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Abstract

We present an occam programme that recognizes human faces from video images.
It implements a simplified version of the dynamic link architecture (DLA), a
neural net paradigm first proposed in 1981. Objects are represented by labeled
graphs, where vertex labels are local power spectra derived from the 128×128 pixel
gray-level image and edge labels are the distance vectors of vertices. Matching is
achieved by minimizing a similarity function between possible image graphs and
the graph representing a candidate object by simulated annealing.
The programme has been implemented on a PC hosted Parsytec system with up
to 31 T800 transputers and a combined frame grabber/display board. Feature
extraction and matching processes are parallelized. The programme is built on
top of our general-purpose farm and RPC software and uses some specialized
transputer facilities (e. g., MOVE2D) to achieve good scaling of performance. Addi-
tionally, some core procedures were written in assembler to speed up the matching
process twofold. The programme reliably recognizes a face from a database of 80
in about 30 seconds.

1 System Description

The system is a simplified implementation of the dynamic link architecture (DLA).
We will only give a brief overview of the dynamic link architecture and labeled graph
matching here; for in-depth discussions see [1, 2, 3]. DLA exploits the fine scale temporal
structure of neural signals to allow complex feature binding. It provides a massively
parallel tool for object recognition [4, 5].

For the implementation on a transputer network simplifications had to be made.
Sets of neurons with receptive fields centered at the same point but of different shape
are represented by nodes of a graph (simply the corresponding point) and labeled with
their activity vectors. Bindings between them are replaced by the labeled edges in this
graph. This reduces the problem of object recognition to one of labeled graph matching.
The following two sections detail the steps required to accomplish the object recognition
task.

1.1 Data Acquisition and Preprocessing

The first step captures a 512 × 512 pixel snapshot with a CCD camera at 8 bits (256
gray levels) of resolution. The image is then sampled down to 128 × 128 pixels. As
motivated by receptive field properties, this image I(~x) is convolved with a bank of
DC free, complex-valued Gabor-based wavelets ψ~k

(~x) (bandpass filters) parametrized

by their spatial frequency ~k. In our case 6 frequency levels and 8 orientations seemed
sufficient according to power spectrum analysis for faces and biological data [6]. The



Fourier transform of the filter functions are given by the following equation:
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A vertex ~x0 is labeled with the vector of the absolute values of the responses J I( ~x0):
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This choice of vertex labels guarantees some robustness against local distortions.
To add a new face to the database, we extract and store the J I at the points of a

8×10 grid, reducing the precision to fit a byte for each filter response. This compresses
the data by a factor of approximately 4 from the original 128× 128 images.

Graph edges are labeled with the distance vector ~∆ between their endpoints in order
to ensure that similar vertex labels in noncorresponding regions of the image are not
identified during matching.

1.2 Matching

The recognition step is a two stage matching process. In both stages two graphs are
compared by the weighted sum of comparison functions of the two types of labels (E
and V are the edge and vertex sets, respectively):
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For Sv we chose the cosine of the angle between the jets to achieve some degree of
intensity independence. For Se we used the squared difference of the edge labels. This
yields a cost function for a pair of image and object graphs which is to be minimized.

In a first step, the approximate location of the face in the image is determined by
comparing it with one fixed object. For that purpose Ctotal is minimized varying only
the center of the graph and leaving its geometrical shape unchanged. This estimate ini-
tializes the second step, where for every object graph in the database Ctotal is minimized
varying all vertex positions in the image graph independently. After convergence we
have a final cost value for each object; the smallest of them belongs to the recognized
person if it is significantly different (according to some statistical criteria) from the other
matches. Both optimizations are done by simulated annealing at zero temperature, for
which the cost landscapes are sufficiently well behaved [5].

It is also possible to start with less than the full number of frequency levels and
vertices and then to increase both during the matching process. We also implemented
size invariance exploiting the log-polar form of the vertex labels [7].



Figure 1: This figure shows the overall structure of our occam recognition system.
Each of the boxes denotes one T800 transputer, the arrows transputer links. Each
ellipsis stands for a concurrent process, lines interconnecting them represent pairs of
occam-channels. Only the black processes User.M and User.W are application specific.
At the top left is the host transputer that runs the TDS and gives access to PC resources.
Only a standardized I/O server but no application code is run here, as errors occuring
on this processor require a reboot of the TDS and thus are hard to debug. A software
system (dark grey processes) based on remote procedure calls allows the user to access
all channels to the PC from User.M as if executing on the host transputer. It comes
with a virtual terminal handler that allows switching between different keyboard/screen
pairs at runtime. This is necessary because parallel processes cannot write to the same
terminal channel in a controlled way. One virtual terminal can be reserved to run a
DOS loop, i.e., DOS commands or PC programmes can be executed while the transputer
application is running — very useful for file manipulation. The existence of the router
indicates that this system can be extended to more processors when desired.
The processes in light grey constitute the farm system. There is one manager processor
and any number of worker processors. They can be interconnected in any tree structure
with the manager at the root of the tree. The user provides a process that splits the
problem up into subtasks and another one that collects the results. Both run in parallel
and are part of User.M. The subtasks themselves are executed in User.W. The monitor
processes allow a simple evaluation of load balancing.
The TFG (bottom left) is a specialised processor that drives the video camera and
graphics display. It runs a standardized programme which provides flexible acquisition
of video images and the graphical display of results.



