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1 Introduction

We here report on the state of development of a number of individual efforts within the
scope of our project. They all are intended to contribute to the goal of developing a visual
architecture as a basis for the representation of scenes and for the construction of such
representations. In our view, key elements of a visual architecture are a data structure to
represent aspects of objects and a general mechanism to match such aspects. With these
elements in hand, more complex models of individual objects and of entire scenes can be
constructed as dynamic linkages of individual aspects, and stored structures can be matched
to and recognized in new images.

As our basic data structure we are using labeled graphs. Nodes correspond to localities
in aspects (or, later, scenes), links connect nodes that represent the same or neighboring
localities, and labels correspond to local features. In many of our applications involving
gray-level images we are using wavelets as local features (see section 2). These correspond
closely to the receptive field types found in visual cortex, see, e.g., [ValVal8§].

As our basic elastic matching mechanism we are using the dynamic link matching (DLM),
which is part of the Dynamic Link Architecture (DLA) [Mal81]. In this scheme, dynamic
links, which are not part of classical neural architectures, are represented by temporal cor-
relations between the signals of the linked nodes as well as by rapidly modified synaptic
weights. Rapid weight modification is controlled by signal correlations in a quasi-Hebbian
fashion: positive correlation leads to weight increase, negative correlation to weight reduc-
tion. On the other hand, signal correlations are generated by the arrangement of synaptic
weights, closing a loop of interactions with positive feedback. This loop is the basis of a
system of dynamic link self-organization which favors certain link structures or “connec-
tivity patterns”. Among the connectivity patterns are low-dimensional topological graphs,
which are an ideal data structure for the representation of visual aspects and of scenes. Fur-
thermore, given two identical or similar connectivity patterns and a system of connections
between them, link dynamic converges on a sparse connectivity pattern between them that
connects corresponding nodes with each other. This is the mechanism of DLM.

In its most primitive and most general version, DLM takes the form of a sequence of
activity events. Each one of this consists in the firing of a relatively small number of neu-
rons, neurons that are distinguished by being more strongly connected with each other than
average. About half of the neurons are in each of the two networks to be matched, pre-
sumably in corresponding locations. As a result of the activity event, all links between the
participating neurons are strengthened, at the expense of other links of the same neurons. A
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sequence of such activity events knits the two networks together by activating links between
corresponding locations and deactivating links between non-corresponding locations.

This basic mechanism has the advantage of great generality, not being prejudiced as to
magnification, orientation, distortion or greater or lesser completeness of the part-networks
involved, but it has the disadvantage of being very costly in terms of physical connectivity
(from which active links are to be selected) and in terms of matching time. We therefore
believe that this mechanism plays a dominant role only in the early ontogenesis of the brain
when it is used to set up specific connection structures which are the basis for more efficient,
though less general, matching. In the context of our project, which is concerned with tech-
nical implementation, our game has been to model the general DLM mechanism by specific
algorithms which capture its basic style while having the advantage of being better adapted
to computer implementation and being more economic in processing time and required con-
nectivity, but which have the disadvantage of requiring explicit algorithmic specification of
the degrees of freedom of the desired matches (position, magnification, distortion, rotation,
partial match, to name some). The individual projects described below correspondingly
fall into two categories. In sections 2 to 5 real camera-derived images are analyzed, but a
matching algorithm is used that is efficient and narrowly taylored to the specific goal at
hand and that somewhat dissimulates its neural basis. Sections 6 to 8 describe efforts to
reach towards a formulation of DLM that retains the basic neural style in terms of temporal
signal correlation and synaptic modification and yet is sufficiently economic to be used in
technical implementations.

Section 2 describes a system for object recognition that is invariant with respect to
position and that is robust with respect to deformation, rotation in depth and illumination.
In section 3, work performed by R. Wiirtz, we show the amount of detail retained in our
model graphs. by reconstructing images from stored data. In section 4 we open the search
space of the matching algorithm to in-plane rotations and to varying magnification, keeping
matching time low by making up for additional search space by basing initial parameter
estimates on small subsets of the data. In section 5 the matching algorithm is modified to
be able to deal with partial matches and its power is demonstrated with cluttered scenes
made up of arrays of partially occluded objects.

