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Efficient evaluation of serial sections by iterative Gabor matching
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Abstract

Evaluation of electron microscopic images of serial sections is a time-consuming process requiring a high level of expertise. Here
we present an algorithm to ease and accelerate this process. It is a modification of an algorithm successfully used in computer
vision for object recognition. However, rather than recognising individual structures, we estimate the spatial mapping of a whole
section onto the consecutive one. This mapping is used to transfer labelled information of the very first section, e.g. a classification
by a human expert of different visible structures, onto structures visible in the next section. We investigate its performance on an
artificially constructed benchmark as well as on real electron microscopic samples taken in primary visual cortex and demonstrate
its potential for dramatically facilitating the evaluation process of serial sections. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Vision research is a highly active and fertile area
investigating, among others, higher-order processes
such as object recognition and pattern classification.
Humans excel at such tasks and no artificial system
achieves a performance that comes even close to that of
biological systems. A notable example is the evaluation
of serial sections: A three-dimensional (3D) sample is
cut into thin two-dimensional slices for microscopic
evaluation and the original 3D shape reconstructed.
This widely-used technique is of fundamental impor-
tance to elucidate the anatomy of the nervous system
(for example, Anderson et al., 1999; Hack et al., 1999;
Rockland and Knutson, 2000; Gibbins et al., 2000;
Fukuda and Kosaka, 2000). During reconstruction,
structures visible in each slice are matched to their
counterparts in neighbouring sections. Indeed, consecu-
tive sections look very similar and the matching process
itself is not difficult as such. Nevertheless, no auto-
mated solution to this problem is available and, as a
consequence, it is the task of the scientist to match
structures in hundreds and thousands of serial sections.

We address this problem by modifying a method
used for object recognition. In order to recognise an
object visible in an image, parts of the image must be
compared with a stored representation of known ob-
jects. This is only possible after the ‘correspondence
problem’ has been solved: In order to compare the
image features correctly, pairs of image points that are
projections of the same physical point have to be
identified. This process is also called ‘matching’ and
yields a mapping from points in the stored image to
points in the image to be analysed. A particularly
successful example of such a recognition system is the
dynamic link matching approach (von der Malsburg,
1988; Lades et al., 1993; Würtz, 1997). This algorithm
creates correspondence mappings from each model
stored in a database to the image to be analysed on the
basis of feature similarity and topological consistency.
Using these mappings similarity measures between cor-
responding features are summed to produce a global
measure of similarity between each model and the
image. Finally, the model with the highest similarity is
selected and assumed to represent the same object as
the image. In the recognition process, the mappings
between models and image only serve the purpose of
comparing the correct features, and are of no interest
themselves. In the current context, automatic recogni-
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tion of structures in electron microscopic images is a
very difficult problem: The variability of structures is
very large and it is far from clear which structures are
relevant to the research question at hand. Therefore, we
leave the task to label important structures, e.g. den-
drites, axons, spines etc., in the first slice to the scientist
and use only the matching process to transfer this
information to a subsequent section. This process can
be iterated following visible structures over several sec-
tions, while newly appearing structures have to be
labelled at least once in the section they appear the first
time. The present algorithm holds the promise to con-
siderably reduce the amount of work necessary to eval-
uate subsequent sections of a series.

2. Methods and results

2.1. Electron microscopy

We have evaluated electron microscopic photographs
taken for a different study, kindly provided by J.C.
Anderson and K.A.C. Martin. The investigated tissue
was taken from cat primary visual cortex (area 17, layer
3) and processed according to standard protocols (An-
derson et al., 1994). Briefly stated, neurons were la-
belled intracellularly with horseradish peroxidase
(HRP) using an in vivo preparation. At the end of the
experiment, the animal was sacrificed and perfused
transcardially (1% paraformaldehyde and 2.5% glu-
taraldehyde in 0.1 M phosphate buffer). The cerebral
cortex was blocked and serially sectioned using an
Oxford vibratome in the coronal plane at a thickness of
80 �m. Further treatment of the sections for light
microscopy included incubation, nickel/cobalt intensifi-
cation, treatment with 1% osmium tetroxide in 0.1 M
phosphate buffer, dehydration with alcohols (the 70%
step containing 1% uranyl acetate) and propylene oxide
and flat embedding in Durcupan ACM resin (Hanker et
al., 1977; Adams, 1981; Anderson et al., 1994). After
light microscopic evaluation, selected portions were re-
embedded and serially sectioned at 70 nm thickness.
These ultrathin sections were collected on Pioloform-
coated single slot copper grids and photographed at
21000 magnification. For the present project, glossy
prints have been digitised at a resolution of 6 nm per
pixel. Thus, the distance between two consecutive im-
ages corresponds to a spatial distance of about 12
image pixels.

