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To be published in: Proceedings of a BMFT--Workshopheld at Maurach, Germany, 20--21 October, 1992Neural Mechanisms of Elastic Pattern Matching1R. Doursat, W. Konen, M. Lades, C. v.d. Malsburg, J. Vorbr�uggen, L. Wiskott, R. W�urtzInstitut f�ur Neuroinformatik, Ruhr-Universit�at Bochum1 IntroductionWe here report on the state of development of a number of individual e�orts within thescope of our project. They all are intended to contribute to the goal of developing a visualarchitecture as a basis for the representation of scenes and for the construction of suchrepresentations. In our view, key elements of a visual architecture are a data structure torepresent aspects of objects and a general mechanism to match such aspects. With theseelements in hand, more complex models of individual objects and of entire scenes can beconstructed as dynamic linkages of individual aspects, and stored structures can be matchedto and recognized in new images.As our basic data structure we are using labeled graphs. Nodes correspond to localitiesin aspects (or, later, scenes), links connect nodes that represent the same or neighboringlocalities, and labels correspond to local features. In many of our applications involvinggray-level images we are using wavelets as local features (see section 2). These correspondclosely to the receptive �eld types found in visual cortex, see, e.g., [ValVal88].As our basic elastic matching mechanismwe are using the dynamic link matching (DLM),which is part of the Dynamic Link Architecture (DLA) [Mal81]. In this scheme, dynamiclinks, which are not part of classical neural architectures, are represented by temporal cor-relations between the signals of the linked nodes as well as by rapidly modi�ed synapticweights. Rapid weight modi�cation is controlled by signal correlations in a quasi-Hebbianfashion: positive correlation leads to weight increase, negative correlation to weight reduc-tion. On the other hand, signal correlations are generated by the arrangement of synapticweights, closing a loop of interactions with positive feedback. This loop is the basis of asystem of dynamic link self-organization which favors certain link structures or \connec-tivity patterns". Among the connectivity patterns are low-dimensional topological graphs,which are an ideal data structure for the representation of visual aspects and of scenes. Fur-thermore, given two identical or similar connectivity patterns and a system of connectionsbetween them, link dynamic converges on a sparse connectivity pattern between them thatconnects corresponding nodes with each other. This is the mechanism of DLM.In its most primitive and most general version, DLM takes the form of a sequence ofactivity events. Each one of this consists in the �ring of a relatively small number of neu-rons, neurons that are distinguished by being more strongly connected with each other thanaverage. About half of the neurons are in each of the two networks to be matched, pre-sumably in corresponding locations. As a result of the activity event, all links between theparticipating neurons are strengthened, at the expense of other links of the same neurons. A1Verbundprojekt NAMOS (Neuronale Architekturprinzipien f�ur selbstorganisierende mo-bile Systeme), Teilprojekt \Bildverarbeitung in dynamischen Neuronennetzen", ProjektleiterProf. C. v.d. Malsburg. 1



sequence of such activity events knits the two networks together by activating links betweencorresponding locations and deactivating links between non-corresponding locations.This basic mechanism has the advantage of great generality, not being prejudiced as tomagni�cation, orientation, distortion or greater or lesser completeness of the part-networksinvolved, but it has the disadvantage of being very costly in terms of physical connectivity(from which active links are to be selected) and in terms of matching time. We thereforebelieve that this mechanism plays a dominant role only in the early ontogenesis of the brainwhen it is used to set up speci�c connection structures which are the basis for more e�cient,though less general, matching. In the context of our project, which is concerned with tech-nical implementation, our game has been to model the general DLM mechanism by speci�calgorithms which capture its basic style while having the advantage of being better adaptedto computer implementation and being more economic in processing time and required con-nectivity, but which have the disadvantage of requiring explicit algorithmic speci�cation ofthe degrees of freedom of the desired matches (position, magni�cation, distortion, rotation,partial