
How fast can neuronal algorithms

match patterns?

Rolf P. W�urtz ?1, Wolfgang Konen2, and Kay-Ole Behrmann

1 Computing Science, University of Groningen, The Netherlands
2 Zentrum f�ur Neuroinformatik GmbH, Bochum, Germany

From: C. von der Malsburg, J.C. Vorbr�uggen, W. von Seelen, and B. Sendho�
(Eds.): Arti�cial Neural Networks { ICANN 96, Lecture Notes in Com-
puter Science, vol.1112, Springer Verlag, 1996, pp. 145{150

Abstract. We investigate the convergence speed of the Self Organizing
Map (SOM) and Dynamic Link Matching (DLM) on a benchmark prob-
lem for the solution of which both algorithms are good candidates. We
show that the SOM needs a large number of simple update steps and
DLM a small number of complicated ones. A comparison of the actual
number of oating point operations hints at an exponential vs. polyno-
mial scaling behavior with increased pattern size. DLM turned out to be
much less sensitive to parameter changes than the SOM.

1 Introduction

For visual perception in a biological or arti�cial system the visual correspon-

dence problem is of central importance: \Given two images of the same physical
object decide which point pairs belong to the same point on the object." A
generic solution to this problem will at least greatly alleviate many of the dif-
�culties encountered by computer vision research. Invariant object recognition,
e.g., becomes easy if a correspondence map of su�cient density and reliability
can be constructed between objects and stored prototypes [1]. The study [2] is
another illustration of the power of such an algorithm. It describes a network
based on Dynamic Link Matching (DLM) that learns to evaluate input pat-
terns for the presence of one out of three mirror symmetries. That approach has
been compared with a standard backpropagation network that needed some 104

examples [3]. The basic idea of DLM dates back to [4].
For a solution of the correspondence problem an ordered mapping from one

plane to another has to be established with a combination of two constraints:
Matching points must carry similar features, and neighborhood relations must be
preserved. A good candidate to solve that problem is a self-organizing algorithm
that develops from an unordered initial state to a clean one-to-one mapping.
As self-organization is a notoriously slow process the convergence speed is an
important detail. Short of sound analytical results we have used the problem
from [2] as a benchmark to evaluate the relative performance of DLM [5] and
the Self Organizing Map (SOM) algorithm [6, 7].

? Please address correspondence to rolf@cs.rug.nl. Funding from the HCM network
\Parallel modeling of neural operators for pattern recognition" by the European
Community is gratefully acknowledged.



146

2 De�nition of a benchmark problem

A fair comparison of algorithms that were developed to solve di�erent problems
and whose full range of applicability is still subject of intensive research is not
easy. The least one can do is to de�ne problem and simulations very explicitly
and leave it to the reader to judge if justice has been done to both algorithms,
which are speci�ed in sections 3.1 and 4.1, respectively.

If a square lattice is mapped onto a continuous input square (a typical prob-
lem for the SOM), the correct solution is not obvious. For a fair comparison,
however, the quality must be assessed by objective means. The decision will be
inuenced considerably by boundary e�ects. Furthermore, there may be multiple
solutions of identical intuitive quality (e.g., mirror reections, rotations by 90�).

To avoid these problems we have chosen the above-mentioned mirror-problem
as a benchmark. The setup consists of two square layers X and Y of N�N neu-
rons that in addition carry features f 2 f1; : : : ; Fg. The feature distribution in
X is chosen at random, but patterns with multiple symmetries are discarded.
The distribution in Y is identical to the one in X except for either a mirror
reection or a rotation by 90�. Now the feature distributions induce a unique
neighborhood-preserving mapping from X to Y . The benchmark task for the
self-organizing algorithms is to �nd these mappings given only the feature dis-
tributions. Similarity of features of neurons x 2 X and y 2 Y is de�ned as
all-or-nothing for this benchmark (for practical applications smooth similarity
functions are usually more suitable):

T (x; y) = � (fx; fy) =

�
1 if fy = fx
0 otherwise :

(1)

A nearest-neighbor topology with wrap-around borders is imposed on both X
and Y (this makes them 2D-tori rather than squares). The mirror axis may thus
be any line and the center of rotation any point on the layers.

Due to the discrete lattices in both layers neighborhood preservation is clearly
de�ned. Thus, the optimal solution is known beforehand, which gives a straight-
forward error measure that can be monitored through the whole process. Let
wy(t) be the position where neuron y points in layer X at time t, and wopt

y the
optimal mapping. Then the error will be

E(t) =
X
y

�
wopt

y �wy(t)
�2

: (2)

For the N � N -size benchmark problem a particular solution is said to have
converged if the average position error E(t)=N2 is below the threshold " = 1=640.
The number of features F is a useful parameter to control the di�culty of the
problem. Here we have used F = 10 equally distributed features.