2.2. Image representation

The mathematical analysis of the images is based on
a representation by Gabor wavelets (von der Malsburg,
1988; Lades et al., 1993; Würtz, 1997). In a first step,
convenient representations of the images are computed.

Images are roughly aligned manually and portions of
512×512 pixel size are cropped. Features at different
spatial scales and orientations are extracted by convolu-
tion of the images with a set of pairs of Gabor kernels.
These kernels are planar sinusoidal waves whose ampli-
tude is modulated by a Gaussian envelope. The envel-
ope has a width that is inversely proportional to the
spatial frequency. Thus, depending on the ratio of
wavelength to the width of the Gaussian envelope, a
varying number of ripples is obtained. The parameters
used in this project led to wavelets with two visible
maxima. For computational efficiency, convolution is
performed in frequency space. One of the functions
defining the kernel is symmetric with respect to the
Gaussian envelope (cosine phase), whereas the other is
anti-symmetric (sine phase). The convolution results for
both kernels are squared, summed, and subjected to a
square root. Thus, at each location, the result is a
vector of positive numbers, one for each combination
of orientation and spatial frequency. These numbers
measure the degree to which the Gabor kernels are
contained in the image at each location. Since sine and
cosine contributions are summed, the result is not
sensitive to the position (phase) of the planar wave
within the Gaussian envelope. This Gabor wavelet de-
composition allows joint localisation of features in the
spatial and the frequency domain.

Each Gabor kernel is characterised by its spatial
frequency, orientation and width. In the work pre-
sented here, we use three different spatial frequencies
(with wavelengths of 64, 32, and 16 pixels, respectively),
and eight different orientations (spaced by 22.5°). The
information contained in the Gabor representation can
be visualised by reconstruction of the image. Fig. 1A
shows the sampling grids used at low spatial frequen-
cies (large squares), intermediate (small squares) and
high spatial frequencies (dots). High spatial frequency
information has to be sampled at a higher density
compared with lower spatial frequencies. Support
points where the kernel used for convolution extends
beyond the image boundary are excluded. For the
matching process, a twofold oversampling, as compared
with the minimum density set by the sampling theorem,
turned out to be useful (Fig. 1A). Fig. 1B shows the
reconstruction from these three spatial frequencies.

2.3. Matching features

Based on the Gabor representation, the matching
process constructs a mapping between the two images.
We name one of the images the ‘model’, and the other
image the ‘target’. We search for the location in the
target image corresponding to a particular point in the
model image.

The algorithm proceeds in several steps, using informa-
tion from low to increasingly high spatial frequencies.
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Firstly, model and target representations are restricted
to the lowest spatial frequency sampled on a single
coarse grid covering the entire image (Fig. 1C). We
compute the multidimensional equivalent of a cross-
correlation function between the Gabor coefficients
from the model and the target image: The coefficients
for different orientations of the model are multiplied
pointwise with the respective coefficients of the target
image. All products are then summed and normalised
by absolute length of both feature vectors. This normal-