match, to name some). The individual projects described below correspondinglyfall into two categories. In sections 2 to 5 real camera-derived images are analyzed, but amatching algorithm is used that is e�cient and narrowly taylored to the speci�c goal athand and that somewhat dissimulates its neural basis. Sections 6 to 8 describe e�orts toreach towards a formulation of DLM that retains the basic neural style in terms of temporalsignal correlation and synaptic modi�cation and yet is su�ciently economic to be used intechnical implementations.Section 2 describes a system for object recognition that is invariant with respect toposition and that is robust with respect to deformation, rotation in depth and illumination.In section 3, work performed by R. W�urtz, we show the amount of detail retained in ourmodel graphs, by reconstructing images from stored data. In section 4 we open the searchspace of the matching algorithm to in-plane rotations and to varying magni�cation, keepingmatching time low by making up for additional search space by basing initial parameterestimates on small subsets of the data. In section 5 the matching algorithm is modi�ed tobe able to deal with partial matches and its power is demonstrated with cluttered scenesmade up of arrays of partially occluded objects.Section 6 is an advertisement for work that is intended as a contribution to the learningtime problem, but that is relevant also to the mapping problem as generality is requiredand as it is based on the basic DLM. Section 7 describes ongoing work by W. Konen andT. Maurer in which they are developing a greatly speeded-up version of DLM, called FDLM(for fast DLM), without sacri�cing much of generality, the key point being simply thatactivity events are not created by actual neural signal dynamic but in an algorithmic fashion(whereas link dynamic is retained in its original form). Section 8, �nally, describes ongoingwork by R. Doursat which aims at a biological theory for the capabilities of the humanvisual system when it comes to judge metric relationships within the frontal plain. Thebasic idea in this work is to use running waves as activity events, two parallel waves in thetwo planar networks to be matched. The speed is controlled by local in-plane connectivityand is regulated such that equivalent distance elements dx are covered in equal time (a largedistance element in the foveal region of primary visual cortex being equivalent to a smallone in a peripheral region). 2



2 Object Recognition Invariant to Position and Dis-tortionAs a demonstration of the capabilities of the Dynamic Link Architecture, we developeda programme that can recognize objects | speci�cally, camera images of human faces |although di�erent images of the objects vary strongly in aspect or, in our case, facial ex-pression, hair style, and so on. On the other hand, the programme is not specialized to anytype of object; it has been tested with, e.g., o�ce implements as well. To achieve acceptableperformance, the programme has been implemented on a network of up to 40 transputers.2.1 Data Acquisition and PreprocessingThe �rst step captures a 512� 512 pixel snapshot with a CCD camera at 8 bits (256 graylevels) of resolution. The image is then sampled down to 128� 128 pixels. As motivated byreceptive �eld properties, this image I(~x) is convolved with a bank of DC free, complex-valuedGabor-based wavelets  ~k(~x) (bandpass �lters) parameterized by their spatial frequency ~k.In our case 6 frequency levels and 8 orientations are su�cient according to power spectrumanalysis for faces and biological data [JoPa87]. The Fourier transform of the �lter functionsare given by the following equation:�F ~k� (~!) = exp0B@��2�~! � ~k�22k2 1CA � exp0@��2�~!2 + ~k2�2k2 1Awhere the second term makes  ~k DC free. ~k is restricted to~k =  k cos�k sin�! ; k = �(p2)��; � = 2 : : : 7; � = � �8 ; � = 0 : : : 7:A vertex ~x0 is labeled with the vector of the absolute values of the responses J I( ~x0) (calleda jet): (J I) (~k; ~x0) := ����Z  ~k( ~x0 � ~x) I(~x) d2x����This choice of vertex labels guarantees some robustness against local distortions.To add a new face to the database, we extract and store the J I at the points of a 8� 10grid, reducing the precision to �t a byte for each �lter response. This compresses the databy a factor of approximately 4 from the original 128� 128 images.Graph edges are labeled with the distance vector ~� between their endpoints in order toensure that similar vertex labels in noncorresponding regions of the image are not identi�edduring matching.2.2 MatchingThe recognition step is a two stage matching process. In both stages two graphs are comparedby the weighted sum of comparison functions of the two types of labels (E and V are theedge and vertex sets, respectively):Ctotal := � X(i;j)2E Se �~�I(i;j); ~�O(i;j)��Xi2V Sv �J Ii ; JOi �3



