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Abstract

A central mystery of visual perception is the classical problem of invariant
object recognition: Different appearances of an object can be perceived as “the
same”, despite, e.g., changes in position or illumination, distortions, or partial
occlusion by other objects.

This article reports on a recent email discussion over the question whether a
neural network can learn the simplest of these invariances, i.e. generalize over
the position of a pattern on the input layer, including the author’s view on what
“learning shift-invariance” could mean. That definition leaves the problem
unsolved. A similar problem is the one of learning to detect symmetries present
in an input pattern. It has been solved by a standard neural network requiring
some 70000 input examples. Both leave some doubt if backpropagation learning
is a realistic model for perceptual processes.

Abandoning the view that a stimulus-response system showing the desired
behavior must be learned from scratch yields a radically different solution.
Perception can be seen as an active process that rapidly converges from some
initial state to an ordered state, which in itself codes for a percept. As an
example, I will present a solution to the visual correspondence problem, which
greatly alleviates both problems mentioned above.

1. Introduction

Artificial neural networks have introduced a radically new way of computer
programming by providing simple and convincing ways for a system to learn
concepts from examples. The importance of this can not be overestimated, and
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there are many practical applications, which can even be sold for good money
(one of the major quality criteria of our time).

From a naive viewpoint, it is enticing to apply this tool to the difficult task of
constructing computational models of perception. After all, the brain consists
of nothing but a lot of neurons with an even larger number of connections.
Given sufficient computing power all the mysterious properties of perception
should be exhibited by a network which – after the presentation of many ex-
amples – develops from a simple unstructured state to a system with cognitive
capabilities.

That view can be challenged from various perspectives. First of all, most
neural network models have the structure of simple stimulus-response schemes,
where the same input always produces the same output unless the internal
state has been changed by learning. This ignores important psychological pa-
rameters like readiness to show or repress a response and other internal factors
that obey their own laws. These considerations lead beyond the scope of this
article, because they point to the tough issues of consciousness, namely, how
are the results of cerebral computation coded, and how do conscious results
(i.e., conscious information about the environment) differ from unconscious
ones (e.g. intermediate results or raw sensory data), which are, even with ef-
fort, not accessible. These are interesting and important questions, however,
I will refrain from any speculations about the issue. The reason is that I see
no way of getting a grip on it, not qualitatively and even less quantitatively
enough for computer modeling.

2. Shift-invariance

Let us now return to more technical and more tractable questions. A central
mystery of visual perception is the classical problem of invariant object recog-
nition: Different appearances of an object can be perceived as “the same”,
despite, e.g., changes in position or illumination, distortions, or partial occlu-
sion by other objects. I wish to report on some aspects of an email discussion of
the question “Can neural networks learn shift-invariance?”, which took place in
1996. This is the simplest of invariances, namely the recognition of a stimulus
independently of its position on the retina. It was triggered by a request for a
proof for the “generally held view” that the answer was negative.

2.1. Can Neural Networks Learn Shift-invariance?

The problem is the following: There are N possible patterns at P possible
positions. The complete set of P·N possibilities must be divided into a training
set and a test set. (Patterns with symmetries are ignored for the sake of simpli-
city). The network has succeeded when it has learned the correct classification
of the N patterns independent of their position. There is no disagreement that
neural networks are capable of performing shift-invariant recognition. A good
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example is the neocognitron (Fukushima et al., 1983). However, the necessary
structure is already built into the neocognitron before it starts learning.

It can be shown that for N=1 and a training set of size P-1 there are examples
where no local learning rule can generalize to the shift-invariant solution. That
means that the concept of shift-invariance can not generalize to positions where
the pattern has never been seen. This is probably more than one should expect,
anyway.

The challenge for a neural net to learn shift-invariance can be defined as
follows. Beginning from tabula rasa, the network is presented one pattern in all
possible positions to learn the concept of shift-invariance. For practical reasons,
more than one pattern may be required, but I would insist that shift invariance
has to be learned from a small number (S�P) of the possible patterns.

After having learned shift-invariance that way the network should be able to
learn new patterns at a single position and then recognize them in an invariant
way in any position. Again, I would allow a small number of positions. It is
granted that the network is now a structured one, but the structure has been
learned from examples.

