Preface

This volume contains the proceedings of the 4th workshop on ’Dynamic Per-
ception’ which was held on November 14 - 15, 2002 at the Ruhr-University of
Bochum. The workshop focussed in an interdisciplinary manner on dynamic as-
pects of biological and machine perception, presenting and discussing recent work
in this area. Special emphasis was on the promotion of scientific exchange be-
tween computer science (neurocomputing and artificial intelligence), psychology,
and the neurosciences.
Specific topics on

— multimodal integration

— human movement analysis

— action and perception

— dynamic visual scenes

— optic flow

— gestalt laws and statistics

— cognitive influences on visual processing
— recognition and matching

were presented in 18 contributed talks and 32 posters. Invited talks were given
by Jan-Olof Eklundh (Stockholm, SE) and William Phillips (Stirling, UK).

Looking at the development of the workshop series one must note that its
scope has become more international. Of the 53 articles in this volume two thirds
have first authors from Germany, but contributions also came from the UK (4),
US (3), Japan (2), Spain (2), Sweden (2), and one each from Australia, Israel,
Italy, Greece, and the Netherlands. We consider this a clear indication of the
success of the workshop series.

The workshop was organized by section 1.0.4 (Image Understanding) of the
German Society for Computer Science (GI) and supported by the EC research
networks MUHCI (Multimodal Human-Computer Interfaces) and ECOVISION
(Early Cognitive Vision). We specially thank the MUHCI consortium for ad-
ditonal financial support and the Ruhr-University for providing the conference
facilities and a generous contribution to the publication costs.

Our thanks also go to the contributors, whose high-quality abstracts made
the inevitable selection rather difficult, and for their readiness to submit their
final contributions in camera-ready form adhering to the layout requirements. We
also thank the members of the program committee listed on the following page,
Peer Schmidt for software help with formatting the final volume layout, Achim
Schiifer for double-checking it, and Uta Schwalm for organizing the finances and
the many details required for smooth operation of the workshop.

Rolf P. Wiirtz

September 2002 Markus Lappe
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The search for coherence through dynamic
grouping and contextual modulation

William A. Phillips

Centre for Cognitive and Computational Neuroscience
Depts. or Psychology and Computing Science
Stirling University
Stirling FK9 4LA
Scotland, UK
email: w.a.phillips@stir.ac.uk

Cognitive neuroscience is dominated by evidence for semantic specialization.
Different regions and different cells within regions process information about
different things. We now need to understand how these diverse activities are co-
ordinated. Coordination is necessary to enhance activity relevant to the current
context, to combat noise, to make coherent choices, and to group activity into
coherent subsets. The concept of Coherent Infomax formalizes this view within
a theory of cortical computation. I will summarize evidence that coordinating
interactions are implemented by a distinct family of physiological mechanisms
that include synapses formed by NMDA receptors. Psychophysical studies of the
effects of synchronization on dynamic grouping, and of context on visual size per-
ception will be described. Evidence for the relevance of coordinating interactions
to cognitive style and to cognitive disorganization in psychosis will be outlined.






Figure-Ground Segmentation by Integration of
Multiple Cues

Jan-Olof Eklundh, Marten Bjorkman and Eric Hayman

Computational Vision and Active Perception Laboratory (CVAP)
Dept. of Numerical Analysis and Computing Science
Royal Institute of Technology (KTH), SE 100 44 Stockholm, Sweden
{joe, celle, hayman}@nada.kth.se

Humans looking around in the world can, seemingly without effort, segment
out and distinguish different objects in the world. The corresponding capability
has largely eluded the efforts of researchers in computer vision. The problem
is of course not well-defined unless additional assumptions are made. If we ask
ourselves what objects we see around us we realize that such a question has little
meaning and is too imprecise to answer. We need at least a model of the visual
observer and the tasks this observer is engaged in to specify what these objects
could be. They are not given by the visual scene alone.

The processes of perceiving objects in the world and segmenting images of
them depend on each other and figure-ground segmentation is generally not
feasible solely bottom-up. Whatever the processes are they should be possible to
bootstrap in some way and a question is what such mechanisms could be. Work in
perceptual grouping and attention address some such aspects. Here we’ll discuss
the use of 3D cues for figure-ground separation. If something stands out in 3D,
then it forms a separate piece of materia and as such it is more than something
that just stands out visually as, say, a set of contours, surface markings or
colored patches. Such visual patterns may indicate objects or groups of objects
in a multitude of ways. Unless we know more about the scene it is difficult
to say if they define any relevant objects. On the other hand, even without
such knowledge, we can identify a 3D chunk as ”something”, which then can be
ascribed visually observable 3D properties, such as position, location and motion,
but also object intrinsic properties such as shape, color and maybe surface and
material characteristics.