147

3 Solution with the SOM

3.1 Method description

In order to apply the SOM to our benchmark we have identi�ed the discrete
neuron layer with our layer Y and the input space with X . Furthermore, we
have included the feature similarity T (x; y) into the learning rule of an otherwise
unmodi�ed SOM-algorithm [6, 7]:

�wi = � exp
�
�ji� i�j

2=2�2
�
(v� �wi)T (�; i�) : (3)

Here, T (�; i�) 2 [0; 1] is the similarity between the features of neurons � 2 X
and its best matching counterpart i� 2 Y , respectively, i.e. the adaptation rate
is weighted by the feature similarity. In our benchmark, T can only take the
binary values 0 and 1, so that iteration steps for neurons with unequal features
are without e�ect. Therefore, we have optimized the algorithm by skipping all
such iteration steps and choosing i� directly among the neurons with the same
features as �. Only those \e�ective" iteration steps are counted in our results.

3.2 Parameter tuning

Many applications of the SOM require considerable care in adjusting the param-
eters. Generally, a decrease of the learning rate � and the width � is necessary
to assure convergence. Unfortunately, there is no problem-independent rule on
how to �nd these parameters. We have chosen a linear decreasing scheme. Dif-
ferent schemes (e.g. exponential ones) are in use, but are known [7] to yield
the same general behavior of the algorithm. Extensive experiments have shown
that the performance could not be improved by decreasing �. We have thus
kept it constant at � = 1, but the width parameter � and its decrease schedule
(start/stop-value, decrease rate) had to be chosen carefully. Both were optimized
individually for each problem size (N = 4; : : : ; 20) by scanning the reasonable
parameter range (40 values) with 10 executions of SOM each. Only the 8 best
results are shown in �gure 1. The results are consistent with an exponential
scaling of the number of update steps with the problem size (see �gure 1).

4 Solution with DLM

4.1 Method description

In the DLM scheme layer X is fully connected with Y by a matrix J(x; y) of
dynamical links. Their development is governed by a Hebbian rule with com-
petition and inuence of feature similarity. In other words, links between pairs
of neurons which have similar features and are active at the same time will be
strengthened, others decay. Neighborhood preservation in DLM is achieved by
ensuring that in each layer only one connected subregion of a given form and
size, which we will call a blob, can be active at one time. This is a way to code



148

Layer Size 

N
u
m
b
e
r
 
o
f
 
U
p
d
a
t
e
s
 

6 x 6 8 x 8 4 x 4 10x10 12x12 14x14 16x16 18x18 20x20 
100

1000

10000

100000

Fig. 1. Scaling behavior
of the SOM algorithm
on the mirror benchmark.
Only runs with the opti-
mal parameter set for each
problem size are shown.
The vertical spread of
data points is due to dif-
ferent random seeds. A
straight line �ts the data
well, hinting at exponen-
tial scaling with problem
size.

neighborhood in the layer as common activity in the same time slot. A blob in
layer X excites layer Y by means of the dynamic links J(x; y). Layer Y supports
only blobs of the same form and size as X . The links only inuence the position

of the blob, which can be calculated. Now only the neurons in one blob in X and
one blob in Y are active and can strengthen their links in the following update
step according to their feature similarities. An activity blob is a unimodal non-
negative function b of the layer neurons. In our simulations we have chosen it to
be 1 inside a square of size B � B and 0 outside. Then, the concrete algorithm
runs as follows:

1. All links are initialized to 1=N2.
2. A position x0 2 X is chosen at random, a blob is placed there, and the

resulting blob position y0 in Y is calculated such as to minimize the potential

V (y0) = �
X
y

X
x

J(x; y)T (x; y) b(x� x0) b(y � y0) : (4)

3. The activities inX and Y are now blobs positioned at x0 and y0, respectively,
and the links J(x; y) are updated by the learning rule:

�(x; y) := � (J(x; y) + J0) T (x; y) b(x� x0) b(y � y0) : (5)

4. The updated links are �rst normalized by
P

x J(x; y) and then by
P

y J(x; y).

Steps 2 through 4 are iterated until convergence. For the pointer vector wy that
enters the error function (2) the center of mass for all links J(x; y) projecting
onto neuron y has been used:

wy =

P
x p(x)J(x; y)P

x J(x; y)
; (6)

where p(x) is the vector in the unit square specifying the position of neuron x
in layer X .