A good step into this direction is a network by Hinton (1987), which actually
achieves the desired generalization. His parameters are N=16, P=12. Every
pattern is trained at 10 (random) positions. So the number of training examples
is 0.83·P·N, the number of test examples to which the network generalizes is
0.17·P·N.

This gets a little awkward for larger values of N and P. The task as outlined
above would allow only S·(P+N-1) training examples. Something like S=3
should be appropriate, S=1 desirable. Then the network should generalize
and recognize all P·N examples correctly. Note that there is no objection to
the choice of parameters in (Hinton, 1987) but to the scaling behavior for
larger parameter values. The network must have seen all patterns in almost all
possible positions to do the generalization.

To the author’s knowledge the goal of learning shift-invariance from a training
set of size S·(P+N-1) with a small S has not been reached yet. So the question
whether a standard feed-forward neural network with a local learning rule can
learn the concept of shift invariance remains open. The concept itself seems so
important that a failure to do so will challenge the claim that the respective
classes of models can achieve a reasonable description of perception.

The problem can, of course, be solved by extending the allowed structures
appropriately. Giles and Maxwell (1987) showed that higher order networks
containing, e.g., ΣΠ-units are able to learn shift invariance. These are neurons
that have multiplicative as well as the usual additive synapses, the former
being useful for gating connections according to a global transformation. to
date, it seems difficult to find experimental evidence for such gating synapses,
sometimes also called three-axon terminals. In Section 3.2, a quite different
extension of neural networks will be discussed.
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2.2. Does the Human Visual System Exhibit Shift-invariance?

As an aside, the problem could also be solved the other way around. Thus,
an interesting thread of the discussion asked the question whether the human
visual system shows shift-invariance at all. The psychophysical data are not
perfectly conclusive at the moment. Biedermann and Cooper (1991) find com-
plete invariance in priming experiments. In these experiments, people were
shown line drawings of familiar objects and, in a second run, had to identify
the objects shown in the first one. The fact that they do better in the second
run is called object priming, and the experiments proved that reaction times as
well as error rates were independent of the position of the second presentation.
Presentation times were too short to adjust fixation.

Experiments done by Nazir and O’Regan (1990) used completely unknown
and meaningless patterns. They had to be learned at one position and recog-
nized at another one. The results show that error rates and reaction times were
significantly worse if the position of presentation was changed. This seems to
be evidence for imperfect shift-invariance in the case of unknown objects, al-
though Irving Biedermann commented that Nazir and O’Regan do find strong
shift-invariance under more thoroughly controlled conditions. Anyway, there
seems to be agreement about the fact that recognizing patterns at shifted po-
sitions can cause distinctly more effort than at the ones where the pattern was
learned.

3. Dynamic-link Networks

A major simplification made by standard neural network theory is that neu-
rons do their processing instantaneously, without any internal dynamics, and
that the time course of the activity is not important. This causes theoretical
difficulties — it has been suggested that, e.g., the well-known binding problem
can only be overcome if the information content of the temporal structure on
a fine time scale is exploited by the brain (von der Malsburg, 1981). While
there may be feature detectors for cows and goats and brown and purple, it is
most unlikely that there are specialized detectors for purple cows, before the
first instance is encountered. It is also implausible that they develop instantly
on this very first encounter. So somehow the detectors must be rapidly bound
together (and just as rapidly be cut apart) during perception. This is not triv-
ial, because pure detector activities can not distinguish between a scene with
a purple cow and a green goat and another one with the colors reversed.

A radical solution to the binding problem was proposed by von der Malsburg
(1981,1985,1995). He postulated that pairs of cells which have a physical con-
nection and, therefore, a synaptic weight, which can be changed by learning
over long time intervals, can also have a short-term weight, i.e. a property that
can vary on a time scale of a couple of milliseconds. These dynamic links also
develop by dynamics (which are formally similar to Hebbian learning) and also
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influence the activities of the cells involved. This mechanism can bind “purple”
to “cow” and “green” to “goat” and thus resolve the above mentioned ambigu-
ity. It is important to notice that the concept of dynamic links extends the two
time scales present in conventional neural networks (immediate vs. learning)
by a third one that should be synchronous with the time scale of perception.
Natural systems usually operate on a continuum of time scales, the slowest one
being biological evolution.