2 Implementation

Figure 1 gives a detailed view of the hard- and software of our system. It has three
main components that can be parallelized:

(i) the fast Fourier transform of the image data, performed as two sets of onedimen-
sional FFTs on the rows and columns of the data array,

(ii) computation of the wavelet transform using the result of (i), and

(iii) comparison of the transformed image with the stored objects.

All of these are data-parallel, i. e., they can be divided into tasks operating on indepen-
dent pieces of data, and as such are amenable to parallelization on a processor farm.
These three operations are, however, quite different in the balance of computation and
communication (with (i) being communication and (iii) computation bound) and in the
amount of global data required ((i) requiring none, (iii) using the whole set of transforms
of the image).

2.1 Routing and Farm Subsystem

Because of these differing requirements, we chose to implement a general-purpose farm
system (see figure 1). At the lowest level, a set of router processes running at high
priority connects the processors, with two additional features:

• The network supported can be any type of (regular or irregular) tree, with the
farm controller at its root. The routing tables are built when the network is
booted by listening on all but the boot link for a message. It is thus possible to
reconfigure the network (e. g., add or remove processors) without recompiling.

• The routers can send messages by the farm controller to either a designated pro-
cessor or broadcast them to all processors.

Messages are sent as number of packets, which have a fixed maximum size. Currently,
the application (User.M and User.W processes in figure 1) has to perform the splitting
and reassembly of messages larger than the packet size.

At the next level is the farm software itself, which consists of the manager and
a buffer manager on each worker processor. This allows double buffering of tasks in
the workers, so that they can immediately continue working after delivering a result.
The manager communicates with the user program via channels. Usually, the user will
first broadcast some amount of global data and then start a run, i. e., perform one of
the above operations. At this point, both the manager and the user process split into
two parallel processes, one set generating tasks and the other collecting results. This
allows optimal use to be made of the computational resources of the manager processor,
which for large numbers of processors ultimately becomes the bottleneck. The necessary
synchronization (waiting for all results to come in before continuing) is done implicitly
by the farm software; the user only signals that no more tasks are available. Provision
is made for results requiring more than one packet, while tasks passed to the workers
have to fit into one packet.



Elapsed Controller Worker Relative
N Time (s) Load (%) Load (%) Speedup
1 148.2 0.7 99.9 1.00
2 74.7 1.5 99.8 0.99
4 38.1 3.1 99.7 0.97
6 25.9 4.5 99.4 0.95
8 19.8 5.9 99.0 0.94
16 10.9 11.6 95.0 0.85
24 8.1 16.0 88.0 0.76

Table 1: Performance information of the Morlet transform as a function of the number
of worker processors. Only numbers of processors which are a divisor of the number of
tasks (48) are listed. The programme was run on 20 MHz T800s with 3 cycle memory,
configured as a binary tree on a parsytec MultiCluster II system. Timing was obtained
using the transputer timer. Load information was collected by the simple monitor
described in the text, which when sampling every 3 ms introduces an overhead of less
than 1%.

2.2 Optimizations

In order to achieve good speedup, we have invested some effort into using special features
of the transputer. It turns out that the farm controller becomes a bottleneck when
inserting data into result arrays. For instance, a twodimensional FFT is performed by
performing onedimensional FFTs on all the rows of the data and then a similar set
of FFTs on the columns. When accepting the results of the first phase, the occam

compiler automatically generates a block move. For the second phase, however, data
elements must be stored in non-contiguous elements of the array; doing this with a
simple loop leads to a large load on the manager processor. In cases like these, the
MOVE2D instruction of the T800 can be used to good advantage, as it will move arbitrarily
sized elements which can be addressed by a constant stride.

The success of this modification was verified by a small monitor process running
at high priority, which periodically checks for an interrupted low priority process, thus
giving an indication of processor load (see also table 1).

During the recognition step, which minimizes Ctotal by simulated annealing, most of
the work goes into computing Sv. This requires the computation of scalar products and
the rescaling of the filter responses from byte to floating point representation, a function
not contained in popular vector libraries. We therefore rewrote these procedures in
embedded assembler. We obtained an improvement factor ≈ 3 for the scalar product
and ≈ 2 for this part of the programme over the näıve occam version; unrolling the
occam loops only yielded a speedup of ≈ 1.4 [8].

Finally, we show in table 1 some performance measures for the computation of the
complete Morlet transform on a 128× 128 image. This involves

• computing the FFT of the image data in parallel;

• broadcasting the result to all processors;

• performing the 48 convolutions in parallel; each task here consists of multiplying
the data with the convolution kernel, transforming the result back into the space



domain and reducing the precision.

As can be seen from the table, we obtain very good speedup up to 16 processors.
Adding further processors still yields an improvement, but the effect of the serial part
of the programme (e. g., broadcasting data and setup times) is being felt. Furthermore,
monitoring information indicates that the communication of results to the manager
processor is becoming a bottleneck. If a much larger transputer system were available,
we would either have to increase problem size (for instance by using 512 × 512 pixel
images) or consider a different method of parallelization.
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H.Haken, and A.J. Mandell, editors, Synergetics of the Brain, Proceedings of the Interna-

tional Symposium on Synergetics, pages 238–249. Springer, Berlin, Heidelberg, New York,
May 1983.

[3] Christoph von der Malsburg. Pattern recognition by labeled graph matching. Neural

Networks, 1:141–148, 1988.

[4] Joachim Buhmann, Jörg Lange, Christoph von der Malsburg, Jan C. Vorbrüggen, and
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