For Sv we chose the cosine of the angle between the jets to achieve some degree of intensityindependence. For Se we used the squared di�erence of the edge labels. This yields a costfunction for a pair of image and object graphs which is to be minimized.In a �rst step, the approximate location of the face in the image is determined by com-paring it with one �xed object. For that purpose Ctotal is minimized varying only the centerof the graph and leaving its geometrical shape unchanged. This estimate initializes the sec-ond step, where for every object graph in the database Ctotal is minimized varying all vertexpositions in the image graph independently. After convergence we have a �nal cost valuefor each object; the smallest of them belongs to the recognized person if it is signi�cantlydi�erent (according to some statistical criteria) from the other matches. Both optimizationsare done by simulated annealing at zero temperature, for which the cost landscapes aresu�ciently well behaved [LVB92].It is also possible to start with less than the full number of frequency levels and verticesand then to increase both during the matching process.2.3 Recognition PerformanceIn order to assess the performance of the programme, we collected three galleries of faceimages from a set of 88 persons. One gallery is used to generate the database; the subjectswhere asked to look straight into the camera for this. A second gallery was taken withsubjects looking approximately 20 degrees to their right, while for the third gallery theywere asked to modify their facial expression.The comparison process described above yields a number for every pair of image andstored graph. We thus need a mechanism to decide whether the graph with the best matchvalue is indeed the correct one, or whether the graph of this person is not included in thedatabase. For this, we developed two statictical criteria, described in detail in [LVB92].If the values for these criteria exceed a threshold, the graph with the best match value isdeemed recognized; otherwise, the system e�ectively says \I'm not sure.".The programme's performance is given in table 1. The thresholds of the criteria wereadjusted such that for one gallery, no false positives resulted (columns 2 and 5). The systemthen identi�es 88% and 84% of the images in a signi�cant way (column 1), while at the sametime it avoids wrong and signi�cant recognitions (column 6) and false positives in the othergallery. In two (gallery 1) and three (gallery 2) cases, shown in column 4, the best match isnot the correct graph; thus, in �97% of the cases, the system picks the correct graph fromthe database (sum of columns 1 and 3). (In the few exceptions, the persons rotated theirhead in the image plane; invariance to this is discussed in section 4.)3 Reconstruction from Stored ModelsThe coding of known faces as elastic graphs that are vertex labeled by the local componentsof the wavelet transform of the grey level image has proven very successful for the recognitiontask (see section 2). For a better theoretical understanding of the algorithm as well as forfurther improvements it is necessary to know how much of the original image information ispreserved in this data format.A (continuous) wavelet transform(WI) �~k; ~x� := � ~k � I� (~x)4



gallery criterion case 1 2 3 4 5 6�1 86 100 11 2 0 0gal. 1 �2 83 100 15 2 0 0� 88 100 10 2 0 0�1 79 100 17 3 0 0gal. 2 �2 80 100 16 3 0 0� 84 100 13 3 0 0Table 1: Results of comparing two galleries (gal. 1, head rotation by 15�; gal. 2, grimaces)against the standard image database of the same persons. All entries are expressed aspercentages. For details, see the text.allows reconstruction of the image I by means of the inversion formulaI(~x) = g � Z (WI) �~k; ~x� �  ~k(�~x)d2k:The factor g in front of the integral is �nite if the DC component of the wavelets vanishes(otherwise the inversion formula is invalid). This is the case for our wavelets, and in thecontinuous case the reconstruction is trivial. We are particularly interested here whether oursparsely sampled image data still give a satisfactory image reconstruction.The frequency space sampling for the face recognition system has been restricted to anarea where the di�erence between faces is expressed, i.e., the low and high frequencies havebeen cut o�. Therefore, only the reconstruction of a bandpass �ltered version of the originalimage can be expected.