Section 6 is an advertisement for work that is intended as a contribution to the learning
time problem, but that is relevant also to the mapping problem as generality is required
and as it is based on the basic DLM. Section 7 describes ongoing work by W. Konen and
T. Maurer in which they are developing a greatly speeded-up version of DLM, called FDLM
(for fast DLM), without sacrificing much of generality, the key point being simply that
activity events are not created by actual neural signal dynamic but in an algorithmic fashion
(whereas link dynamic is retained in its original form). Section 8, finally, describes ongoing
work by R. Doursat which aims at a biological theory for the capabilities of the human
visual system when it comes to judge metric relationships within the frontal plain. The
basic idea in this work is to use running waves as activity events, two parallel waves in the
two planar networks to be matched. The speed is controlled by local in-plane connectivity
and is regulated such that equivalent distance elements da are covered in equal time (a large
distance element in the foveal region of primary visual cortex being equivalent to a small
one in a peripheral region).



2 Object Recognition Invariant to Position and Dis-
tortion

As a demonstration of the capabilities of the Dynamic Link Architecture, we developed
a programme that can recognize objects — specifically, camera images of human faces —
although different images of the objects vary strongly in aspect or, in our case, facial ex-
pression, hair style, and so on. On the other hand, the programme is not specialized to any
type of object; it has been tested with, e.g., office implements as well. To achieve acceptable
performance, the programme has been implemented on a network of up to 40 transputers.

2.1 Data Acquisition and Preprocessing

The first step captures a 512 X 512 pixel snapshot with a CCD camera at 8 bits (256 gray
levels) of resolution. The image is then sampled down to 128 X 128 pixels. As motivated by
receptive field properties, this image (%) is convolved with a bank of DC free, complex-valued
Gabor-based wavelets 1z(¥) (bandpass filters) parameterized by their spatial frequency k.
In our case 6 frequency levels and 8 orientations are sufficient according to power spectrum
analysis for faces and biological data [JoPa87]. The Fourier transform of the filter functions
are given by the following equation:
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A vertex 7y is labeled with the vector of the absolute values of the responses JI(7) (called
a jet):
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This choice of vertex labels guarantees some robustness against local distortions.

To add a new face to the database, we extract and store the J 1 at the points of a 8 x 10
grid, reducing the precision to fit a byte for each filter response. This compresses the data
by a factor of approximately 4 from the original 128 x 128 images.

Graph edges are labeled with the distance vector A between their endpoints in order to
ensure that similar vertex labels in noncorresponding regions of the image are not identified
during matching.

2.2 Matching

The recognition step is a two stage matching process. In both stages two graphs are compared
by the weighted sum of comparison functions of the two types of labels (E and V are the
edge and vertex sets, respectively):
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For S, we chose the cosine of the angle between the jets to achieve some degree of intensity
independence. For S, we used the squared difference of the edge labels. This yields a cost
function for a pair of image and object graphs which is to be minimized.

In a first step, the approximate location of the face in the image is determined by com-
paring it with one fixed object. For that purpose Ciyq; 1s minimized varying only the center
of the graph and leaving its geometrical shape unchanged. This estimate initializes the sec-
ond step, where for every object graph in the database Ciq; 1s minimized varying all vertex
positions in the image graph independently. After convergence we have a final cost value
for each object; the smallest of them belongs to the recognized person if it is significantly
different (according to some statistical criteria) from the other matches. Both optimizations
are done by simulated annealing at zero temperature, for which the cost landscapes are
sufficiently well behaved [LVB92].

It is also possible to start with less than the full number of frequency levels and vertices
and then to increase both during the matching process.

2.3 Recognition Performance

In order to assess the performance of the programme, we collected three galleries of face
images from a set of 88 persons. One gallery is used to generate the database; the subjects
where asked to look straight into the camera for this. A second gallery was taken with
subjects looking approximately 20 degrees to their right, while for the third gallery they
were asked to modify their facial expression.

The comparison process described above yields a number for every pair of image and
stored graph. We thus need a mechanism to decide whether the graph with the best match
value is indeed the correct one, or whether the graph of this person is not included in the
database. For this, we developed two statictical criteria, described in detail in [LVB92].
If the values for these criteria exceed a threshold, the graph with the best match value is
deemed recognized; otherwise, the system effectively says “I'm not sure.”.