149

0

50

100

150

200

250

300

350

Layer Size 

N
u
m
b
e
r
 
o
f
 
U
p
d
a
t
e
s
 

6 x 6 8 x 8 4 x 4 10x10 12x12 14x14 16x16 18x18 20x20 

Fig. 2. Scaling behavior of
the DLM algorithm on the
mirror benchmark. The
vertical spread of data
points is due to di�erent
random seeds. A straight
line is compatible with the
data well, this time sug-
gesting linear scaling with
problem size.

4.2 Parameter tuning

The simulations of DLM on the mirror benchmark have shown that its param-
eters are fairly simple to adjust. There is no necessity to decrease the learning
rate � or change the blob size B during iterations in order to assure convergence.
The form of the blob (circle, square, ...) does not inuence convergence. J0 serves
only to prevent very small links from being suppressed for good, its value makes
no di�erence. The only relevant parameter is the blob size B. Simulations in [8]
have shown that convergence is fastest if a blob covers half the layer area. This
blob size, which we used for all DLM simulations, can be shown to maximize the
average information gain per iteration step (see [9] for details).

The experimental conditions have been identical to those for the SOM. The
scaling behavior, however, was di�erent. On variation of the problem sizes N the
iteration steps needed for convergence increase only linearly with N (�gure 2),
in sharp contrast with the exponential behavior of the SOM (�gure 1).

5 Results and conclusions

During our experiments we have encountered fewer di�culties in adjusting the
parameters for DLM than for the SOM. Nevertheless, we have invested con-
siderable e�ort to tailor both algorithms for the benchmark problem. Figures 1
and 2 show the number of iterations required to solve the mirror problem. The
comparison of these two �gures is not completely fair, because the single update
steps for DLM are much more complicated (O(N4)) than the ones for the SOM
(O(N2)). In order to show the actual execution time for concrete layer sizes we
have plotted the number of oating point operations required to reach conver-
gence in �gure 3. This �gure indicates that DLM converges faster once the layer
size exceeds 16� 16. We conclude that the convergence time for DLM will scale
as N4 and the one for the SOM as exp(N). Experiments that check this trend
for higher values of N are currently performed and will be reported in [9].



150

10000

100000

1e+06

1e+07

1e+08

1e+09

Layer Size 

N
u
m
b
e
r
 
o
f
 
O
p
e
r
a
t
i
o
n
s
 

6 x 6 8 x 8 4 x 4 10x10 12x12 14x14 16x16 18x18 20x20 

DLM 

SOM 

Fig. 3. Floating point op-
erations required for the
SOM and DLM on the
mirror benchmark. The
data indicate that DLM
is faster for layers larger
than 16� 16.

A question that can not be ignored in the comparison of neuronal algorithms
as models for perception is the time required on parallel machines. Given ar-
bitrarily many parallel processors the single update steps can be executed in
constant time for both algorithms. The update steps, however, can not be par-
allelized completely. To what extent partial parallelization (epoch learning) can
be applied is unclear at this point. We therefore expect that on massively paral-
lel machines DLM will scale linearly with the layer size, whereas the SOM will
probably retain its exponential behavior.

References

1. R.P. W�urtz. Multilayer Dynamic Link Networks for Establishing Image Point Cor-

respondences and Visual Object Recognition, volume 41 of Reihe Physik. Verlag
Harri Deutsch, Thun, Frankfurt am Main, 1995.

2. W. Konen and C.v.d. Malsburg. Learning to generalize from single examples in the
dynamic link architecture. Neural Computation, 5:719{735, 1993.

3. T.J. Sejnowski, P.K. Kienker, and G.E. Hinton. Learning symmetry groups with
hidden units: Beyond the perceptron. Physica D, 22:260{275, 1986.

4. D.J. Willshaw and C. v.d. Malsburg. How patterned neural connections can be set
up by self-organization. Proceedings of the Royal Society, London B, 194:431{445,
1976.

5. W. Konen, T. Maurer, and C. v.d. Malsburg. A fast dynamic link matching algo-
rithm for invariant pattern recognition. Neural Networks, 7(6/7):1019{1030, 1994.

6. T. Kohonen. Self-organized formation of topologically correct feature maps. Bio-

logical Cybernetics, 43:59{69, 1982.
7. T. Kohonen. The self-organizing map. Proc. IEEE, 78:1464{1480, 1990.
8. K.-O. Behrmann. Leistungsuntersuchungen des Dynamischen-Link-Matchings und

Vergleich mit dem Kohonen-Algorithmus. Technical Report IR-INI 93-05, Ruhr-
Universit�at Bochum, 1993.

9. R.P. W�urtz, W. Konen, and K.-O. Behrmann. On the performance of neuronal
matching algorithms. Manuscript in preparation.