a) b) c)Figure 1: a) An image of a face with the corresponding graph superimposed. b) Recon-struction from the complete transform (128� 128 jets). c) Reconstruction from the graph(8� 10 jets).Figure 1 shows the results of the reconstruction procedure. The following observations(which have been tested on several images) can be made:� Although the frequency space is not completely covered an image can be reconstructedwhich is easily recognizable by a human.5



� The sampling in image space (8� 10) is dense enough for recognition purposes.� The locality of the wavelet components leads to a suppression of undesired backgroundstructure outside the area covered by the graph.The recognition system as described in section 2 does not make use of the phase ofthe (complex-valued) wavelet components. Therefore, several attempts have been madeto reconstruct the image from the moduli only. All of them have failed | the phases docontain important image information. As a consequence, they should be incorporated infurther versions. Research on a useful way of doing this is currently in progress.4 Invariance with Respect to Size and Orientation4.1 Algorithmic DescriptionOur face recognizer described in section 2 and [LVB92] already has the ability of distortioninvariant recognition. Its ability to cope with local distortions by elastic matching alsoaccounts for variations in global transformation parameters limited to roughly 5-10% withoutserious performance degradation. Examples for global transformation parameters are scaleand rotation in a plane vertical to the viewing direction. This lack of accounting for globaltransformations except translation was one of the most obvious reasons for the failure of thealgorithm on some pictures of our standard face image galleries. After checking the behaviourof the potential derived from the similarity functions, the most reasonable approach seemedto try an optimization procedure transforming the model graph globally in scale and rotationspace. This optimization procedure for scale and rotation angle can be applied to the modelgraph in alteration with a translation optimization (global move) correcting the center ofgravity position and local node optimization adapting to local distortions.4.2 Scale TransformationScale transformation of the graph model consists of two parts, the transformation of thevertex and the edge labels. The edge labels, the distance vectors in the model graph are justscaled by the appropriate scale factor. Since the feature vectors are sampled on a logarithmicscale, the application of a scale factor just means a shift of vector coe�cients over thefrequency coordinate. Before comparing a model feature vector to one in the image it has tobe shifted along the frequency axis by the global scale factor �. Two further modi�cationsto the comparison are necessary. First the sparse sampling of the frequency coordinatenecessitates the use of interpolation between vector coe�cients if no direct comparison ispossible. Second the feature comparison has to be windowed to the overlapping region ofthe feature vectors after the shift was applied in this example of an input smaller than themodel: JMi (~k)�! JMi (~k� ; � ~x0) rect(�)! JMi (~k� ; � ~x0)windowed: (1)An application of the described scale estimation is shown in �gure 4.2 with scaling by 75%and 50% (compare also [BLM90]). 6



Figure 2: Recognition invariant with respect to distotion (2nd panel), size (25% and 50%,3rd and 4th panel) and orientation (last panel). The model is shown in the 1st panel.The procedure showed reasonable performance if the scale di�erence between model andincoming image allowed a su�cient feature overlap (equation 1).4.3 RotationAdaptation to a global rotation of an object was done by rotating the graph edges aroundthe center of gravity and transforming the vertex labels in a fashion similar to the featureshift for scaling along the frequency axis, only now along in the angular coordinate. Thefeature shift is done modulo 2�, interpolation between neighboring coe�cients just as above.For a result see �gure 4.2.Estimation of global parameters can be sped up by �nding a way to estimate the parameteronly once for all models in the gallery and using the reduced information of a thinnedgraph. This global parameter estimation is one way to reduce complexity of the DLA relateddynamics.5 Analysis of Cluttered ScenesWe have extended the face recognition system in order to additionally handle occluded ob-jects [WisMa92]. With slight modi�cations we can demonstrate highly successful recognitionand localization of objects in gray level images of complex scenes in spite of extensive mu-tual occlusion. Objects are made known to the system in a semi-automatic fashion. Theperformance level demonstrated may be comparable to that of classical computer vision sys-tems. However, our system is distinguished by utmost simplicity and 
exibility, which arethe hall-mark of neural systems.To specify the state of the scene interpretation system completely it is necessary inaddition to represent which regions of the image have been recognized by which modelgraphs and what the occlusion relations between the objects are. The system works underthe tight restriction that models are to be mapped without any distortion to the image andwe correspondingly can describe the relation of the model domain to the image domain withthe help of a few binary variables that decide on the recognition status of a model and thevisibility or occlusion of its individual nodes, plus a single position vector for the placementof the model graph in the image.We have developed two scene interpretation algorithms. In the �rst, simple version, eachmodel graph is matched separately to the image to decide if and where it �ts and to whatextent it is occluded. This algorithm has the advantage that there is no need for all objects7



in the scene to be known to the system. The algorithm examines all graphs in the modeldomain. First, the graph is matched to the image. Then, all nodes under a certain thresholdfor S are marked as occluded. Since we assume that occlusion occurs for coherent regions,the algorithm then regularizes the occlusion decisions.For the second algorithm to work, there must be models for all objects in the scene.Posing such a constraint has the advantage that the relative occlusion relations can bedetermined and used for more reliable interpretation of the scene. For two graphs A and B,this relation will be characterized by the \occlusion index" QAB . When it is computed, thesystem may already have decided that a third object (or objects) are occluding parts of Aor B so that only part of their graphs are visible in the image.
