
Object Recognition by Matching

Symbolic Edge Graphs

Tino Lourens1 and Rolf P. W�urtz2

1 Computing Science, University of Groningen, The Netherlands,
http://www.cs.rug.nl/�tino/tino.html

2 Institute for Neurocomputing, Ruhr-University Bochum, Germany,
http://www.neuroinformatik.ruhr-uni-bochum.de/ini/PEOPLE/rolf/

From: Roland Chin and Ting-Chuen Pong (eds.), Computer Vision | ACCV'98.
Lecture Notes in Computer Science vol. 1352, Springer Verlag, 1998, pp.
II-193 { II-200.

Abstract. We present an object recognition system based on symbolic
graphs with object corners as vertices and outlines as edges. Corners
are determined in a robust way by a multiscale combination of an op-
erator modeling cortical end-stopped cells. Graphs are constructed by
line-following between corners. Model matching is then done by �nding
subgraph isomorphisms in the image graph. The complexity is reduced
by adding labels to corners and edges. The choice of labels makes the
recognition system invariant under translation, rotation, and scaling.

1 Introduction

Labeled graph matching is a method used successfully for, e.g., invariant face
recognition [1]. In that system, vertices are assigned local texture elements and
edges carry the geometrical information about the relative locations. Applicabil-
ity of that method is limited to richly structured or textured objects like faces.
Objects with homogeneous surfaces do not provide the sort of vertex labels re-
quired there and can only be matched using their outlines. In this paper we
present a somehow complementary matching scheme that matches corners and
connecting edges with the idea that a combination of both approaches will yield
a fairly general recognition method.

Images as well as stored models are represented as graphs whose vertices
correspond to object corners and whose edges code for edges connecting corners
in the image. The method is invariant under translation, rotation, and scaling
and robust under changes in background, limited changes in perspective, and
small distortions, but can currently not handle signi�cant occlusion.

For model matching it is assumed that corners can only be matched onto
corners and connecting edges must match edges in the image. This makes the
process equivalent to �nding subgraph isomorphisms, which is NP-complete in
the number of vertices. In our approach, the complexity is drastically reduced
by demanding that the labels of matched vertices and edges, respectively, must
be roughly equal. We will show experimentally that the problem is so reduced
to a tractable size.

The corner extraction method, which is described here only brie
y, is based
on a model for end-stopped cells in the visual cortex and thus models some

aspect of human vision. Recently, models start to evolve that present neuronal
algorithms for the graph extraction method [2]. A neuronal model for graph
matching was proposed in [1]. Although the evidence is still sketchy, it can be
expected that the whole algorithm allows a neural implementation and thus
potentially models aspects of human object recognition, for which corners and
edges play an important role. In [3], e.g., it is shown that partial contour deletion
only impedes object recognition if it is accompanied by altering corner attributes.

2 Symbolic edge graphs

We will describe objects and scenes as graphs with corners as vertices and out-
lines as edges. The most important prerequisite for such a method is a robust
corner detector.

2.1 Robust corner detection

Our method for detecting corners yields position, sharpness, size and color and
grey-scale distribution (contrast). The subtended angle can be determined a pos-
teriori by following the line segments that constitute the corner (see section 2.2).
It is based on a model of cortical end-stopped cells [4]. These model cells are
a nonlinear combination of the amplitudes of well-known Gabor functions [1]
applied to an image. We denote those Gabor responses by C�� at scale � and
orientation �.

Sharp corners are characterized by strong responses over a wide frequency
range. If only high frequency cells respond, the feature is likely to be noise or
texture rather than a corner. We found that averaging the responses over a range
of frequencies yields a much more robust corner detection. The whole algorithm is
described in [5]. Here, it su�ces to mention that that algorithm yields the corner
positions with su�cient accuracy and reliability. With a slight and biologically
justi�ed extension of the concept of complex cells, line and corner detection can
be extended to color channels, which is also described in detail in [5].

2.2 Line following

A simple method to get the outlines of objects are binarized responses of ap-
propriate edge detectors. Those, however, have turned out to be very sensitive
to changes in local contrast and size of thresholds. We are using a method that
starts from corners and collects evidence for a line to connect this corner with
another one. Thus, the resulting edge graphs can be called \symbolic". The
edge detector consists of the Gabor moduli C��. The complete graph extraction
algorithm is shown in �gure 1.

