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Abstract. We present an analysis of the representation of images as the
magnitudes of their transform with complex-valued Gabor wavelets. Such a
representation is very useful for image understanding purposes and serves as
a model for an early stage of human visual processing. We show that if the
sampling of the wavelet transform is appropriate then the reconstruction
from the magnitudes is unique up to the sign for almost all images. We
also present an iterative reconstruction algorithm derived from the ideas of
the proof, which yields very good reconstruction up to the sign and minor
numerical errors in the very low frequencies.
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1 Introduction

In the visual system of humans or monkeys an early stage is concerned with process-
ing image information by convolution with some point spread function and ensuing
non-linear operations that enhance edges and lead to some contrast normalization.
A recognized problem [13] with edge-enhancing convolutions is their sensitivity to
image shift, whereas one of the most important features of human vision is the
positional invariance with which objects can be recognized. The two-dimensional
power spectrum can represent images in a shift-invariant way, but it has the great
drawback of being non-local, each component being influenced by all image pixels.
On the other extreme, pixels as image features are maximally localized but achieve
notoriously little in terms of analyzing image contents.

We focus here on Gabor functions as an adjustable compromise between pixel
representation and Fourier components. They seem to be implemented in the first
stages of processing in the visual cortex of higher vertebrates, as the receptive fields
of the so-called simple cells can be described to some accuracy as Gabor functions
[1, 7]. There is also evidence that the magnitudes of the Gabor filter responses (short
Gabor magnitudes) are calculated by another set of cells called complex cells [12].

The simplest model for these findings is that simple cell responses are calculated
from the image intensities by a feedforward neural net, and that complex cells build
on their information by another feedforward net. The complex cells, in turn, can
be combined to more complicated feature detectors such as corner detectors [21].
They have also proven useful for higher image understanding tasks such as tex-
ture classification [3], recognition of faces [9, 20, 2], vehicles [18], and hand gestures
[14]. The deeper reason for this is that the magnitude operation introduces some
local shift invariance in the sense that under small shifts in the image the Gabor
magnitudes are more robust than the full complex valued responses, because they
are much smoother. This robustness is crucial for recognition systems, which have
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to cope with small local deformations. As a practical consequence, similarity land-
scapes between local features are smoother if magnitudes are used, which makes
matching faster and less prone to local maxima [9, 20, 17].

If the Gabor functions are arranged into a wavelet transform and the sampling
is dense enough then the original image can be recovered from the transform values
with arbitrary quality (except for the DC-value). Given the useful properties of the
magnitudes of the Gabor transform an important theoretical question is how much
image information can be recovered from that.

There are many results on the reconstruction of images from localized phase
[15], and they show convincingly that localized phase is more useful than global
Fourier phase. There seems to be general agreement that reconstruction from phase
is simpler than reconstruction from local magnitude.

In this paper we are concerned with the latter. It must be noted that the study
of reconstruction is not the most important issue for an object recognition system,
where most of the visual information must be discarded. Nevertheless, it is of im-
portance to study as well as possible the course of information through the system
in order to understand its mechanism. If images of different objects could be re-
constructed from the data format used by a recognition algorithm, this algorithm
would be rather limited in its value. Additionally, our results may be of importance
to other applications of Gabor wavelets.

In the following we briefly outline the theory of wavelets and frames necessary to
understand reconstruction from the linear transform, introduce the Gabor wavelet
transform, and review some literature on phase retrieval from power spectra of im-
ages. We then outline the proof of a theorem stating that, given the right transform
parameters and appropriate band-limitation, no image information is lost by apply-
ing Gabor magnitudes to an image except the DC-value of the image and a global
sign. The proof uses techniques from [5] and applies to all images except a subset
of measure zero.

Finally, we explore the quality of reconstruction by numerical experiments based
on the ideas of the proof. The results are not perfect because much of the proof
depends on transform values being exactly zero, which does not translate very well
into numerical computation. However, for all images we tested, we were able to
retrieve very good approximations of either the image itself or its negative.

2 Gabor wavelets and frames

For the analysis of signal properties at various scales the wavelet transform has
been introduced in [4]. The signal is projected onto a family of wavelet functions
ψx0,a(x) derived from a so-called mother wavelet ψ(x) by applying translations by
x0 and dilations by a factor a > 0. For image processing, we follow the proposal by
Murenzi [10] and choose the 2-dimensional Euclidean group IG(2) with dilations
for the construction of a wavelet family. This leads to daughter wavelets which are
translated, rotated and scaled versions of the mother.