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Figure 3: a) One of the 30 scene images. It contains the objects zebra, basket, elephant,candleman, and nutcracker. There are altogether 13 models in the gallery, and there are 121objects in the scenes, with three to six objects in each scene. The resolution of the imagesis 1282 pixels with 256 grey levels. b) Interpretation of this scene by algorithm 1. Visibleregions of the matched model graphs are shown, from front (black) to back (light grey).The algorithm missed nutcracker in this scene, not �nding the lower part under the zebraand discarding the identi�ed head region as too small in area. For the zebra, large partsare interpreted as occluded, because of the perturbation of inner jets by overlap with thebackground. Altogether, 80% of the 121 objects were recognized correctly while 2 modelswere erroneously accepted. c) Interpretation of the scene by algorithm 2. All objects andtheir occlusion relations have been recognized correctly. Altogether, 96.7% of the 121 objectswere recognized correctly, 3 models were erroneously accepted.6 Learning from Single Examples to Recognize Sym-metryA large attraction of neural systems lies in their promise of replacing programming by learn-ing. A problemwith many current neural models is that with realistically large input patternslearning time explodes. For example, learning problems of higher order, like detecting anunknown symmetry within a pattern (Fig. 4), are di�cult tasks for most neural networks.Even for small problem sizes a very large number of training examples is needed. This isa problem inherent in a notion of learning that is based entirely on statistical estimation:The patterns belonging to one symmetry class do not lie in clusters in the input space and8



thus cannot be estimated from a small training set. This in turn leads to the explosion oflearning time or of the number of prototypes required.We propose a system which can classify symmetries after having encountered one examplepattern of this symmetry class. The network is based on the Dynamic Link Architecture[Mal81], where rapidly modi�able links are used to express adaptive binding of features. Itis based furthermore on the a priori restriction that signi�cant symmetries are those wichpreserve locally the topological structure of the input pattern. Where \learning" is requiredin other neural systems, we have here a stochastic self-organization process occuring within asingle perception (i. e. pattern presentation). The aim of the unsupervised self-organizationis to bring the actual perception into maximal consistency with the a priori knowledge.In simulations the network achieved a classi�cation reliability of 96% when trained onthree di�erent symmetry classes. An example of the self-organization process is shown inFig. 4.