Orientation selection A corner (or line-end) contains implicit information
that one or more lines start from this position. Therefore we start searching for

1 Procedure ExtractGraph (C; I;G)
2 C0 := Corner cluster elimination C
3 forall c 2 C0

4 O := all orientations at distance d from c where a segment is found
5 forall o 2 O
6 repeat
7 follow segment with intial orientation o
8 until stop criterion ful�lled
9 if stop criterion is another corner
10 store detected segment
11 optimize detected segments
12 G := represent detected segments as a 2-D planar graph

Fig. 1. Algorithm for graph extraction.

possible lines using a circle with the corner at the center and a certain radius
d. On this circle a number of equidistant samples are taken and the response of
the C�-operator, which is the average of C�� for all �, is determined. In order to
assure that the algorithm indeed follows a line, the operator is also averaged over
all scales, yielding the operator A. A line segment in orientation � is selected if
the following conditions are satis�ed:

1. The response of the A-operator is above a threshold T .
2. The response is 20% higher than the weakest response from the samples of

the A-operator on the circle.
3. It is a local maximum among the samples taken.
4. The angle �0 where the response of C�� is maximal lies closer to � than

the sampling stepsize of the orientations. This angle is called the principal

orientation O� at the current image location.

Following a line The subsequent steps of line following are simpler than the
starting one, because the line must roughly continue in the same direction. If a
line diverts too much from that heuristic the corner detector must �nd a corner
there. Thus, the circles around the corner are replaced by arcs of twice the
sampling stepsize around the current line orientation.

Stop criteria At every step the following �ve stop criteria are checked, and
following the current line terminates if one of them is satis�ed.

1. Another corner is found.
2. One of the samples falls outside the image.
3. There is no sample where the output of the A-operator is above the threshold

T and the principal image orientation falls inside the possible range.
4. The orientation at coordinate (xi; yi) in the line does not correspond with

the preferred orientation O� .

5. The response of the A-operator di�ers too much from the response at the
previous step.

6. The length of the line exceeds twice the image size.

Line optimization The line following has a certain step size which may not
be chosen too large. Consequently, straight lines or lines of small curvature get
represented by too many intermediate points.

During the process of line following a point (xi; yi);) � i � n, is calcu-
lated at every step. (x0; y0) is the position of the corner where the line starts
from and (xn; yn) is the end-point of the line, which is usually another cor-
ner. If a straight line can be drawn between the two corners, all coordinates
(x1; y1); : : : ; (xn�1; yn�1) can be dropped. In general, if we have three coordi-
nates (xi�1; yi�1); (xi; yi); and (xi+1; yi+1) then (xi; yi) can be eliminated if the
angle at (xi; yi) is smaller than �0. In the simulations we used �0 = 5�. When the
point with index i is eliminated the same procedure is repeated for points with
indices i� 1; i+1, and i+2. If coordinate (xi; yi) is not removed, the procedure
is repeated for coordinates with indices i; i+ 1; and i+ 2.

We apply the line following algorithm separately at every scale. This mini-
mizes the chance for missing a line, but now, a line may be detected more than
once. When this is the case, or more precisely, if several lines connect the same
pair of corners and the average distance between them becomes smaller than a
threshold, all but the shortest one are eliminated.

2.3 Graph labels

After all these steps we end up with a graph that has corners as vertices and
curve segments described by a series of points as its edges. Once stored models
and the image to be analyzed are represented in this way, model matching can
be done by �nding a copy of the model graph in the image graph.

Each corner is labeled with the angles between all pairs of adjacent line
segments starting from it. The edges are labeled with the relative length of the
line segments (i.e. the ratio of the length to the length of the longest line segment
in the whole graph). This choice of labels automatically yields invariance under
translation, rotation and changes in size.

3 Graph matching

A brute force approach to test if two graphs are isomorphic is to exhaustively
test every one-to-one mapping between the vertices of the graphs, which implies
that every possible permutation is tested. We are using a modi�ed version of
the algorithm for subgraph isomorphism is from Ullman [6] based on tree search
with backtracking. To cut down evaluation expenses the above mentioned labels
are assigned to vertices and edges. To cut down evaluation expenses in graph
matching often only the best matching copy is searched. This is not acceptable
here, because the same model may appear several times in the image graph.