Table 1

Iteration Spatial Range ofNumber of Grid size
shiftgridsfrequency

1 1 1 13 11
99 1112

152523 11
214 3 100 19

isation allows comparing structures independent of the
total contrast. For example, in Fig. 1A the right half of
the image has considerably lower contrast than the left,
which also shows in the reconstruction. For the match-
ing, however, this difference in contrast level is largely
ignored. Since all vector components are positive, this
measure can not be smaller than 0 and reaches a
maximum of 1 if the vectors are identical up to a
common factor. The grid in the model is shifted with
respect to the target grid and the process is repeated.
Due to the restriction to (and the appropriate choice of)
the lowest spatial frequency, the cross-correlation func-
tion obtained is smooth and exhibits a single maximum
(Fig. 1D). In contrast to this, computing a cross-corre-
lation of the brightness patterns of the images directly
would result in rapidly oscillating correlation functions
and multiple local maxima. The maximum at (0, −2)
in Fig. 1D indicates that the low spatial frequencies in
the two images match best if the model is shifted
downwards by two grid units. The resulting mapping is
a translation in space.

In the next step, the mapping is improved by individ-
ually matching a set of smaller overlapping subgrids
(Fig. 1E). As in the first step, cross-correlation func-
tions for the lowest spatial frequency are calculated for
these smaller grids. The shift corresponding to the
optimal match is assigned to the centre point of each
subgrid (dots in Fig. 1E). For all other points, the
mapping is estimated by bilinear interpolation.

This process is iterated using increasingly higher spa-
tial frequencies and increasingly localised subgrids. The
set of parameters (spatial frequencies, subgrid sizes and
allowable shifts) employed in the present work is given
in Table 1. We have not formally investigated the
impact of parameters on the performance of our al-
gorithm. However, a few rules of thumb can be easily
identified. Firstly, the number of samples for the com-
putation of the cross-correlation should be kept rela-
tively constant over all frequencies. Denser sampling
compensates for smaller grids. Secondly, the number of
samples must also account for the maximum additional
shift allowed at each iteration. The larger the area to be
searched, the larger the sample set should be. The
amount of information available for a particular
matching step must be large enough to compensate for

Fig. 1. Wavelet representation of electron microscopic images and the
matching process. (A) A section of 512×512 pixels cut out of an
image taken in layer 3 of cat primary visual cortex (area 17).
Sampling points used for wavelets of low (+ ), intermediate (�) and
high (�) spatial frequencies. (B) Reconstruction of the image with the
full set of Gabor wavelets. (C) Amplitudes of the lowest spatial
frequency located on a coarse grid in the model image are shifted
(arrow) to achieve optimal fit with the respective grid of the target
image. (D) The correlation of model and target grid is shown for
different shifts. A shift by 2 units in the vertical direction and no shift
in the horizontal direction results in the best fit. Note that the global
maximum is well defined and local minima occur only at the
boundary of the parameter range investigated. (E) Subgrids, which
may partly overlap, are shifted (arrows) to improve the local fit
between model and target. Note that possible shifts are limited by the
spatial resolution of the grid. (F) The mapping resulting from the
iterative procedure. Each arrow indicates the mapping of a point in
the model to the target image.
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the range of shifts considered. These rules have been
applied in the first step using a single large grid. Then,
the mapping is refined gradually, considering more
detailed spatial information while searching more lo-
calised regions. The resulting mapping can be conve-
niently displayed as a vector field (Fig. 1F), where the
arrows denote the displacement caused by the mapping.
Fig. 1 illustrates why this is a reasonable procedure for
matching. At the lowest frequency, only low-pass
filtered versions of the structures are available, so that
finer differences between images can be ignored for a
global alignment. Once this global alignment is correct,
more details are used for comparison, resulting in finer
local readjustments.

2.4. Implementation

The algorithm has been implemented in a fourth-gen-
eration programming language (IDL 5.2; Research Sys-
tems Inc.) and is running on a Macintosh G3 (233
MHz) under OS 9.0. With a standard set of parameters
(see Table 1) corresponding to three spatial frequencies
and eight orientations, the matching of two images
takes around 180 s for the Gabor decomposition and
100 s for the matching process itself. Note that for the
analysis of series of sections, the decomposition of a
single image is used twice: first as a target, then as a
model. Thus, under these circumstances, the effective
time necessary for the transform is cut in half. Please
note that these computations do not require user inter-
actions; thus, they can conveniently run in batch mode,
processing many hundreds of images overnight. Fur-
thermore, there is ample room for software optimisa-
tion, which has not yet been attempted.