(A) (B) (C)Figure 4: Self-organized formation of dynamic links. The �gures (A){(C) show di�erentactivation states generated from a single input pattern. The input pattern imposed to both layershas horizontal symmetry, its features represented here by the diameter of the di�erent circles.The self-organization process consists of a sequence of activations, each of them activating large,overlapping regions in both layers (dark circles). The �gure shows the network state after (A) 15,(B) 50, (C) 80 activations. Links grow between cells which are active simultaneously and havesimilar features.7 Fast Dynamic Link Matching7.1 Problem formulationConsider the following task: Given are two patterns which consist each of N �N local fea-tures arranged in two 2D-layersX and Y . The problem is to decide whether the two patterns9



can be matched by some invariance transformation and if so, to determine this invariancetransformation. In the present case, invariances include translation, rotation, mirror sym-metry along arbitrary axes and local distortions.7.2 The neuronal systemFinding a match between patterns means �nding a set of mutual corresponding cells a 2 Xand b 2 Y . 2 A cell a may be considered as neuron or neuronal group capable of twofunctions: (i) coding for a local feature fa imposed by the actual pattern; (ii) representingan activity state xa which can be transmitted to other cells. Correspondence can be expressedby binding the cells a and b through a dynamic link Jab. Local features assigned to a and bmay help as a guideline for candidate matches but will not solve the correspondence problemunambiguously, since a cell b 2 Y with feature fb will have usually more than one candidatematch a 2 X with the same feature. Let us de�ne a similarity matrix Tba which has highentries for all candidate matches, i.e., pairs of cells with similar features. In the present casewe simply take Tba = �(fb; fa): (2)An initial { ambiguous { guess for the dynamic link network Jba is Jba = Tba=Pa0 Tba0 ,i. e. each cell b is linked to all cells a with similar features such that the total link strengthconverging on each cell b is 1. A solution of the match problemmust resolve these ambiguitiessuch that each cell a has at most one correspondence b or { in other words { one dynamiclink Jba has a much higher value than all other links Jb0a emerging from cell a. A neuronalactivity mechanism capable of �nding such a solution has been described earlier in [WilMa76,KoMa92b].7.3 FDLM: Fast Dynamic Link MatchingThe neuronal system based on nonlinear di�erential equations requires a number of param-eters and extensive numerical calculations. We tried to �nd a simpler and faster equivalentalgorithm with less parameters, the fast dynamic link matching (FDLM).Before starting the algorithm one has to choose an unimodal blob function B0(b) with centerat b = 0. This may be either an equilibrium solution of a neural �eld di�erential equationsimply a window function. Let �(�) be a sigmoidal function (which in the simplest case maybe the unit step function). Here are the steps of the algorithm:(i) Initialize the dynamic links with Jba = Tba=Pa0 Tba0 .(ii) Choose a random center ac 2 X and place the blob there: xa = B0(a� ac). Computethe resulting input to layer Y I(y)b =Xz JbaTba�(xa): (3)(iii) Use I(y)b to compute the position bc 2 Y for which Pb0 B0(b0 � bc)I(y)b0 is maximal, andplace the blob there: yb = B0(b� bc).2We use lower-case symbols a; b; a0; b0 for index vectors a = (a1; a2) specifying row a1 and column a2 of acell within a 2D-layer. 10



(iv) Update the links between active cells such that the total link strength converging oneach cell b is kept constant:Jba ! Jba + �JbaTba�(yb)�(xa)Pa0(Jba0 + �Jba0Tba0�(yb)�(xa0)) : (4)(v) Proceed with step (ii).In its simplest form, where B0 is only a window function and �(B0) = �(B0) = B0, thealgorithm has only two free parameters: the size l of the blob and the update parameter �.A small number of blob activations ( � 20 for sheets of 8*8 neurons) su�ces to estab-lish an unambiguous mapping. With this formulation, establishment of a mapping can beaccelerated in comparison to the original formulation in terms of di�erential equations by afactor larger than 10.8 Metric Coding and Running WavesThe past few years have seen a renewed interest in investigating the �ne temporal structureof neuronal activity. A modern trend in neurosciences is indeed to see temporal coding as ageneral format of representation used by the brain. In this frame, the new functional entitiesare dynamic cell assemblies, de�ned as groups of cells whose activity patterns engage inlong-range synchronization during short periods. Originally put forward by von der Mals-burg [Mal81] in the theoretical domain to tackle the \feature-binding problem", the idea ofcorrelation coding gained evidence through recent experiments on cat visual cortex [GKE89].These �ndings show synchronization phenomena between remote orientation columns duringperception depending