1 Procedure MatchGraph (G;MG)
2 stack := ;
3 forall v 2 V (G)
4 L0 := v /* list of parsed vertices of image graph */
5 ML0 := �rst model vertex /* list of parsed vertices of model graph */
6 mv := 1 /*number of matched vertices*/
7 cv := �rst model vertex /* vertex being evaluated */
8 cva := �rst angle of cv /*angle of cv to be evaluated */
9 ED := 0.0 /* accumulated edge di�erence */
10 AD := 0.0 /* accumulated angle di�erence */
11 Push (mv; cv; cva; L;ML;ED;AD)
12 while stack 6= ;
13 Pop (mv; cv; cva; L;ML;ED;AD)
14 if mv = cv = #V (MG) /* Match found */
15 Evaluate maximum and average relative length di�erences
16 else
17 if Angle cva of vertex cv can be evaluated
18 if Evaluation accepts angle and ratio
19 if cva = last angle of cv
20 cv := next (cv)
21 cva := �rst angle of cv
22 else
23 cva := next (cva)
24 Push (mv; cv; cva; L;ML;ED;AD)
25 else /* Add a missing vertex */
26 MLmv := missing-vertex
27 forall v 2 V (G)� L /* Unused vertices only */
28 Lmv := v

29 if ProperVertex (EC;maxED �ED)
30 Push (mv + 1; cv; cva; L;ML;ED +EC;AD)

Fig. 2. Algorithm for graph matching.

Consequently, we are interested in all \copies" of a model graph Gm in the given
image graph G.

We assume that the model graphs are either constructed by hand or extracted
from \clean" images. Thus, they contain all edges, wheras in the image graph
some may be missing. Our matching process allows for this by allowing every non
existing edge between two di�erent vertices to be added at a cost of 1, the total
cost being limited by a parameter, which has been set to 2 in the experiments.
Thus, our graph matching model �nds both exact and inexact copies of the
models in the image graph.

The algorithm for graph matching is illustrated in �gure 2. It can �nd all
copies of a model graph Gm in an image graph G. Lines 2{11 are the initial
stage of the algorithm, we start with an empty stack and push all vertices of the
image graph on the stack one after another, since each of them can, in principle,
be matched with the �rst vertex of the model graph. Lines 12{30 constitute

the matching proper. In line 13 we take a possible partial solution from the top
of the stack and check if we have a complete match (line 14). If the match is
complete, the maximum and average relative length di�erences to the model
are calculated, if both are below a certain threshold the match is accepted and
displayed. If we do not have a complete match we go to line 17. Here we check
if the current angle and ratio can already be evaluated. If we can not evaluate
because one or both vertices to form the angle are still missing, then we parse
the missing model vertex by adding it to the list (line 26) and �nd all possible
vertices in the image graph (lines 27{30). A vertex v is added if it is not matched
yet and if the cost EC of adding edge (Lcv; v) is smaller than the allowed cost.

The speed of the algorithm depends mainly on the condition of line 18. If
angle and ratio di�erences are chosen properly most of the partial matches will
be rejected here, and the path is rejected by not pushing it back on top of the
stack. During matching, the di�erence in ratio �r between two pairs of edges is
obtained by scaling the edge pairs in such a way that the �rst edge of both pairs
is one, then the ratio is the size of the rescaled second edge of the �rst pair: the
size of the rescaled second edge of the second pair. The average length di�erence
is evaluated by using the relative lengths of both model and found match in
the image graph, as described earlier in this chapter. The absolute di�erence
of the model edge with its corresponding image edge is taken, when there was
no edge between vb and vb in the image graph we used the relative length of
dist(va; vb). The average of all edges is taken to represent the average relative
length di�erence.

4 Results

Figure 3 shows (what used to be) a color image and the extracted image graph.
We have used the model graph illustrated in �gure 3c) to �nd all the markers in
the image.

The result is illustrated in �gure 3d). We allowed at most two out of the
seven edges in the model graph to be added and a maximal �r of 5. We tolerated
an angle di�erence of at most 36� and also an average angle di�erence of at
most 36�, since there are 10 angles in the model graph this means that the
summed angular di�erence should not exceed 360 degrees. When a match is
found we tolerate a maximum relative length di�erence of 50% and an average
relative length di�erence of 10%. The matching time for the image graph is are
approximately 1 second.