The transition to wavelets defined on R2 leads to a wavelet family parameter-
ization by the translation vector x0 ∈ R2, scale factor a > 0 and the orientation
angle ϑ ∈ [0, 2π[. This extension of the affine linear group to two spatial dimensions
preserves the idea of scaling the transformation kernel ψ. Analogous to the 1D case
the 2D wavelet transform consists of projection of the image data I(x) onto the
wavelet family (Q(ϑ) stands for the 2D rotation matrix by the angle ϑ):

I(x0, a, ϑ) = 〈I, ψx0,a,ϑ〉, (1)
ψx0,a,ϑ(x) = a−1ψ[a−1Q(ϑ)(x− x0)] (2)



The mother wavelet (and, consequently, all wavelets) must satisfy the admissibility
condition [8]:

0 < C = 4π2

∫
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Consequently, the wavelets must have zero DC-value (ψ̂(0) = 0) and decay suffi-
ciently quickly for increasing ‖ω‖. This condition, together with implementing the
translations of wavelets as convolutions means that wavelets are bandpass functions.

We now narrow our focus to the Gabor function as mother wavelet. As Gabor
functions are not DC-free, an additional term must be introduced to ensure that
wavelet property. Following Murenzi [10], we let:
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In these equations the diagonal matrix Sσ,τ = Diag(1/σ, 1/τ) controls the shape
of the elliptical Gaussian relative to the wavelength. Different ways of removing
the DC-value can be used, but the one above is the most elegant for analytical
treatment.

Different Gabor functions are, in general, not orthogonal and the wavelet families
are usually not linearly independent. That means that (1) yields an overcomplete
representation of the image signal I(x). To handle linear transforms of this nature
the frame concept, which can be seen as a generalization of the basis in a linear
space. We follow the description in [8].

For a Hilbert space H and a measure space (M, µ) linear transforms H from H
into L2(M, µ) are defined by the projection onto a family of functions HM = {hξ ∈
H : ξ ∈ M} via Hf(ξ) = 〈hξ, f〉, such that H is measurable for every f ∈ H. This
family is called a frame if there exist positive finite constants A and B such that
for every f ∈ H

A‖f‖2H ≤ ‖Hf‖2L2(M,µ) ≤ B‖f‖2H . (5)

Such constants are called frame bounds. If A = B the frame is called tight. The
freedom in the choice of µ can be put to different uses, e.g., the frame elements can
be normalized or one of the frame bounds can be fixed at 1. Furthermore, it allows a
coherent formulation of discrete and continuous wavelet transforms. In our concrete
case, the measure space is M = R2 ×R+ ×U for the two spatial dimensions, scale
and orientation, and the accompanying measure is given by

dµ = d2x0 a
−3da dϑ . (6)

In the continuous case the so constructed inverse 2D wavelet transform becomes:

I(x) =
1
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2π∫
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with the C from (3).
For practical purposes, it is not desirable to expand the image representation

from a function on R2 to one on R4, so sampling of translations, scales and orien-
tations x0 = n0∆, a = amina

m
0 , ϑ = 2πl/L with n0 ∈ Z2, m ∈ {0, 1, . . . ,M − 1},

and l ∈ {0, 1, . . . , L− 1}, becomes inevitable.
We now switch from continuous functions to discretely sampled images of N1 ×

N2 pixels. The underlying finite lattice will be called SN . Now, the discrete Ga-
bor wavelet transform can be computed in either domain by the inner product
I(n0,m, l) = 〈I, ψn0,m,l〉.



3 From Fourier to Gabor magnitudes

In order to state theorems about the reconstructability of an image from its Gabor
magnitudes |I(n0,m, l)| we choose a collection of theorems on Fourier magnitudes
as a starting point.

In general the Fourier transform Î(ω) is a complex-valued function which can
be described in terms of a magnitude and a phase. The fact that the inverse DFT
applied to a modified transform with all magnitudes set to 1 and original phases
preserves essential image properties [11] is frequently interpreted as saying that the
Fourier magnitudes contain “less” image information than the phases. However,
analytical results and existing phase retrieval algorithms provide hints that the
situation is not as simple.

These theorems are based on the fact that the Fundamental Theorem of Algebra
does not hold for polynomials in more than one variable. More precisely, the set of
polynomials in more than one variable which can be factored in a nontrivial way
are of measure zero in the vector space of all polynomials of the same degree [6].
A nontrivial factorization is very undesirable because the number of ambiguities
caused by phase removal increases exponentially with the number of factors.

Hayes’s theorem identifies the 2D z-Transform,

Ǐ(z) =
1
2π

∑
n∈SN

I(n)z−n1
1 z−n2

2 , (8)

and the 2D discrete space Fourier transform (DSFT) on a compact support, with
polynomials in two variables.