One thing the 3D cues tell us is the geometric relation between the observer
and the object. The identity of a (not necessarily recognized or labeled) object
can also be maintained over time by the appearance of the object, i.e. properties
such as shape and color that can be obtained from the 2D images. This strongly
suggests that a system for robust figure-ground segmentation in a dynamically
changing world should rely on mutiple cues in 3D and 2D and that the 3D cues
play a specific role in the bootstrapping. This forms a main theme of the talk. In
it we will discuss some of the underlying issues and illustrate them with examples
from our own work.

We will discuss figure-ground segmentation based on stereo and motion cues
together with monocular cues from e.g. texture. We will also discuss the combina-
tion of purely monocular cues from motion, color and contrast. We will consider
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several different integration techniques. One is a probabilistic approach where the
likelihood of observing the data given a model of each layer is computed followed
by a classification of each pixel using Bayes’ rule. A second scheme is a voting
method, the key difference being that each cue makes an independent decision
regarding membership before these decisions are combined using a weghted sum.
The advantage of voting in data fusion is that measurements drawn from very
different spaces can easily be combined. With probabilistic methods more care
must be taken in designing the model of each so that the different cues combine
in the desired manner. However, in that also lies there strenght since it requires
an explicit design of the model and specification of what parameters are used
and what assumptions are made.

In the binocular case we show that even coarse estimates of relative depth
provide information that strongly facilitates the computation of motion and
through feedback also depth.

There are many algorithms available for computing the specific cues. Some of
these require iterative solutions and are therefore not always suited for use in a
full-fledged integrated system working in a real dynamic world, since they cause
serious delays. We will therefore go through a number of different algorithms from
a complexity and precision point of view and present results both on simulated
and real data.

A final aspect concerns how models for some cues can be learnt and subse-
quently be adpated online. For instance, this applies to the case when 3D cues
indicate an object for which we can learn some appearance properties, e.g. a color
model over time. We’ll show some results in this direction. One of the main mo-
tivations for this work is in fact to give support to high level visual processes,
such as recogntion and categorization in realistic and natural environments.

References

1. M. Bjorkman, Real-time motion and stereo cues for an active visual observer, Doc-
toral disseration, TRITA-NA-0213, KTH, Stockholm, June 2002.
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Detection of First-order Elementary
Components in Noisy Optic Flow Fields
Through Context Sensitive Recurrent Filters

Silvio P. Sabatini, Fabio Solari, and Giacomo M. Bisio

Dept. of Biophysical and Electronic Engineering, University of Genoa
Via all’Opera Pia, 11a - 16145 Genova, Italy
{silvio, fabio, bisio}@dibe.unige.it
http://www.pspc.dibe.unige.it

Abstract. Measured optic flow fields are always somewhat erroneous
and/or ambiguous. First, we cannot compute the actual spatial or tem-
poral derivatives, but only their estimates, which are corrupted by image
noise. Second, optic flow is intrinsically an image-based measurement of
the relative motion between the observer and the environment, but we
are interested in estimating the actual motion field. However, real-world
motion field patterns contain intrinsic statistic properties that allow to
define Gestalts as groups of pixels sharing the same motion property. By
checking the presence of such Gestalts in optic flow fields we can make
their interpretation more confident. We propose an optimal recurrent
filter capable of evidencing motion Gestalts corresponding to 1lst-order
spatial derivatives or elementary flow components (EFCs). A Gestalt
emerges from a noisy flow as a solution of an iterative process of spa-
tially interacting nodes that correlates the statistics of the visual context
with that of a structural model of the Gestalt.

1 Local motion Gestalts

Velocity gradients provide important cues about the 3-D layout of the visual
scene. Formally, they can be described as linear deformations by a 2 x 2 velocity
gradient tensor
T — |:T11 T12:| o l:a’l)x/al' va/(()y] (1)
o T21 T22 - al}y/alf 81}y/8y ’

Hence, if * = (x,y) is a point in a spatial image domain, the linear proper-
ties of a motion field v(x,y) = (vg,v,) around the point xy = (z¢, yo) can be
characterized by a Taylor expansion, truncated at the first order:

v=0v+ Tz (2)

