were chosen betwgéhn 4 R 2

4 . ) . original 345 3.40 357 548 6.80 4.06
and4°. Figure 8 depicts the learnt histogram for a resolution £
of 1/2° new 1.97 207 203 209 215 261

method 1 1 1 1 2 4
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(a) Original method (3 parameters). (b) Proposed method (6 parameters).
Fig. 9. Results of the CMA-ES optimisation for selected hgston resolutions((.25° — 4°). While several thousands of iterations were performed, the

plots limits to the most relevant excerpts until convergence.

ods were evaluated on the three test sequences with the b&stong other improvements, mapping the involved correla-
parameter set, documented in Tab. Ill. The optimal intervdion confidences to observation noises for the Kalman filter
for estimating the roll rate translates to 170 ms and 265 mepdate increased performance significantly with respect to
respectively. The choice of the newly introduced offsets fothe original method.
an observation noise adaption based on the NCC shows that aVith regard to the reference, the IMU-based Kalman
measurement with correlation bel®ar for the angle and.9  filter method and the video-based method perform on par.
for the rate is not trusted. The search interval f7° speeds It is noteworthy that both produce their largest errors in
up the angle estimation by a factor of 3. Optimising thalifferent situations and simple averaging of the two estama
computational complexity was not a goal and might easilincreases performance. Thus, an elaborate result fusion of
reduce the interval size without loss of accuracy. these two methods is expected to yield further improvements
Examining this in the context of everyday traffic environ-

TABLE Il
OPTIMAL PARAMETERS FOR BOTH ORIGINAL AND EXTENDED
VISION-BASED METHOD (CF. SEC. II-D).

parameter / method | original new (1]
lookback/frames 5.07 7.94
obs. noiseomax(a) 0.145 0.0117 (2]
obs. noisermax(a’) 0.0676  0.0933
NCC offsetemin(c) - 0.669 (3]
NCC offsetcmin(a’) - 0.906
search radius - 12.7

(4]

Going back to Tab. | it can be concluded that the originall5]
approach of video-based roll angle estimation performed
clearly worse compared to the evaluation on the synthetigg
data [1]. The extensions made to the algorithm, were able to
significantly improve performance on real data.

V1. CONCLUSION [7]

For the development of different ARAS, roll angle esti-
mation plays an important role. This study presented tWO[S]
alternative IMU-based estimators featuring differentefit
Moreover, extensions to a recently published method of roll
angle estimation based on video images only were proposdél
and system parameters have been optimised using CMA-ES.

For an unbiased comparison, a common driving experi-
ment was set up and conducted. The corresponding ev&iQ
uation yielded a robust estimation at a mean precision of
about two degrees for the improved vision method andii]
therefore, proofs the proposed concept on real-world data.

ments is planned for future research.
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