The programme’s performance is given in table 1. The thresholds of the criteria were
adjusted such that for one gallery, no false positives resulted (columns 2 and 5). The system
then identifies 88% and 84% of the images in a significant way (column 1), while at the same
time it avoids wrong and significant recognitions (column 6) and false positives in the other
gallery. In two (gallery 1) and three (gallery 2) cases, shown in column 4, the best match is
not the correct graph; thus, in ~297% of the cases, the system picks the correct graph from
the database (sum of columns 1 and 3). (In the few exceptions, the persons rotated their
head in the image plane; invariance to this is discussed in section 4.)

3 Reconstruction from Stored Models

The coding of known faces as elastic graphs that are vertex labeled by the local components
of the wavelet transform of the grey level image has proven very successful for the recognition
task (see section 2). For a better theoretical understanding of the algorithm as well as for
further improvements it is necessary to know how much of the original image information is
preserved in this data format.

A (continuous) wavelet transform

WI) (F,7) = (v + 1) (3)
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gallery | criterion || case 1 2 3 4 5 6
K1 86 | 100 | 11 2 0 0
gal. 1 Ko 83| 100 | 15 2 0 0
K 88| 100 | 10 2 0 0
K1 79 100 | 17 3 0 0
gal. 2 Ko 80| 100 | 16 3 0 0
K 84| 100 | 13 3 0 0

Table 1: Results of comparing two galleries (gal. 1, head rotation by 15°; gal. 2, grimaces)
against the standard image database of the same persons. All entries are expressed as
percentages. For details, see the text.

allows reconstruction of the image I by means of the inversion formula
I(F)=9g- / (WI) (F, 7)) * vop( = F)d?k.

The factor g in front of the integral is finite if the DC component of the wavelets vanishes
(otherwise the inversion formula is invalid). This is the case for our wavelets, and in the
continuous case the reconstruction is trivial. We are particularly interested here whether our
sparsely sampled image data still give a satisfactory image reconstruction.

The frequency space sampling for the face recognition system has been restricted to an
area where the difference between faces is expressed, i.e., the low and high frequencies have
been cut off. Therefore, only the reconstruction of a bandpass filtered version of the original
image can be expected.

Figure 1: a) An image of a face with the corresponding graph superimposed. b) Recon-

struction from the complete transform (128 x 128 jets). c¢) Reconstruction from the graph
(8 x 10 jets).

Figure 1 shows the results of the reconstruction procedure. The following observations
(which have been tested on several images) can be made:

e Although the frequency space is not completely covered an image can be reconstructed
which is easily recognizable by a human.
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e The sampling in image space (8 x 10) is dense enough for recognition purposes.

e The locality of the wavelet components leads to a suppression of undesired background
structure outside the area covered by the graph.

The recognition system as described in section 2 does not make use of the phase of
the (complex-valued) wavelet components. Therefore, several attempts have been made
to reconstruct the image from the moduli only. All of them have failed — the phases do
contain important image information. As a consequence, they should be incorporated in
further versions. Research on a useful way of doing this is currently in progress.

4 Invariance with Respect to Size and Orientation

4.1 Algorithmic Description

Our face recognizer described in section 2 and [LVB92] already has the ability of distortion
invariant recognition. Its ability to cope with local distortions by elastic matching also
accounts for variations in global transformation parameters limited to roughly 5-10% without
serious performance degradation. Examples for global transformation parameters are scale
and rotation in a plane vertical to the viewing direction. This lack of accounting for global
transformations except translation was one of the most obvious reasons for the failure of the
algorithm on some pictures of our standard face image galleries. After checking the behaviour
of the potential derived from the similarity functions, the most reasonable approach seemed
to try an optimization procedure transforming the model graph globally in scale and rotation
space. This optimization procedure for scale and rotation angle can be applied to the model
graph in alteration with a translation optimization (global move) correcting the center of
gravity position and local node optimization adapting to local distortions.

4.2 Scale Transformation

Scale transformation of the graph model consists of two parts, the transformation of the
vertex and the edge labels. The edge labels, the distance vectors in the model graph are just
scaled by the appropriate scale factor. Since the feature vectors are sampled on a logarithmic
scale, the application of a scale factor just means a shift of vector coefficients over the
frequency coordinate. Before comparing a model feature vector to one in the image it has to
be shifted along the frequency axis by the global scale factor a. Two further modifications
to the comparison are necessary. First the sparse sampling of the frequency coordinate
necessitates the use of interpolation between vector coefficients if no direct comparison is
possible. Second the feature comparison has to be windowed to the overlapping region of
the feature vectors after the shift was applied in this example of an input smaller than the
model:
-.7,7"1/1(’]?)(11 )
- \ZA[(§7 QI-()) rﬁ(i(a) ‘ZAM(§7 aIT))mindowed' ( )
An application of the described scale estimation is shown in figure 4.2 with scaling by 75%
and 50% (compare also [BLM90]).