where ¥ = v(20, o) = (03, ,) and T = T|g,. By breaking down the tensor in
its dyadic components, the motion field can be locally described through 2-D
maps representing cardinal EFCs:
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opponent non-opponent
dz d; dy +ma® d; +ma”

~~~~~~~

vvvvvvv

Fig. 1. Basic gradient type Gestalts considered. In stretching-type components (a,c)
velocity varies along the direction of motion; in shearing-type components (b,d) velocity
gradient is oriented perpendicularly to the direction of motion. Non-opponent patterns
are obtained from the opponent ones by a linear combination of pure tranlations and
cardinal deformations: d; + ma®, where m is a proper positive scalar constant.

where o : (z,y) — (1,0), &¥ : (z,y) — (0,1) are pure translations and
dy s (z,y) = (2,0), dy : (z,y) = (y,0), di : (x,y) — (0,2), dj : (x,y) — (0,y)
represent cardinal deformations, basis of the linear deformation space.

It is worthy to note that the components of pure translations could be incor-
porated in the corresponding deformation components, thus obtaining general-
ized deformation components in which motion boundaries are shifted or totally
absent. Although this does not affect the significance of the Taylor expansion
in Eq. 3, the so-modified elementary components, present very different struc-
tural properties. Since a template-based approach cannot be used to extract
single components, but only to perform pattern matching operations, the lin-
ear decomposition of the motion field has significance only for the definition
of a proper representation space. Specific templates would be designed to opti-
mally sample that representation space. In this work, we consider two different
classes of deformation templates (opponent and non-opponent), each character-
ized by two gradient types (stretching and shearing), see Fig. 1. Due to their
ability to detect the presence and the orientation of velocity gradients and ki-
netic boundaries, such cardinal EFCs and proper combinations of them resemble
the characteristics of the cell in the Middle Temporal visual area (MT) [1] [2].
It is straightforward to derive that these MT-like components are well suited
to provide the building blocks for the more complex receptive field properties
encountered in the Medial Superior Temporal visual area (MST) [3] [4]:

T - — 1 T 1 T 1 T 1 x
v =a+alty + o (dy +dy) E+ 5 (d; — dy)w+ S (dy —dy)Si+ 5 (dy +d5)5:

where E = (Ti1 4 T22)/2, w = (Tie — T51)/2, S1 = (Tu — T22)/2, S2 =
(Th2 + T21)/2 are the divergence, the curl and the two components of shear
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Adyimar

E>0

Fig. 2. (a) Two deformation subspaces obtained by the set of cardinal EFCs with
different values of the parameter m. The quadrants of each subspace characterize an
elementary deformation, as evidenced in (b) for expansion (E > 0), horizontal positive
shear (S1 > 0), oblique positive shear (S2), and counterclockwise rotation (w > 0).

deformation, respectively (cf. [5]). These mixed EFCs constitute, together with
the pure translations, an equivalent representation basis for the linear properties
of the velocity field (see Fig. 2). Yet, they are rather complex since not only the
speed, but also the direction of feature motion varies as a function of spatial
position. Rigid body motion often generates simpler flow fields characterized by
unidirectional patterns, as the cardinal EFCs considered in this study.

2 The context sensitive filter

The problem of evidencing the presence of a certain complex feature in the optic
flow on the basis of both local and contextual information, can be posed as an
adaptive filtering problem (estimation), where local information act as the input
measurements and the context acts as the reference signal, e.g., representing
a specific motion Gestalt. In the following, we propose a solution in the form
of a generalized Kalman filter (KF) [6]. Due to its recurrent formulation, KF
appears particularly promising to design context-sensitive filters (CSFs) based
on recurrent cortical-like interconnection architectures.

Let us assume the optic flow ©(i, j) as the corrupted measure of the actual ve-
locity field v(z, 7). The difference between these two variables can be represented
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as a constant noise term (3, j):
v=v+e. (4)

Due to the intrinsic noise of the nervous system, the neural representation of the
optic flow v(i, j)[k] can be expressed by a measurement equation:

vkl = %+ mfk] = v+ e+ n[k] (5)

where nq represents the uncertainty associated with a neuron’s response. The
Gestalt is formalized through a process equation:

vlk] = ®v[k — 1] + nalk — 1]+ s (6)

with limg_,o, v[k] = v if ny = 0. The state transition matrix ® is de facto a
spatial interconnection matrix that implements a specific Gestalt rule (i.e., a
specific EFC); s is a constant driving input; no represents the process uncer-
tainty. The space spanned by the observations v[1], v[2],..., v[k — 1] is denoted
by Vi_1 and represents the internal noisy representation of the optic flow. We
assume that both m; and mo are independent, zero-mean and normally dis-
tributed: nq[k] = N(0,A1) and ns[k] = N(0, A3). The index k takes explicitly
into account the time necessary for spatial recurrence. More precisely, ® models
space-invariant nearest-neighbor interactions within a finite region {2 in the (i, j)
plane that is bounded by a piece-wise smooth contour. Interactions occur, sep-
arately for each component of the velocity vectors (vs,v,), through anisotropic
interconnection schemes:

Uy (4, 5)[K] = w'ﬁ/yvm/y(aj - k-1 + wg/yvm/y@j + 1)k — 1] + 54,4, 5)
w%yvz/y(i - 1,j)[k‘ - 1] + w%/va/y(i + laj)[k - 1] + nf/y(z,j)[k - 1]

where (sz,$,) is a steady additional control input, which models the bound-
ary conditions. The process equation has a structuring effect constrained by