2.5. Testing against a constructed benchmark

In order to quantify the performance of the al-
gorithm, we have generated a pair of electron micro-
scopic images with a known mapping of corresponding
points. The first section employed is shown in Fig. 3A
(left). This image was then distorted by stretching the
left and right border region (25%) on the horizontal
axis by 20% and compressing the centre half of the
image horizontally by 20%. Furthermore, the lower
40% of the image have been compressed vertically by
20%; an equally sized part above stretched vertically by
20%. The upper 20% of the image has not been
modified on the vertical axis. The artificially obtained
image has electron microscopic features, but shows
distortions of 60.5 pixels on average. These distortions
are of the same order of magnitude as those encoun-
tered in serial sections. However, the solution for the
optimal mapping between the model and the target is
known, which makes it suitable for a benchmark. The
first iteration of the algorithm does not reduce the

average deviation, which is not surprising since no
global shift was introduced in the distortion. However,
the following iterations quickly reduce the deviations
(step 2, 53.4 pixels; step 3, 26.0 pixels; step 4, 12.7
pixels). Indeed, in the central half of the image, where
enough information is available to match the subgrids,
the final step reduces the average error to 5.3 pixels.
This is less than one-tenth of the initial average distor-
tion of the target image. This figure is even more
remarkable if we consider that the performance of the
algorithm is lower bounded by the spatial resolution of
the finest grid used, which is, in the present example, 4
pixels. The quality of the mapping in the central half of
the image region is demonstrated in Fig. 2A. Points
1–10 are mapped fairly precisely. At points 11 and 12,
downward deviations of the mapped points in the
target image are seen. This is an instance of the general
problem that less information is available near the
image borders. This problem can be addressed by in-
creasing the spatial localisation in the peripheral region
or by using larger prints. In this work, however, we do
not consider this problem and assume that all struc-
tures of interest are located well outside the border
region.

In Fig. 2B, the mapping of some structures of interest
is investigated. A subset of the visible axons, dendrites
and spines are marked by polygons in the model image
(left). The vertices are then mapped to the target image
(right) and the polygons reconstructed. Automatically
generated delineation of unmyelinated axons (1, 3, 4, 6,
and 7), the myelinated axon (2) and the HRP labelled
neuron (5) precisely match the visible structures. The
two axons (8 and 10) and the dendrite (9) show small
deviations on the side facing the border of the image.
Thus, all structures lying in the central region are
mapped to the distorted image rather satisfactorily.

2.6. A real-world test

In this section, we investigate the mapping process
between real neighbouring sections (Fig. 3). These sec-
tions are also taken from primary visual cortex and
show a variety of structures. Labelled corresponding
points are marked by white circles and connected by
lines. Scrutinising the mapping reveals that points at
higher contrast contours are mapped with a precision
matching the results with the artificial benchmark. Two
issues are worth noting. Firstly, in some instances
points within large uniform structures, e.g. upper mid-
dle in Fig. 3A, are placed within the matching homoge-
neous area but far from a place a human would select.
This is possible, as currently in the algorithm no direct
neighbourhood interaction is implemented. Thus, the
shift assigned to a point at the centre of a subgrid at a
given resolution is independent of the shift of other
subgrids. Because different structures (axons, dendrites
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and subcellular structures) may run in different direc-
tions, this is a desirable feature. In case a subgrid
encompasses large homogeneous regions, however, the
energy landscape is flat and no information is available
about where to map the respective point. This problem
may be addressed by placing such points in a constant
geometrical relation to neighbouring points. However,

in practice, the interest to label the interior of large
homogenous regions is limited, and therefore we de-
cided not to implement this feature in the current
version of the algorithm. Secondly, in some cases topo-
logical discontinuities appear. In Fig. 3B, a merging
mitochondrion can be seen in the left half. This leads to
features that have no counterpart in the following