Theorem 1 (Hayes, [5]). Let I1, I2 be 2D real sequences with support SN =
{0, . . . , N1−1}×{0, . . . , N2−1} and let Ω a set of |Ω| distinct points in U2 arranged
on a lattice L(Ω) with |Ω| ≥ (2N1−1)(2N2−1). If Ǐ1(z) has at most one irreducible
nonsymmetric factor and ∣∣Ǐ1(ν)

∣∣ =
∣∣Ǐ2(ν)

∣∣ ∀ν ∈ L(Ω) (9)

then

I1(n) ∈
{
I2(n), I2(N − n− 1),

−I2(n), −I2(N − n− 1)
}
. (10)

Theorem 1 states that DSFT magnitudes-only reconstruction yields either the
original, or a negated, a point reflected, or a negated and point reflected version
of the input signal. Together with the main statement from [6] that the set of all
reducible polynomials Ǐ(z) is of measure zero, the technicality about the irreducible
nonsymmetric factors can be omitted, and we generalize Theorem 1 to complex-
valued sequences as follows:

Theorem 2. Let I1, I2 be complex sequences defined on the compact support SN

and let Ǐ1(ν) and Ǐ2(ν) be only trivially reducible (i.e. have only factors of the form
zp1
1 zp2

2 ), and ∣∣Ǐ1(ν)
∣∣ =

∣∣Ǐ2(ν)
∣∣ ∀ν ∈ L(Ω) (11)

with L(Ω), |Ω| as in Theorem 1 then

I1(n) ∈ {exp (jη) I2(n), exp (jη) I∗2 (N − n− 1) | η ∈ [0, 2π[} . (12)



Transferring the modified Hayes theorem to the spatial magnitudes of the Gabor
wavelet transform yields ambiguities which are reduced by inter- and intrasubband
structures. More concretely, the Gabor magnitudes relate to the autocorrelation of
the spectra of the subband images. However, due to the known localization of the
Gabor responses in frequency space, the lost information can be recovered. This
line of reasoning has allowed us to prove the following:

Theorem 3 (Gabor Magnitude Theorem). Let B(N1, N2) be the space of all
functions on the grid SN such that DFTI(ρ) = 0 for |ρ1| ≥ N1

4 , |ρ2| ≥ N2
4 , and

let the wavelet family ψn0,m,l constitute a frame in B(N1, N2). For all I1, I2 ∈
B(N1, N2) such that 〈I1, ψn0,m,l〉 and 〈I2, ψn0,m,l〉 are only trivially reducible poly-
nomials and |〈I1, ψn0,m,l〉| = |〈I2, ψn0,m,l〉| ∀n0,m, l it follows that I1(n) = ±I2(n).

|I(n0, m, l)| ejΦ(n0,m,l)
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Fig. 1. Scheme for Gabor phase retrieval. Within one iteration loop each subband image
is filtered according to its required signal energy concentration and boundary in frequency
domain. In the next step the Gabor transform is computed which is nearest to the subspace
of all Gabor-transformed real images. Last, the phases of the updated subband images are
extracted and combined with the true magnitudes.

To complete the argument, Hayes’ theorems can again be used to state that
the Gabor transforms of almost all images are only trivially reducible. A detailed
proof of the theorem can be found in [19]. Thus, we may conclude, that a low-
pass filtered version of almost all images can be reconstructed from their Gabor
transform magnitudes up to the sign.

The condition about the vanishing Fourier coefficients (band limitation) is not a
restriction on the class of images to which the theorem applies, because each image
of final resolution can be turned into a band-limited one by interpolation through
zero-padding in the frequency domain. Put the other way around, from a Gabor
wavelet transform of a certain spatial resolution, images of half that resolution can
be reconstructed uniquely up to the sign.

4 Numerical Retrieval of Gabor Phases

In this section we construct a Gabor phase retrieval algorithm using one major
idea from the proof of Theorem 3. In that proof, we have interchanged spatial and



Fig. 2. The first row shows some original images, the second their reconstructions from
their magnitudes of their Gabor wavelet transform after 1300 iterations. The reconstruc-
tion of the Lena image actually yielded its negative. The original images from which the
magnitudes are taken are 128× 128 images interpolated to 256× 256. For display the grey
value range has been normalized to [0,255].

frequency domain for the application of Hayes’s theorems, and the same can be
done in the phase retrieval algorithm.

The given magnitudes for reconstruction are combined with the phases of an
arbitrary Gabor-transformed image. Then, band limitation and subband localiza-
tion are enforced by zeroing all frequencies above the boundary and outside the
appropriate region of frequency concentration for a certain scale and orientation.
That region is determined by applying a threshold of 0.1 to the Gabor kernel in
frequency space. The result is transformed back into an image and transformed
forward in order to project it onto the space of all Gabor wavelet transforms of
real-valued images. Then the next cycle starts with the combination of the given
magnitudes with the updated phases.The full course of the algorithm is shown in
figure 1.