3.1. Computability of Brain States

Another aspect might be worth considering. A standard feed-forward neu-
ral network represents a simple function from an input pattern to an output
pattern. With known (computable) weights, this function is obviously com-
putable in the sense that a discrete machine can calculate its output. With the
introduction of recurrence the timing of each neuron begins to matter. With
dynamic links the whole system can only be described by a complex system of
differential equations.

Such differential equations perform, in principle, computations with infinite
precision. As a consequence, it might be impossible to simulate them on a
Turing machine in the sense of computing their development up to any desired
precision. An example of a simple linear partial differential equation for which
this non-computability can actually be proved, has been presented by Pour-El
and Richards (1981). Bournez and Cosnard (1996) study the problem in much
more detail, and their result is that many differential equations are compu-
tationally more powerful than Turing machines. If one accepts the view that
the brain can be modeled by a system of differential equations these results
open a possibility that essential properties of the brain can, in principle, not
be modeled using a digital computer, no matter how parallel its architecture
might be. Put differently, it might be the case that the brain can be modeled
by neural networks in a usual way, but those networks can not be simulated.

3.2. Shift- and Deformation-invariance in Dynamic-link Networks

The architecture outlined in the beginning of this section can accommodate
shift-invariance in the following way. First, the notion of correspondence is
introduced. Given two images I1 and I2 of the same object, it must be decided
which point in I1 corresponds to which one in I2 in the sense that both are
projections from the same point on the physical object. This is called the
correspondence problem. If it is solved for sufficiently many points, shift- and
deformation-invariance is easy to achieve. It suffices to compare local features
at all pairs of corresponding points, and if the sum (or average) of these local
similarities is high the objects are similar. Such a comparison can be done for
several memorized objects and the object with the highest similarity value is
then recognized.
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The solution of the correspondence problem, however, is by no means trivial.
If small distortions and rotations are allowed, the corresponding points in two
identical sheets of unstructured white paper are nowhere uniquely determined.
Up to rotation by multiples of 90◦ they are determined only at the four cor-
ners, all others can vary in a considerable range. In the presence of structure,
the problem remains that local features are not unique, i.e. non-corresponding
points frequently carry the same features. Introducing more complex and thus
less ambiguous features can help, but these are usually more sensitive to dis-
tortions. The only way to resolve these ambiguities is taking the spatial ar-
rangement of points into account in addition to the feature similarities.

In the following, I will briefly describe a class of dynamic-link networks that
can solve the correspondence problem for human faces (Würtz, 1995; Wiskott
and von der Malsburg, 1996; Wiskott, 1996; Würtz and von der Malsburg, in
preparation). Image and model (the actual and the memorized face) are both
represented by a sheet of neurons, each of which carries a local feature vector
(a hypercolumn of simple cells) with it. Both sheets are fully interconnected
by dynamic links, i.e. each neuron has a connection to all neurons in the other
layer. Internally, the layers are connected by fixed short-range exciting and
long-range inhibiting connections. These connections allow only a restricted
set of activity patterns. For appropriate parameter values the only possible
patterns are one island of activity in a sea of inactive neurons. The position
of this so-called activity blob is determined by irregularities of the input, e.g.
by means of the dynamic links between the layers, its size is controlled by the
parameters of the intralayer connections.

Some simple further machinery causes the blob in each layer to move about
its layer. The crucial step is now the development of the dynamic links. The
strength of each link grows if both of the cells it connects are activated by the
blobs and if their feature vectors are similar. Growth of one link can only occur
at the expense of other links connected to the same cell. In the beginning, the
blobs move independently. With growing links, the probability increases that
the blobs are at corresponding positions, because there the feature similarity
will be high. Once this has happened the process is self-amplifying: The correct
pairs are always active at the same time and have high feature similarity, so
their links will grow, non-corresponding pairs are active at different times,
so their links will shrink due to the growth of the other ones. This system
converges to a one-one-mapping between the layers that reflects the correct
correspondences.

Variations on this theme are described by von der Malsburg (1988), Lades
et al. (1993), Konen and Vorbrüggen (1993), Würtz (1995), Würtz and von
der Malsburg (1996, in preparation), Wiskott (1996) and Wiskott and von der
Malsburg (1996). Konen and Vorbrüggen (1993) and Wiskott and von der
Malsburg (1996) extend the above system to a complete object recognition
system by means of competition between several object layers. Würtz (1995)



Neural Networks: What is Lacking? 109

and Würtz and von der Malsburg (1996, in preparation) reduce the sequential
processing time by a coarse-to-fine version of this principle.