Fig. 2. A morphed image as a benchmark. (A) An original electron microscopic image (left) is distorted by horizontal and vertical stretching and
squeezing (for details, see text). Corresponding points as determined by the algorithm are connected by black lines. The numbering refers to a
further discussion in the text. (B) Anatomical structures of interest are labelled manually on the left. These include myelinated and unmyelinated
axons, dendrites and an HRP stained neuron. The algorithm transfers this labelling to the distorted image. This mapping is based on the matching
of features and does not use any knowledge of the type of distortions introduced. Please note that most structures are correctly located in the
target image.
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Fig. 3. Matching of individual points in neighbouring sections. (A–C) Points characterising anatomical structures of interest are manually marked
in one section (left, circles) and automatically mapped to the consecutive section (right, white circles). Black lines connect corresponding pairs. For
the purpose of illustration, some points in the middle of homogeneous regions have been selected too (see text for details).
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section. This is an instance of newly appearing or
disappearing objects. In these cases, comparable with
the first labelled section, the human expert must give
additional information. Aside from these two issues, the
examples (Fig. 3) demonstrate that the mapping of the
overwhelming majority of points marking structures of
interest is satisfactory.

As an even stricter test, we have included images that
contain severe artefacts. Please note that this test is
carried out with the identical parameter set as the
aforementioned experiments. Prominent features in the
model image are a large myelinated axon, an axon
labelled with HRP, many smaller axons, some contain-
ing mitochondria and a dendrite cut obliquely (Fig. 4).
In addition, many vesicles and other subcellular com-
partments are visible. These structures are a source of
noise for the present purpose, because they are too
small to be visible in neighbouring sections. A selection
of structures is marked by smooth polygons in the
model image (Fig. 4A) a myelinated large axon (1), a
small axon (2), a dendrite with mitochondrion (3), an
HRP-labelled neuron (4), a small axon (5), and a large
dendrite (6). Structures that are not completely visible
on the image are labelled as open polygons. The map-
ping to the subsequent section is shown below (middle).
It can be seen that most structures are correctly
mapped from model to target, with one exception. At
the bottom of the image, one of the corner points of the
polygon marking the dendrite is dragged towards the
image boundary (Fig. 4). This can be readily under-
stood, since the mapping near the boundary is less
reliable than within the interior of the image. Neverthe-
less, a satisfactory mapping for more than 80% of
labelled points is achieved. This performance can easily
be improved by staying clear of artefacts and the image
boundary.

These structures are now mapped—without correc-
tion of the aberrant corner points— to the following
section (Fig. 4, bottom). This section contains a severe
artefact near the centre (white arrows). It can be seen
that the algorithm degrades gracefully and maps most
points that are not directly affected by the artefact
correctly. The algorithm cannot correct the aberrant
corner point near the bottom. To optimise perfor-
mance, the few obvious errors should be corrected
before the structures are mapped to the following sec-

Fig. 4.

Fig. 4. Matching of a sequence of serial sections. (A) Anatomical
structures of interest are manually marked by polygons in one
section. Numbers refer to the different structures of interest. See text
for details. (B) The algorithm maps all vertices of the polygons to the
consecutive sections. Please note that most polygons are mapped to
mark the corresponding structures in the target image reasonably
well. (C) Automatic mapping of the mapped structures to the subse-
quent section, which contains some artefacts. The white arrows
indicate vertices where the algorithm results in deviations from the
optimal solution (see text for further details).
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tion. In this way, it is possible to map labelled struc-
tures not only to the subsequent section, but to effi-
ciently evaluate a sequence of electron microscopic
images.

3. Discussion

In this work, we have applied an algorithm, origi-
nally proposed for object recognition, to compute a
mapping between a model and a target image taken out
of a sequence of serial electron microscopic sections.
This allows the transfer of labelled information, i.e.
which structure is an axon, a dendrite, a spine or a
soma, from one section to the next. As the fraction of
correctly mapped points is greater than 80%, the evalu-
ation of the second section is greatly facilitated. Given
that the total overhead in data handling is small, speed-
up by a factor of 4 may be reached.

Nevertheless, the algorithm in its current form has
several shortcomings. We now discuss several options
available for improvements.