the boundary conditions that yields to structural equilibrium configurations,
characterized by specific first-order EFCs. The resulting pattern depends on
the anisotropy of the interaction scheme and on the boundary conditions. By
example, considering, for the sake of simplicity, a rectangular domain {2 =
[-L, L] x [-L, L], the cardinal EFC d can be obtained through:

wh =wg =0 w{ =wl=0 . “Aifi=—L .
wy, = w} = 0.5 w%zw%zos‘”(l’]): Aifi=L sy(i5) =0

0 otherwise

where the boundary value A controls the gradient slope. In a similar way we can
obtain the other components.

Given Egs. (5) and (6), we may write the optimal filter for optic flow Gestalts.
The filter allows to detect, in noisy flows, intrinsic correlations, as those related
to EFCs, by checking, through spatial recurrent interactions, that the spatial
context of the observed velocities conform to the Gestalt rules, embedded in ®.
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To understand how the CSF works, we define the a priori state estimate at step
k given knowledge of the process at step k — 1, ©[k|V_1], and the a posteriori
state estimate at step k given the measurement at the step k, ©[k|Vy]. The aim
of the CSF is to compute an a posteriori estimate by using an a priori estimate
and a weighted difference between the current and the predicted measurement:

O[k|Vi] = 0[k|Vi-1] + G[k] (v]k] — V[k|Vk_1]) (7)

The difference term in Eq. (7) is the innovation afk] that takes into account
the discrepancy between the current measurement v([k| and the predicted mea-
surement V[k|Vx_1]. The matrix G[k] is the Kalman gain that minimizes the a
posteriort error covariance:

K[k] = E{(v[k] = 8[k[Vi])(v[k] - 8[k[Vi])"} . (8)

Egs. 7 and 8 represent the mean and covariance expressions of the CSF output.
The covariance matrix K [k] provides us only information about the proper-
ties of convergence of the KF and not whether it converges to the correct values.
Hence, we have to check the consistency between the innovation and the model
(i.e., between observed and predicted values) in statistical terms. A measure of
the reliability of the KF output is the Normalized Innovation Squared (NIS):

NISy = aT[k] X7 k] afk] (9)

where X' is the covariance of the innovation. It is possible to exploit Eq. (9) to
detect if the current observations are an instance of the model embedded in the
KF [7].

3 Results

Fig. 3 shows the responses of the CSF in the deformation subspaces for two
different input flows. Twentyfour EFC models have been used to span the de-
formation subspaces shown in Fig. 2a. The grey level in the CSF output maps
represents the probability of a given Gestalt according to the NIS criterium:
lightest grey indicates the most problable Gestalt. Besides Gestalt detection,
context information reduces the uncertainty on the measured velocities, as evi-
denced, for the circled vectors, by the Gaussian densities, plotted over the space
of image velocity.

4 Conclusions

Given motion information represented by an optic flow field, we specified a CSF
to recognize if a group of velocity vectors belong to a specific pattern, on the
basis of their relationships in a spatial neighborhood. Casting the problem as a
KF, the detection occurs through a spatial recurrent filter that checks the con-
sistency between the spatial structural properties of the input flow field pattern
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Fig. 3. Example of Gestalt detection in noisy flows.

and a structural rule expressed by the process equation of the KF. The CSF be-
haves as a template model. Yet, its specificity lies in the fact that the template
character is not built by highly specific feed-forward connections, but emerges by
stereotyped recurrent interactions (cf. the process equation). Furthermore, the
approach can be straightforwardly extended to consider adaptive cross-modal
templates (e.g, motion and stereo). By proper specification of the matrix ®, the
process equation can, indeed, potentially model any type of multimodal spatio-
temporal relationships (i.e., multimodal spatio-temporal context).
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Cortical mechanisms of processing visual flow —
Insights from the Pinna-Brelstaff illusion

Pierre Bayerl and Heiko Neumann

Department of Neural Information Processing, University of Ulm, Germany,
{pierre, hneumann}@neuro.informatik.uni-ulm.de

1 Introduction

It remains an open question how different corti-
cal areas interact to accomplish the robust analysis
of moving visual patterns. In order to gain insights
of the neural mechanisms underlying the cortical
processing of large-field motion patterns, we inves-
tigate a relative motion illusion presented by Pinna
and Brelstaff [1]. The stimulus pattern consists of
circularly arranged tiles each bounded by light and
dark lines (Fig.1, left). A forward and backward
moving human observer induces a strong illusory
Fig. 1. The illusion of rel-  motion of clockwise and counter-clockwise rotation
ative motion introduced of the inner and outer ring while fixating the center
by Pinna and Brelstaff [1] of the circular arrangements of tiles. The contrast

arrangement along the boundary of individual tiles
as well as between the tiles and the peripheral location of the items is important
to generate the illusion. We claim that an investigation of the input-output rela-
tion between stimulus and (illusory) percept reveals key principles of the neural
processing of flow patterns in the dorsal pathway.

We developed a model of recurrent interaction of areas V1, MT, and MSTd
along the dorsal cortical pathway utilizing a space-variant mapping of flow pat-
terns [2]. The model predicts the perception of relative motion for the Pinna-
Brelstaff pattern and new variants of it. In this paper these predictions were
psychophysically investigated in order to assess the strength of relative motion
in a parametric fashion.