Figure 2: Recognition invariant with respect to distotion (2"¢ panel), size (25% and 50%,

3

3" and 4" panel) and orientation (last panel). The model is shown in the 1" panel.

The procedure showed reasonable performance if the scale difference between model and
incoming image allowed a sufficient feature overlap (equation 1).

4.3 Rotation

Adaptation to a global rotation of an object was done by rotating the graph edges around
the center of gravity and transforming the vertex labels in a fashion similar to the feature
shift for scaling along the frequency axis, only now along in the angular coordinate. The
feature shift is done modulo 27, interpolation between neighboring coefficients just as above.
For a result see figure 4.2.

Estimation of global parameters can be sped up by finding a way to estimate the parameter
only once for all models in the gallery and using the reduced information of a thinned
graph. This global parameter estimation is one way to reduce complexity of the DLA related
dynamics.

5 Analysis of Cluttered Scenes

We have extended the face recognition system in order to additionally handle occluded ob-
jects [WisMa92]. With slight modifications we can demonstrate highly successful recognition
and localization of objects in gray level images of complex scenes in spite of extensive mu-
tual occlusion. Objects are made known to the system in a semi-automatic fashion. The
performance level demonstrated may be comparable to that of classical computer vision sys-
tems. However, our system is distinguished by utmost simplicity and flexibility, which are
the hall-mark of neural systems.

To specify the state of the scene interpretation system completely it is necessary in
addition to represent which regions of the image have been recognized by which model
graphs and what the occlusion relations between the objects are. The system works under
the tight restriction that models are to be mapped without any distortion to the image and
we correspondingly can describe the relation of the model domain to the image domain with
the help of a few binary variables that decide on the recognition status of a model and the
visibility or occlusion of its individual nodes, plus a single position vector for the placement
of the model graph in the image.

We have developed two scene interpretation algorithms. In the first, simple version, each
model graph is matched separately to the image to decide if and where it fits and to what
extent it is occluded. This algorithm has the advantage that there is no need for all objects
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in the scene to be known to the system. The algorithm examines all graphs in the model
domain. First, the graph is matched to the image. Then, all nodes under a certain threshold
for § are marked as occluded. Since we assume that occlusion occurs for coherent regions,
the algorithm then regularizes the occlusion decisions.

For the second algorithm to work, there must be models for all objects in the scene.
Posing such a constraint has the advantage that the relative occlusion relations can be
determined and used for more reliable interpretation of the scene. For two graphs A and B,
this relation will be characterized by the “occlusion index” Q5. When it is computed, the
system may already have decided that a third object (or objects) are occluding parts of A
or B so that only part of their graphs are visible in the image.

nutcracker

d 9

Figure 3: a) One of the 30 scene images. It contains the objects zebra, basket, elephant,
candleman, and nutcracker. There are altogether 13 models in the gallery, and there are 121
objects in the scenes, with three to six objects in each scene. The resolution of the images
is 1282 pixels with 256 grey levels. b) Interpretation of this scene by algorithm 1. Visible
regions of the matched model graphs are shown, from front (black) to back (light grey).
The algorithm missed nutcracker in this scene, not finding the lower part under the zebra
and discarding the identified head region as too small in area. For the zebra, large parts
are interpreted as occluded, because of the perturbation of inner jets by overlap with the
background. Altogether, 80% of the 121 objects were recognized correctly while 2 models
were erroneously accepted. c) Interpretation of the scene by algorithm 2. All objects and
their occlusion relations have been recognized correctly. Altogether, 96.7% of the 121 objects
were recognized correctly, 3 models were erroneously accepted.