Firstly, in the iterative process, subgrids of the model
image are matched to the best fitting position in the
target image. This is done irrespective of how much
information, i.e. structure in the local region of the
image, is available to do so. Thus, for a given grid size
and spatial frequency, solutions for optimal matching
of noisy or homogeneous regions may be ambiguous.
Under these circumstances, it is possible that the qual-
ity of some parts of the transformation degrades with
the number of iterations. As a remedy, a threshold on
the local contrast (i.e. local structure of the image) and
on the quality of the match may be introduced. The
mapping of points where not enough information is
available could be left to interpolation between neigh-
bouring points. This is a special form of neighbourhood
interactions that could ensure smooth mappings. The
correctly mapped neighbouring points could restrict in
particular aberrant points.

Secondly, the current algorithm deliberately neglects
phase information. This is useful in order to obtain a
smooth and well-behaved similarity landscape as shown
in Fig. 1D, and to avoid multiple maxima that would
cause ambiguous mappings. However, as a conse-
quence, the algorithm cannot discriminate light/dark
from dark/light edges. This explains why sometimes the
mapping of a point located on a high contrast border is
reasonably good, but not exact. A viable compromise is
to establish a mapping using amplitude information
only, and to exploit phase information in a final correc-
tion step to precisely align structure boundaries.

Thirdly, the algorithm as presented here has been
investigated with parameters (e.g. relative width of
Gabor kernels, number of orientations, spatial frequen-

cies, grid sizes, etc.) that seemed reasonable to us, but
no systematic optimisation of these parameters has
been performed. Indeed, it has been emphasised that
the selection of features to track is critical for the
performance of an algorithm (Shi and Tomasi, 1994).
Thus, when applying the algorithm presented here, the
first step should be a test of a number of parameter
sets, and to investigate for which set the reconstructed
images contain the information necessary to label the
relevant structures. For example, using very low spatial
frequencies makes the matching process sensitive to
cutting or photographic artefacts. Similarly, using very
high spatial frequencies would introduce noise in the
computed mapping since they correspond to individual
vesicles, which have no correspondences in consecutive
sections. Noise will deteriorate the quality of the match-
ing process. Then, it is dependent on the scientific
question investigated that structures are marked. Thus,
the optimal strategy is to carefully adapt the range of
spatial frequencies to the type of images to be processed
and only include the relevant features.

Fourthly, in its present implementation, the evalua-
tion of an image takes a few minutes. However, an
advantage of the presented algorithm is that the com-
putationally intensive part is not dependent on any
user-specified data. Thus, batch processing of a stack of
images over night, storage of computed mappings and
boosted evaluation of images from serial sections seems
an efficient approach. Furthermore, the present imple-
mentation concentrates on complete documentation for
investigating the properties and the performance of the
algorithm, and is not tuned for speed as a production
system would be. Furthermore, the standard parameter
set uses oversampling, which is very memory and CPU
intensive. Implementation in programming languages as
C/C+ + offers room for improvement. Last but not
least, using state of the art computer hardware running
a 1.5 GHz processor should give an additional factor of
6 in speed. Taking these factors into account, it seems
feasible to achieve computation times of the order of a
few seconds. This is further supported by the perfor-
mance of the original algorithm in on-line object recog-
nition. Thus, the proposed algorithm is suitable for
speeding up analysis of electronic microscopic images
of serial sections and also allows for user-transparent
and online applications.

Although we address in the current work the special
problem of tracing cellular structures in electron micro-
scopic images, the proposed algorithm may well be
compared with other algorithms used in com-
puter vision. Tracking two-dimensional structures in
serial sections is quite comparable with tracking
two-dimensional structures over time (Lucas and
Kanade, 1981). Matching stereo images raises the cor-
respondence problem too, although the image varia-
tions have only one degree of freedom, giving an
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important constraint (Marr and Poggio, 1976; Jones
and Malik, 1992). Compared with these approaches, we
address the problem of selection of scale by a hierarchi-
cal approach. Recent work on a selection of natural
images has demonstrated the high performance of such
an approach (Wu et al., 2000).