2 Model and computational results

Motion information is processed primarily along cortical pathways which involve
areas V1, V2, MT, and MSTd, respectively. Our model [2] is based on a space-
variant representation of V1 as proposed by Schwartz [3]. Motion information
is integrated along the V1-MT-MSTd feed-forward pathway utilizing direction
selective cells of increasing spatial size (1:11:30 ratio). Directional inhibition
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modeled at the stage of MT [4] explains why certain configurations of the input
pattern yield no illusory effect. Most important to our model is that salient
patterns are detected with less spatial accuracy in higher areas. The resulting
activities are fed back to disambiguate information at higher spatial resolution
provided in earlier areas. In the investigated motion illusion, modulatory MSTd-
MT feedback achieves necessary disambiguation of initial unspecific optic flow
estimates. This leads to segregated opponent motions along circular directions
when perceptual splitting occurs, while homogeneous motion fields are detected
when no splitting is observed. Some results of computational simulations are
sketched in Fig. 2. Concerning different contrast configurations of the original
stimulus, our model simulations are consistent with the findings of Pinna and
Brelstaff. The difference between input patterns with one ring and patterns
with two rings is that directional decomposition only occurs for illusory stimuli
consisting of two rings. This decomposition punctuates the rotational part of
illusory motion and enhances perceptual splitting of both rings. The existence
of a mechanism which segregates adjacent flow regions and disambiguates flow
estimations is stressed by the following experiments.
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Fig. 2. Simulation results for different contrast configurations of the original stimulus.
The dots and lines encode activities of model MT cells sensitive to the indicated direc-
tion (lines) at the corresponding location (dots). The background represents a cutout of
the log-polar mapped input stimulus (circular directions are plotted along the abscissa,
radial directions along the ordinate). Model MT activities are the result of several it-
erations of feedback processing and therefore are already completely disambiguated.
Dark arrows indicate the mean directions of detected motion components, light arrows
the direction of true motion. (a-c): Stimulus configurations with one ring of tiles, il-
lusory patterns (a,b) and non-illusory pattern (c). (d-f): Stimulus configurations with
two rings of tiles: Note that directional decomposition (perceptual splitting) occurs for
the illusory patterns (d,e) and not for the non-illusory pattern (f).
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3 Psychophysical experiments and results

We developed an experimental setup to test variants of the Pinna-Brelstaff illu-
sion that were predicted by our model. This allows to quantify the relative speed
of various motion patterns in a parametric fashion. These results can be used
again to verify the model predictions by imposing the respective pattern to the
neural computational model.

General Stimuli Configuration: The stimuli consist of one or two rings
containing circularly arranged tiles of a certain type. Beside the original tiles we
investigated patterns composed of patches of oriented Gabor wavelets®, which al-
low to parameterize spatial frequencies and orientations of the stimulus. A novel
variation is the additive combination of two different Gabor patterns to induce
two different motion cues at the same location. The displays of looming ring
patterns are generated using real-time computer graphics techniques (OpenGL).
The speed v of true radial motion is held constant. All stimulus parameters like
speed or wavelengths are specified in pixel, one pixel corresponds approximately
to 0.026 degrees at a viewing distance of 60 cm.

Task/Procedure: In a nulling task an observer is asked to parametrize
real spiral motions to counteract the illusion perceived for the inner ring that is
induced by the looming pattern. In order to get accurate results in an acceptable
amount of time the Best PEST method [5] is applied to detect the threshold of
nulling the illusory effect. The rotational correction is applied anti-symmetrical
on both rings. This correction does not affect the inner and the outer ring equally:
some configurations exist for which the outer ring still induces an illusion of
relative motion after the rotational components of the inner ring have been
eliminated. The results however show that the amount of correction applied for
the inner ring correlates with the strength of the illusion reported by Pinna and
Brelstaff and the predictions of our model.

3.1 Experiment 1: contrast orientation of the original tiles

In the first experiment we acquire psychophysical data, which can directly be
compared to our computational results concerning different contrast configura-
tions of the original illusion presenting either both rings or only the inner ring.
Pinna and Brelstaff found that certain contrast configurations yield a stronger
illusory effect than others, but it remains unclear if this effect is influenced
by spatial interactions between both rings or not. In particular, we want to
know whether the illusory effect is influenced by directional repulsion caused
by a motion contrast between both rings. Stimuli are tested for three contrast
configurations as presented in [1]. We varied the shearing angle « of the tiles
(o € {—40,0,40}, see Fig. 3) either with both rings or the inner ring only.
Results: The results illustrated in Fig. 3 (right) show the amount of rota-
tional correction for different stimulus parameters. The results for two rings are

! Only recently we got notice that earlier this year Mike Morgan utilized a similar