5 Discussion

We have presented a graph matching scheme for object recognition based on
corners and outlines of objects. We have used a robust and biologically motivated
operator to detect the corners. A relatively sophisticated algorithm has been
used to follow lines between corners. This makes these graphs true symbolic
information.

a) b)

c)

21.97

2

100.00 100.00

40.74 40.74

37.95

0 1

3

54
27.97 d)

Fig. 3. a) Input image. b) Image graph extracted from a), with numbered vertices.
c) A model graph with implicit attributes, such a the (relative) length of an edge and
the angle between two edges. d) Found matches of the markers. The used parameters
are: maximum �ve edges to be added, ratio between two edge pairs �r = 5, average
angle tolerance of 10%, maximum angle tolerance of 10%, maximum length tolerance
of 50%, and an average length tolerance of 10%.

The NP-complete problem of subgraph matching has been greatly simpli�ed
by assigning angles between edges and relative sizes of edges as labels to the
corners. Although we currently can not make formal statements about the re-
sulting complexity we have shown that the time requirements can be cut down
to reasonable amounts for realistic problem sizes. The choice of labels makes
the matching invariant under translations, rotations and scaling. When two iso-
morphic but di�erent models are found, the similarity of the labels is used as as
selection criterion. We conjecture that the complexity of the algorithm is O(N4),
because under ideal conditions three matching point pairs determine the trans-
lation, rotation, and scaling involved, while the fourth is needed to check for
further copies of the model.

The current version of the graph matching system is only the �rst working
prototype. We are currently testing the robustness on many more images and
are planning to introduce some extensions. The most serious limitations are that
occluded corners or corners degraded enough for the corner detector to miss them
impede the whole model matching. Also, the line following algorithm is restricted
to the simple case of lines starting and ending at corners. This causes the poor
representation of the scissors in �gure 3b).

We did not use curved lines for matching but help vertices which are used to
give a proper description of the curve. It can be used to get a better description
of the model and gives a more accurate cost of a match in the image graph.
When additional coordinates are used we can apply a curve matching by surface
di�erence algorithm.

Further developments will try and integrate texture and color features in
order to combine this approach with the one from [1]. A further extension could
use three-dimensional model graphs for matching into two-dimensional images
and could yield a truly 3D object recognition system.

Acknowledgments. Financial support from the NEUROS-Project by the German

Research Minister (01 IN 504 E 9) is gratefully acknowledged.

References

1. Martin Lades, Jan C. Vorbr�uggen, Joachim Buhmann, J�org Lange, Christoph
von der Malsburg, Rolf P. W�urtz, and Wolfgang Konen. Distortion invariant object
recognition in the dynamic link architecture. IEEE Transactions on Computers,
42(3):300{311, 1993.

2. Lothar Weitzel, Klaus Kopecz, Claus Spengler, Reinhard Eckhorn, and H.J. Reit-
boeck. Contour segmentation with recurrent neural networks of pulse-coding neu-
rons. In G.Sommer and J.J. Koenderink, editors, Proceedings of the 7'th Interna-

tional Conference on Computer Analysis of Images and Patterns,Kiel, Germany,

September 10-12, 1997, 1997.
3. Irving Biedermann. Recognition-by-components: A theory of human image under-

standing. Psychological Review, 94(2):115{147, 1987.
4. Friedrich Heitger, Lukas Rosenthaler, R�udiger von der Heydt, Esther Peterhans, and

Olaf K�ubler. Simulation of neural contour mechanisms: from simple to end-stopped
cells. Vision Research, 32(5):963{981, 1992.

5. Rolf P. W�urtz and Tino Lourens. Corner detection in color images by multi-
scale combination of end-stopped cortical cells. In Wulfram Gerstner, Alain Ger-
mond, Martin Hasler, and Jean-Daniel Nicoud, editors, Arti�cial Neural Networks
{ ICANN '97, volume 1327 of Lecture Notes in Computer Science, pages 901{906,
Berlin, Heidelberg, New York, 1997. Springer Verlag.

6. J. R. Ullman. An algorithm for subgraph isomorphism. Journal of the Association

for Computing Machinery, 23(1):31{42, 1976.