The process of object definition by a human expert
and the tracking of features may be reversed: Motion
corresponds to the Gestalt criterion of ‘common fate’
and is a very powerful cue to segment images (Shi and
Malik, 1997b; Wiskott, 1999). The result of tracking
features can be used to define objects in the first place.
In combination with other work on segmentation of
natural images (Shi and Malik, 1997a; Wiskott and van
der Malsburg, 1993), this could then lead to a fully
automated tracking algorithm.

However, it has to be noted that the images used in
the present study are very different from standard
natural scenes. They are more difficult, because they do
not contain colour information, appear noisy and con-
tain useful information only in a limited range of
spatial frequencies. But, they may be easier to match,
because occlusions of one object by another does not
occur and the spatial distance between neighbouring
sections is small compared with the spatial extent of the
image, the corresponding velocities are limited to a
small range. A systematic comparison between different
algorithms, which differ in their scope, and tests with
the same set of images are promising topics for future
research.

The algorithm presented here creates a mapping be-
tween two reasonably similar images. It does not recog-
nise anything on its own; rather, it transfers a
classification, created by some other program or human
expert, to another image. As a consequence it cannot
recognise qualitative changes such as the bifurcation of
an axon and will only match visual features on a best
effort basis. This is a big advantage as the algorithm
does not depend on the kind of data supplied and it can
operate on a wide variety of image types by adaptation
of few parameters to the structures that are typically
expected.
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Appendix A. Gabor wavelets

The Gabor transform of an image l(x� ) is defined as
the absolute value of the convolution with a set of
complex Gabor functions:

(WI)(kb ,x� )= �(�kb *I)(x� )� (1)

with

�kb (x� )=
kb 2

�2 exp
�−kb 2x� 2

2�2

�
[exp(− ikb x� )−exp(�−2)] (2)

A.1. Sampling

The two-dimensional frequency vector kb codes for a
scale l and an orientation d, and is defined as follows.

kb ld=kmin
�kmax

kmin

�l/L�cos(180°·d/D)
sin(180°·d/D)

n
(3)

Spatial sampling is adapted to l in such a way that one
wavelength of a wave with frequency kb ld contains four
sampling points. This is an oversampling of 2.

A.2. Feature �ectors

If I is kept constant, the transformation Eq. (1)
assigns a feature vector of positive numbers to each
image point x� :h(x� ). These feature vectors are the basis
of the registration procedure, and their similarity is
measured by their normed scalar product:

Sloc(hb I, hb M)=
�

D−1

d=0

(hd
M)(hd

I)

�hb M��hb I� (4)

A.3. Multidimensional template matching

Standard template matching must be slightly
modified for matching feature vectors rather than
scalars. Multidimensional template matching (MTM)
consists of finding the displacement y� for a ‘data grid’
fb (x� ) and a ‘template grid’ tb (x� ) such that the average
similarity of the single feature vectors becomes maximal
inside a defined range for y� .

S(fb ,tb )(y� )= 1
N2�

x�
Sloc[fb (x� ),tb (x� −y� )] (5)

where N2 is the number of grid points in the template
(which is generally square).
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A.4. Coarse-fine schedule

A mapping is a function that maps coordinates of
one image onto coordinates of the second image. Map-
pings are calculated coarse to fine. During the process,
the following parameters can be varied:
1. the frequency kb , which is connected with the grid

resolution;
2. the template size N, which is connected with the

number of possible templates;
3. the range of the shift.

All these are, in principle, independent of each other,
therefore they must be combined to a ‘schedule’ Si, a
list of values of these parameters. A useful schedule is
shown in Table 1.

Given two images I1 and I2, and a schedule Si, the
matching process is as follows:

Calculate Gabor transforms W1(l,d,x� ) and W2(l,d,x� )
of both images.
Initialise i=0.
Initialise mapping to identity M0(x� )=x� for all x� .
While i�nschedules do:

Set parameters according to Si

For each location x� on the given grid in I1 do:
Define the template as the feature vectors in

W1.
Define the data as the feature vectors in W2

with centre in M1(x� ) and a size as specified by
the range of shift in Si.
Define Mi+1(x� ) as the result of multidimensional

template matching of data and template.
This yields a series of mappings defined on grids,

which depend on the schedule. The final mapping
Mn schedules

is then interpolated to the full image
resolution.
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