variant of such stimulus for demonstration purposes.
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qualitatively consistent with the findings of Pinna and Brelstaff and with our
computational results (Fig. 3, left). No significant difference can be observed for
different numbers of rings. We conclude that for the investigated stimuli there is
no significant interaction between both rings that influences the strength of the
final percept. If the final perceived motion is interpreted as a population vector
represented by cells within a ring, the psychophysical findings for the single-ring
stimuli are also consistent with our model simulations. The observation reported
by Pinna and Brelstaff that apparent rotations of single-ring stimuli appear to
be much weaker compared to patterns with two rings could be explained by the
optical flow decomposition performed by our model. This decomposition stresses
the existence of illusory rotational motion components.
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Fig. 3. Results for different contrast configurations with one and two rings of the origi-
nal stimulus tiles. Left: model predictions for the direction of the MT population vector.
(inner ring) Right: median plot of psychophysical data (Exp. 1, meand+min/max, N=8
trials). The illusory effect for the first two configurations (shear = —40° and 0°) is
significant stronger (**=p<.01, U-Test) than for the third configuration (shear = 40°).

3.2 Experiment 2: oriented Gabor patches

In order to investigate the role of contrast orientation in more detail we propose a
stimulus setup using oriented Gabor patches. Gabor wavelets have the advantage
to induce a motion cue for a specific scale () and direction (o, o = 0 means ra-
dial orientation). If the aperture problem would explain the illusion as proposed
by Pinna and Brelstaff, the strength of the stimulus should be proportional to
sin(«) cos(«) and therefore maximized for o = 45° with a local symmetry around
«a = 45°. Effects of interaction between both rings are re-examined because di-
rectional repulsion or motion contrast enhancement may only occur for small
angular differences. Stimuli are tested for 8 contrast orientations (a € {£67.5°,
+45°, £22.5°, +11.25°}) either using both rings or the inner ring only.
Results: Data shown in Fig. 4 (left) demonstrates that the responses are
not distributed symmetrical around a = 45°. Also stimuli with two rings show
enhanced illusory effects for small values of o compared to the single-ring stimuli.
Therefore some mechanism seems to generate a directional repulsion within an
area covering both rings as well as within the rings. We propose that the repulsion
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is initiated in MSTd and that modulatory feedback separates the model MT
responses to form the final percept. Due to increasing receptive field sizes and
therefore decreasing spatial accuracy, flow information of both rings at the stage
of MSTd is likely to be handled as motion transparency. An alternative to the
directional decomposition performed by our model MSTd would be a mechanism
of directional repulsion as proposed by Kim and Wilson for their model of motion
transparency [6].

3.3 Experiment 3: compound Gabor patches

Our model predics that the detection of the true radial flow might enhance the
repulsion of illusory flow components. To test if the illusion is enhanced by such
a directional interaction we generate stimulus tiles, which consist of compound
Gabor patches (additive combination of two Gabor wavelets) inducing flow in-
formation for spiral and radial directions (compound stimulus): A low-frequency
Gabor patch generates clockwise and counter-clockwise spiral motion cues for
the inner and outer ring, respectively (a; = 45°, A = 38). An overlaid Gabor
patch with higher frequency induces radial flow information (as = 0°). Differ-
ent wavelengths for the radial oriented Gabor are investigated: A € {12,8,4}.
We also tested a stimulus configuration with tiles containing a single Gabor
(cp = 45°, A = 38) without overlay (uniform stimulus).

Results: The results (Fig. 4, right) provide information of specific interac-
tions of cells tuned to different directions and different spatial frequencies. For
the compound stimulus with A = 8 the enhancement of the effect compared to the
uniform stimulus is very significant. Also compound stimuli with lower frequen-
cies show an increased illusory effect. Only for the highest frequency (A = 4) the
enhancement collapses. This might be caused by the fact that the visual system
is unable to detect such high frequencies in the periphery. These findings stress
the role of directional repulsion between different directions of motion induced
by patterns of different scales. Like in experiment 2 this effect can be explained
by a mechanism of directional repulsion. An alternative, but rather speculative,
interpretation is the following: the illusory percept for compound stimuli is the
result of mechanisms combining form cues with motion cues like those observed
for the barberpole illusion[7]. Most essential for this explanation is that the high-
frequency Gabor patch cannot be accurately located due to its eccentricity. The
radial wave fronts induced by this Gabor patch act as (static) circular bound-
aries. The perceived illusory rotation between these circular boundaries could
then be explained with mechanisms including form information from the form
pathway like those in the model of Viswanathan [7].

4 Summation and conclusion

Our neural computational model [2] provides evidence that feedback from the
higher-order motion area MST is essential for generating unambiguous patterns
of large-field motion. Our investigations also led to a novel interpretation of the



28 Bayerl, P. et al.

o

.
w

N}

1

rotational correction (deg/sec)
”