6 Learning from Single Examples to Recognize Sym-
metry

A large attraction of neural systems lies in their promise of replacing programming by learn-
ing. A problem with many current neural models is that with realistically large input patterns
learning time explodes. For example, learning problems of higher order, like detecting an
unknown symmetry within a pattern (Fig. 4), are difficult tasks for most neural networks.
Even for small problem sizes a very large number of training examples is needed. This is
a problem inherent in a notion of learning that is based entirely on statistical estimation:
The patterns belonging to one symmetry class do not lie in clusters in the input space and



thus cannot be estimated from a small training set. This in turn leads to the explosion of
learning time or of the number of prototypes required.

We propose a system which can classify symmetries after having encountered one example
pattern of this symmetry class. The network is based on the Dynamic Link Architecture
[Mal81], where rapidly modifiable links are used to express adaptive binding of features. It
is based furthermore on the a prior: restriction that significant symmetries are those wich
preserve locally the topological structure of the input pattern. Where “learning” is required
in other neural systems, we have here a stochastic self-organization process occuring within a
single perception (i. e. pattern presentation). The aim of the unsupervised self-organization
is to bring the actual perception into maximal consistency with the a priori knowledge.

In simulations the network achieved a classification reliability of 96% when trained on
three different symmetry classes. An example of the self-organization process is shown in
Fig. 4.
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Figure 4: Self-organized formation of dynamic links. The figures (A)—(C) show different
activation states generated from a single input pattern. The input pattern imposed to both layers
has horizontal symmetry, its features represented here by the diameter of the different circles.
The self-organization process consists of a sequence of activations, each of them activating large,
overlapping regions in both layers (dark circles). The figure shows the network state after (A) 15,
(B) 50, (C) 80 activations. Links grow between cells which are active simultaneously and have
similar features.

7 Fast Dynamic Link Matching

7.1 Problem formulation

Consider the following task: Given are two patterns which consist each of N x N local fea-
tures arranged in two 2D-layers X and Y. The problem is to decide whether the two patterns
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can be matched by some invariance transformation and if so, to determine this invariance
transformation. In the present case, invariances include translation, rotation, mirror sym-
metry along arbitrary axes and local distortions.

7.2 The neuronal system

Finding a match between patterns means finding a set of mutual corresponding cells a € X
and b € Y. 2 A cell a may be considered as neuron or neuronal group capable of two
functions: (i) coding for a local feature f, imposed by the actual pattern; (ii) representing
an activity state x, which can be transmitted to other cells. Correspondence can be expressed
by binding the cells a and b through a dynamic link .J,,. Local features assigned to a and b
may help as a guideline for candidate matches but will not solve the correspondence problem
unambiguously, since a cell b € Y with feature f, will have usually more than one candidate
match a € X with the same feature. Let us define a similarity matrix 7}, which has high
entries for all candidate matches, i.e., pairs of cells with similar features. In the present case
we simply take

Tya = O(f1, fa)- (2)

An initial ambiguous  guess for the dynamic link network Jy, is Joy = Tpa/ >0 Thars
1. e. each cell b is linked to all cells a with similar features such that the total link strength
converging on each cell bis 1. A solution of the match problem must resolve these ambiguities
such that each cell a has at most one correspondence b or — in other words — one dynamic
link .J,, has a much higher value than all other links Jj, emerging from cell a. A neuronal
activity mechanism capable of finding such a solution has been described earlier in [WilMa76,
KoMa92b.

7.3 FDLM: Fast Dynamic Link Matching

The neuronal system based on nonlinear differential equations requires a number of param-
eters and extensive numerical calculations. We tried to find a simpler and faster equivalent
algorithm with less parameters, the fast dynamic link matching (FDLM).

Before starting the algorithm one has to choose an unimodal blob function By(b) with center
at b = 0. This may be either an equilibrium solution of a neural field differential equation
simply a window function. Let o(-) be a sigmoidal function (which in the simplest case may
be the unit step function). Here are the steps of the algorithm:

(i) Initialize the dynamic links with Jy, = Tho/ o Thar -

(ii) Choose a random center a., € X and place the blob there: x, = By(a — a.). Compute
the resulting input to layer Y

[ =3 JyaThao (). (3)

(iii) Use [éy) to compute the position b. € Y for which 3, By(b' — bc)[(,y) is maximal, and
place the blob there: y, = By(b — b,.).

?We use lower-case symbols a,b,a’, b’ for index vectors a = (a1, a») specifying row a; and column as of a
cell within a 2D-layer.
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(iv) Update the links between active cells such that the total link strength converging on
cach cell b 1s kept constant:
']ba + GJbaTbaO-(yb)O-(Ia)
Za’(']ba’ + ‘;Jba’Tba’O_(yb)O-(fl/'a’))

Jb(, — (4)

(v) Proceed with step (ii).