The main problem with the reconstruction from magnitudes is that the set of all
transforms with given magnitudes but arbitrary phases is not convex, in contrast
to the set of all transforms with given phases and variable magnitudes. Therefore,
the iterative projection algorithm is not a POCS (projection onto convex sets)
algorithm, and there is no straightforward convergence proof. This is in contrast to
magnitude retrieval [15].

An alternative approach [16] uses a gradient descent algorithm to estimate an
image minimizing an error functional. This minimization yields near to perfect
results on bandpass filtered images.

5 Reconstruction experiments

We ran numerical reconstruction experiments on three different images with several
hundred iterations. A real white noise “image” was chosen as initialization. The
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Fig. 3. The development of the error (RRMSE) for all three tested images

results of the reconstruction on some natural images are shown in figure 2. The
transform parameters used to produce the images were σ = 4, M = 8, L = 16,
a0 =

√
2. With these parameters, reconstruction from the linear transform is perfect

up to the DC-value. For display, all images are normalized to the gray value range
[0,255], which dictates a DC-value.

In order to assess convergence we measured a relative RMSE defined as

RRMSE =

√√√√∑M−1
m=0

∑L−1
l=0

∑
n0∈SN

a−2m
0 [|I(n0,m, l)| − |Irec(n0,m, l)|]2∑M−1

m=0

∑L−1
l=0

∑
n0∈SN

a−2m
0 |I(n0,m, l)|2

. (13)

As displayed in figure 3, the reconstruction does not converge to zero error.
The remaining RRMSE corresponds to slight gray level deviations in uniform (low-
frequency) image zones as can be seen comparing the reconstructions to the origi-
nals, (see figure 2). We interpret reconstruction errors as accumulated numerical er-
rors from the SVD regularization of low frequencies in the IGWT, which is repeated
in each iteration. However the reconstructed images retain local texture properties
very well, which is crucial for image understanding based on representation by such
features.

After a rapid improvement in some 10 iterations, which already yield a perfectly
recognizable image, convergence becomes rather slow. There are local inversions of
sign, which compete to dictate the global sign.

6 Discussion

We have shown that almost all images can be recovered from their Gabor magni-
tudes. As natural images, which are the only interesting ones for computer vision,
constitute only a tiny subset of all functions with compact support, it is theoretically
possible that many of them fall into the subset of images not represented uniquely



by their Gabor magnitudes, which we will call ambiguous. Although possible, this
appears highly unlikely, because slight modifications of natural images still yield
natural images. However, neither the set of natural images nor the precise form of
the set of ambiguous images is known. The latter can not be uncovered with the
simple dimensionality argument used in this paper and definitely requires further
research. Furthermore, it is unclear how much the different reconstructions of am-
biguous Gabor magnitudes will differ. If there should be two images with definitely
different contents but nevertheless identical Gabor magnitudes, this would make
the method problematic for image understanding. We have shown that this is very
unlikely, but still have no absolute proof that it cannot happen.

For further evidence, we have implemented a numerical algorithm for Gabor
phase retrieval, which is based on the ideas of the proof. In the cases we tested,
we could always recover a good approximation of the image up to the sign and
numerical errors in the low frequency contents. Our theorem suggests that twice
the sampling rate is needed in each dimension for reconstruction from magnitudes
only than for reconstruction from the full transform. As a simple rule of thumb, this
looks very plausible in neuronal terms, if one considers a single complex number
to be represented by four positive real numbers (because cell activities cannot be
negative). Thus, four simple cells, which code for the linear wavelet coefficient, must
be replaced by four complex cells at slightly different positions in order to convey
the same information.
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2. Benôıt Duc, Stefan Fischer, and Josef Bigün. Face authentication with gabor infor-
mation on deformable graphs. IEEE Transactions on Image Processing, 8(4):504 –
516, 1999.

3. I. Fogel and Dov Sagi. Gabor filters as texture discriminator. Biological Cybernetics,
61:103–113, 1989.

4. A. Grossmann and J. Morlet. Decomposition of Hardy functions into square integrable
wavelets of constant shape. SIAM Journal of Mathematical Analysis, 15(4):723 – 736,
July 1984.

5. Monson H. Hayes. The Reconstruction of a Multidimensional Sequence from the Phase
or Magnitude of Its Fourier Transform. IEEE Transactions on Acoustics, Speech, and
Signal Processing, 30(2):140 – 154, April 1982.

6. Monson H. Hayes and James H. McClellan. Reducible Polynomials in More Than One
Variable. Proceedings of the IEEE, 70(2):197 – 198, February 1982.

7. J.P. Jones and L.A. Palmer. An evaluation of the two-dimensional Gabor filter model
of simple receptive fields in cat striate cortex. Journal of Neurophysiology, 58(6):1233–
1258, 1987.

8. Gerald Kaiser. A Friendly Guide to Wavelets. Birkhäuser, 1994.
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