rotational correction (deg/sec)

&

no second gabor 12 8 4

67,5°  45°  22,5° 11,25° -11,25° -22,5° -45° -67,5° ation (
contrast orientation relative to radial direction gabor)

(**=p<.01, *=p<.05, U-Test)

Fig. 4. Left (Exp. 2, mean+tmin/max, N=9 trials): Strength of the illusion for differ-
ent orientations (a) of Gabor patches. The stimuli consist of either one or two rings
of patches. For some configurations the amount of rotational correction is significant
higher for two rings. Most important is that the responses are not symetrically dis-
tributed around a = +45° as predicted by the simple normal flow model[l]. Right
(Exp 3, meantmin/max, N=8 trials): Strength of the illusion for different configu-
rations of compound stimuli compared with an uniform stimulus configuration. To
generate compound stimuli a high frequency, radial oriented Gabor patch (A = 4, 8,12,
a = 0°) is added to a low frequency, diagonal oriented Gabor patch (A = 38, a = 45°).
The uniform stimulus consists of the diagonal oriented Gabor patch without overlay.
For A = 8 the illusory effect of compound stimuli is almost doubled compared to the
uniform stimulus and also significant stronger than all other configurations.

Pinna-Brelstaff illusion as one of motion transparency [4,6] in which the same
mechanisms are involved to generate the observed perceptual segregations.

Our experimental investigations using the original stimulus tiles reproduce
the results obtained by Pinna and Brelstaff. With our nulling technique we now
quantified the strength of the illusion in relation to other variants of the input
pattern. Experiments concerning the role of the component spatial frequencies
and their orientations reveal evidence for specific interactions between cells tuned
to different motion directions and different spatial frequencies. In particular we
found that the investigated illusions cannot be ascribed solely to the aperture
effect and that additional mechanisms are needed like those presented in [2].
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Abstract. We investigated the ability of humans to combine landmark
information and optic flow. 20 subjects (11 male, 9 female) participated
in a desktop virtual reality experiment consisting of six stages. In five
experiments only optic flow was available to the subjects. In two of this
five experiments the subjects received feedback by presenting a birdseye
view of their journey. In the last experiment a landmark was introduced,
which was replaced in some of the trails during the testphase, not in-
forming the subjects about that. The landmark has had an important
influence on the computing of the homevector, but also the optic flow
influenced the result.

1 Introduction

Path integration, one of several possible spatial navigation mechanisms, is the
process of determining one own’s position on the basis of egomotion. Loomis et
al. [3] investigated this ability in blind and blind—folded people and could show
that human subjects tend to show a systematic error in that way that shorter dis-
tances are overestimated and longer distances are underestimated. While these
results were based on non—visual information, optic flow could also contribute to
the process of path integration. It has been shown in several studies that humans
are very well capable of estimating their heading direction from very short pre-
sentations of a flow field [7] but it is also known that it is much more difficult to
estimate a longer trajectory from this information [1]. Recently, Riecke et al. [4]
replicated the Loomis et al. study in a visual task. They used a 180°-projection
screen and did find a much smaller error than in the former experiments. They
could also suppress the compression—-to—the mean error in certain experimental
conditions. But it is not clear how relevant optic flow information in a naviga-
tion task is, if additional information is available. For human spatial cognition,
landmarks play a dominant role to lead a navigator to his goal. Landmarks could
be used in a different manner: they provide local position information or could
be used as a course maintaining aid. In this latter sense we investigated the role
of landmarks in this paper. We were interested in the question if — and how this
landmark information is combined with the information from optic flow.
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Fig. 1. Screenshots of the experiment a) without and b) with a landmark. These views
have been taken from the starting point. During the passage of the landmark it was
always to the right side of the subjects.

2 Methods

The experiment was run on a personal computer (Linux — 700 MHz PC, NVidea
GForce2). 20 volunteered, paid subjects (11 female, 9 male) participated in this
experiment. They sat in front of the computer screen in a comfortable distance
without any head— and chinrest. The screen spanned therefore 30-40 deg of the
horizontal field—of—view of the subjects.

OpenPerformer and C++ were used for the programming of the experimental
environment. It consists of a textured ground floor only. In some of the trials a
landmark was introduced (see figure 1). Egomotion was simulated after pressing
the corresponding cursor buttons (i.e. left arrow — turning to the left), sub-
jects could either turn (10 deg sec™!) or move straight forward or backward
(1 m sec™!)l. As the experimental procedure we used the triangle completion
paradigm (see figure 2) where subjects were guided passively along two legs and
the including angle of a triangle. Then they had to “walk” back to the start-
ing point by pressing the cursor buttons indicating which homevector they had
built. The experiment consisted of six stages: five stages without landmark, the

! In our setup the notation “Meter” is arbitrary, in a strikt sense we should use the
term “Unit”.

Fig. 2. Setup of the landmark trials. Subjects were led two