In its simplest form, where By is only a window function and o(By) = §(By) = By, the
algorithm has only two free parameters: the size [ of the blob and the update parameter e.

A small number of blob activations ( < 20 for sheets of 8*8 neurons) suffices to estab-
lish an unambiguous mapping. With this formulation, establishment of a mapping can be
accelerated in comparison to the original formulation in terms of differential equations by a
factor larger than 10.

8 Metric Coding and Running Waves

The past few years have seen a renewed interest in investigating the fine temporal structure
of neuronal activity. A modern trend in neurosciences is indeed to see temporal coding as a
general format of representation used by the brain. In this frame, the new functional entities
are dynamic cell assemblies, defined as groups of cells whose activity patterns engage in
long-range synchronization during short periods. Originally put forward by von der Mals-
burg [Mal81] in the theoretical domain to tackle the “feature-binding problem”, the idea of
correlation coding gained evidence through recent experiments on cat visual cortex [GIKKE89].
These findings show synchronization phenomena between remote orientation columns during
perception depending on global stimulus properties, and suggest phase-locking of oscillatory
activity as a simple binding mechanism. They have also given rise to numerous models
[K6Sch91, MaBu92], ranging from detailed accounts of the experiments to more theoretical
explorations. All these works share the hypothesis that perceptually distinct objects are
labelled by the collective synchronization with zero delay of the units encoding their com-
ponents. This amounts to figure-ground separation using tags of a temporal kind, viz. the
phase of oscillatory responses assumed uniform over a coherent domain.

However, what proves appropriate to gross segmentation systems might not be suffi-
cient for refined recognition tasks. The only relational information found in zero-phase
locking is the mere fact that two units ¢« and j “belong or not to the same set”. All
things considered, synchronization groups are akin to Hebbian assemblies on a faster
time course. In these models the potential richness of temporal coding is far from being
fully exploited, if we consider the possibility of more general correlation events such as:
< xy(t) ot — Ty2) ... 2, (t — T1,) >, involving n neurons and taking also into account the
natural transmission delays between their firing processes. On the other hand, topological
relations between parts of an object or a scene are obviously an information of outmost im-
portance, ignored by global synchronization. Four corners of a square do not just “belong”
to the square but are also located in a specific manner with respect to each other.

Taking up these last remarks, we suggest here that delayed correlations be the basis for
metric coding. To illustrate this conceptual viewpoint, we simulate a 2-D layer of oscillators
locally coupled through connections including small delays: each element is thus inclined to
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reproduce the behavior of its neighbors shifted with a short time-lag. The net result is the
propagation of waves over the layer instead of uniform synchronizations. From the differential
equations leading the dual excitatory/inhibitory dynamics of oscillators we also derive a
single phase-equation [IKur84]. Such a formulation brings to the fore the crucial aspect of the
network, viz. its temporal organization irrespective of the individual patterns of activity.
Under this format, running waves are equivalent to phase-gradients, replacing the traditional
phase-plateaus, and this is precisely what we assume to subserve the implementation of a
coordinate mapping. In short, the effect of a plane wave is to mark out the layer with a
coordinate axis along the direction of its propagation: neurons are labelled by the relative
time of their activation. Therefore, two independent waves (or more) are needed to encode
a 2-D metric system. Objects’ topology is thus revealed by “multidirectional scanning”.

Metric labelling is of particular interest when coming to shape recognition involving
graph-matching operations. The organization of a topographic mapping between two layers
is made much easier by the position information contained in the nodes (activity waves
play a role analog to chemical gradients in developmental biology). Here, dynamical links
undergo collective moves induced by global drifts of the phase-landscapes: through fast
Hebbian plasticity, connections get their maximal strength where the nodes they connect
have similar phases. Further formalization of the model leads to the “elastic-matching”
algorithm developped in [BiDo89, BLMS89]: phase interactions within a layer are equivalent
to elastic forces and perturbations of the phase-landscape amount to deformations of the
object.

In conclusion, compared to classical retinotopic models where neighborhood relationships
are encoded through local, independent blobs of correlated activity, running waves install
a global correlation order on the layer, which, on the other hand, is richer than uniform
synchronization.

10.6
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