Another variation of this system can possibly offer an interesting solution
to the binding problem if one assumes that memory traces can induce the
synchronicity required for the emergence of an ordered state. This idea has
been developed in considerable detail by Phillips and Singer (1998), a possible
application to visual feature extraction is proposed by Würtz (1998). However,
a working system that would demonstrate its capabilities is still lacking.

3.3. Symmetry recognition in Dynamic-link Networks

Another successful example for the application of dynamic-link networks is
the recognition of symmetries in an input pattern. This problem has been
solved by Sejnowski et al. (1986) using a Boltzmann machine. Their network
was able to learn to classify, e.g., 10×10 patterns for vertical, horizontal, or
diagonal symmetry after the presentation of 70000 examples. Even then, the
success rate was about 70%.

The main reason for the necessity of such an exorbitant training phase is
that their network has no idea that feature correspondences are important
— it is too general for the problem at hand. It could, with the same effort,
learn symmetries between a pattern and an arbitrary permutation between the
pixels. Clearly, this is nothing a living brain would easily do. Thus, solving
the correspondence problem by a dynamic-link network is the way to go.

Konen and von der Malsburg (1993) interconnected two layers containing
copies of the input pattern by dynamic links which develop by a similar mech-
anism as the one described in Section 3.2. They usually find a one-one mapping
between the two copies of the pattern in as few as 40 activation cycles. A sim-
ple perceptron of 3 output and 18 hidden units reads the temporal correlations
between the pattern layers and learns the correct classification from the pre-
sentation of one or two training examples per symmetry class.

Dynamic-link networks are designed to produce smooth mappings between
an image and a model. This general smoothness constraint is shared by many of
the transformations that are important in vision (i.e., translations, perspective
changes, size and orientation changes and internal deformations), although the
networks can cope with cases where the smoothness is violated locally (due to,
e.g., occlusion). This makes them ideally suited for model matching and object
recognition.

A substantial disadvantage from the computational point of view is that their
processing is inherently partly sequential, so they require a certain amount of
time for operation. Note that this is the time to build up a percept, not the
time it is held in memory. On the other hand, recognition in the brain also
requires time and this time is even dependent on the input data. In that sense,
classical neural networks fail to model reaction time, one of the most important
observables in psychophysics.
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3.4. Biological Relevance of Dynamic-link Networks

After having seen some of the power of dynamic-link networks the question
naturally arises whether this is at all realistic in the biological sense. Strangely
enough, the actual physical basis of synaptic strength remains mysterious, the
experimental data about activity-dependent strengthening of synapses (long-
term potentiation or LTP) and their weakening (long-term depression or LTD)
is obtained only indirectly from the spike activities of the cells. Currently,
synaptic strength can not be measured directly.

For many years experimental evidence for changes of synaptic strength at
the time scale of several milliseconds was not available and the whole concept
of dynamic links remained speculative. This situation has changed due to
the findings by Makram and Tsodyks (1996) and Abbott et al. (1997). They
present evidence that the activity of the postsynaptic cell can very rapidly
influence the synapses at their dendrite. This gives enormous computational
power to a single neuron, due to the complexity of the dendritic tree. More
data must be accumulated before the function of these capacities will become
clear, but rapid synaptic plasticity guided by coherent activity in pre- and
postsynaptic neuron is now a definite possibility.

4. Conclusion

I have challenged the usefulness of standard neural networks for modeling
perception from a technical and a fundamental point of view. To illustrate the
technical problems, I have chosen the classical question of how invariant recog-
nition can be learned. It has been shown that those problems can be overcome
by extending the structures allowed in these systems, particularly by shifting
attention to a new time scale. The proposal of dynamic-link networks begins
to be well-covered by neurobiological findings. The combination of conceptual
power and biological plausibility makes them very promising candidates for the
construction of realistic models of perception.
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Würtz, R.P. (1995), Multilayer Dynamic Link Networks for Establishing Image
Point Correspondences and Visual Object Recognition, volume 41 of Reihe
Physik, Verlag Harri Deutsch, Thun, Frankfurt am Main.
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