on global stimulus properties, and suggest phase-locking of oscillatoryactivity as a simple binding mechanism. They have also given rise to numerous models[K�oSch91, MaBu92], ranging from detailed accounts of the experiments to more theoreticalexplorations. All these works share the hypothesis that perceptually distinct objects arelabelled by the collective synchronization with zero delay of the units encoding their com-ponents. This amounts to �gure-ground separation using tags of a temporal kind, viz. thephase of oscillatory responses assumed uniform over a coherent domain.However, what proves appropriate to gross segmentation systems might not be su�-cient for re�ned recognition tasks. The only relational information found in zero-phaselocking is the mere fact that two units i and j \belong or not to the same set". Allthings considered, synchronization groups are akin to Hebbian assemblies on a fastertime course. In these models the potential richness of temporal coding is far from beingfully exploited, if we consider the possibility of more general correlation events such as:< x1(t) x2(t� �12) : : : xn(t� �1n) >, involving n neurons and taking also into account thenatural transmission delays between their �ring processes. On the other hand, topologicalrelations between parts of an object or a scene are obviously an information of outmost im-portance, ignored by global synchronization. Four corners of a square do not just \belong"to the square but are also located in a speci�c manner with respect to each other.Taking up these last remarks, we suggest here that delayed correlations be the basis formetric coding. To illustrate this conceptual viewpoint, we simulate a 2-D layer of oscillatorslocally coupled through connections including small delays: each element is thus inclined to11



reproduce the behavior of its neighbors shifted with a short time-lag. The net result is thepropagation of waves over the layer instead of uniform synchronizations. From the di�erentialequations leading the dual excitatory/inhibitory dynamics of oscillators we also derive asingle phase-equation [Kur84]. Such a formulation brings to the fore the crucial aspect of thenetwork, viz. its temporal organization irrespective of the individual patterns of activity.Under this format, running waves are equivalent to phase-gradients, replacing the traditionalphase-plateaus, and this is precisely what we assume to subserve the implementation of acoordinate mapping. In short, the e�ect of a plane wave is to mark out the layer with acoordinate axis along the direction of its propagation: neurons are labelled by the relativetime of their activation. Therefore, two independent waves (or more) are needed to encodea 2-D metric system. Objects' topology is thus revealed by \multidirectional scanning".Metric labelling is of particular interest when coming to shape recognition involvinggraph-matching operations. The organization of a topographic mapping between two layersis made much easier by the position information contained in the nodes (activity wavesplay a role analog to chemical gradients in developmental biology). Here, dynamical linksundergo collective moves induced by global drifts of the phase-landscapes: through fastHebbian plasticity, connections get their maximal strength where the nodes they connecthave similar phases. Further formalization of the model leads to the \elastic-matching"algorithm developped in [BiDo89, BLM89]: phase interactions within a layer are equivalentto elastic forces and perturbations of the phase-landscape amount to deformations of theobject.In conclusion, compared to classical retinotopic models where neighborhood relationshipsare encoded through local, independent blobs of correlated activity, running waves installa global correlation order on the layer, which, on the other hand, is richer than uniformsynchronization.10.6References[BiDo89] E. Bienenstock and R. Doursat Elastic Matching and Pattern Recognition inNeural Networks. In: Neural Networks: From Models to Applications. L. Per-sonnaz and G. Dreyfus eds., IDSET, Paris, 1989.[BLM89] J. Buhmann, J. Lange and C.v.d. Malsburg Distortion Invariant Object Recogni-tion by Matching Hierarchically Labeled Graphs. IJCNN International Conferenceon Neural Networks, Washington, Vol.I, 155-159, 1989.[BLM90] J. Buhmann, M. Lades, C.v.d. Malsburg, Size and Distortion Invariant ObjectRecognition by Hierachical Graph Matching, Proceedings of the IJCNN Interna-tional Joint Conference on Neural Networks, San Diego 1990, pp. II{411{416[GKE89] C.M. Gray, P. K�onig, A.K. Engel and W. Singer Oscillatory responses in catvisual cortex exhibit inter-columnar synchronization which re
ects global stimulusproperties. Nature (London) 338, 334-337, 1989.[JoPa87] J.P. Jones, L.A. Palmer, An Evaluation of the Two-Dimensional Gabor FilterModel of Simple Receptive Fields in Cat Striate Cortex, Journal of Neurophysi-ology, 1987, pp. 1233{1258. 12
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