legs of the triangle (Leg A and B in the figure). In some trials
a red cone served as a landmark, placed in the vicinity of
the starting point (x = 0.5m,y = 1m). After the passage
of this landmark, it was either shifted 5m to the right or
to the left (dashed triangles), or it remained at the same
position. The subjects did not see this transposition. We
varied the length of leg A between 2,6 and 10 m. Leg B was
always 2m. The turning angle 8 has had one of the following
values: —120°, —90°, —60°, 60°,90°, 120°
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60° 90° 120° —60° —90° —120°
2m <+ — o 0 — —
6m o +~ = <+ = o
10m - o + — o —
Table 1. In the last stage of the experiment the landmark was either shifted to the
right (—), to the left («) or it remained stationary (o).

second and forth of them with feedback. In these feedback trials an additional
small window was presented in the upper right corner of the screen where sub-
jects could see a birdseye view of their path. Little balls indicated the starting—
and turning points.

In the last stage a red cone was placed in the vicinity of the starting point.
Because of this location this cone was visible to the subjects only at the beginning
of a trial and then again during their return to the starting point. When the
subjects finished their homevector they passed the landmark already, thus it
was not longer visible to them. Each stage consisted of 18 trials (3 length x
6 turning angles) in a random order. During the landmark stage in twelve of
these trials the landmark was shifted either to the right or the or the left after
the subject had passed the landmark (see table 1). In the remaining six trials
the landmark remained at their original position. The whole experiment lasted
around an hour.

3 Results

Subjects were able to discriminate between different triangles in this study —i.e.
there is a positive correlation between a correct length of a certain homevector
and the length that was estimated by the subjects. The same is true for the
angle (see figure 3). The subjects could profit from the training in that way that
they improved their turning precision.

If a landmark is introduced, the variance of the homing is reduced by a factor?
of f = 3.4 (figure 4) compared to the results obtained just on the basis of optic
flow. This variance reduction is much more pronounced in male (f = 37.89) than
in female (f = 2.0) subjects. The latter show also an overall bigger variance in
their results than male subjects.

In figure 5 the data of the landmark experiment are plotted. If the landmarks
have been shifted, also the homevectors ended in the corresponding direction.
This difference is significant, indicating that the landmarks have had a strong
influence on this result. The homevectors in the trials with a shifted landmark
show less correlation to the “correct” homevector defined by optic flow than to
the “correct” homevector defined by the landmarks. They are longer and show
a clear overestimation for the turning if the landmark was shifted to the left,
respectivly an underestimation for the turning if the landmark was shifted to

2 fraction of the area of the variance ellipses f = VARopticaiFiow/V ARiandmark-
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Fig. 3. Linear fit of the length (a) and turning angle (b) of the homevectors to the
correct length and angle; experiments where only optic flow was available (no feedback,
no landmark, pooled over 20 subjects). The line style mark the different stages of the
experiment: — o —: first stage, - - - ¥ - - -: second stage, --- + ---: third stage.
The THIN line is hypothetical and plotted just for the comparison with error free
performance (f(z) = 1.0z).

the right (table 2). An indication that also optic flow influenced the homing is
the shape of the variance ellipses. If the responses would rely purely on optic
flow the variance ellipses for all three cases should be identical, but at locations
corresponding to the shifted landmarks. We found that in the trials with shifted
landmarks, these ellipses are tilted towards the starting point. This is much more
pronounced for the male subjects.

o Optical Flow
+_Landmarks

o Opical Flow
+_Landmarks

Fig. 4. Endpoints of all hometrajectories and the corresponding variance ellipses. One
path of a triangle is added as an example. THIN LINE: Experiments where just optic
flow was available. THICK LINE: Homing endpoints if the red cone was placed along
the route; data from the trials where the landmark was not pushed. Large Figure: Data
of 20 subjects. Middle: Data of 11 female subjects. Right: Data of 9 male subjects.
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Fig. 5. Endpoint of the hometrajectories (— +: Landmark shiftet to the left; - - - A:
Landmark was shifted to the right; - -- o : Position of Landmark was constant). Large
Figure: Data of 20 subjects. Middle: Data of 11 female subjects. Right: Data of 9 male
subjects.

4 Discussion

We studied the integration of optic flow and landmark information. Optic flow
in a desktop virtual reality setup is a rather weak cue for path integration, but
we were able to train the subjects to make use of optic flow and improve their
performance.

The most interesting finding in this experiment is that 19 out of 20 subjects
didn’t report the transposition of the landmark. On the other hand both types
of information were relevant for the behavior of the subjects. This supports
the idea that human spatial memory contains isolated chunks of information,
which was shown also in experiments performed by Steck et al. [6]. In their
experiments subjects could use local and global landmarks for a navigation task.
After a training phase the landmarks were transposed. Most of the subjects also
didn’t report the transpostion, despite the fact that they did use them further
for the navigation. In an additional experiment it was shown that their behavior
was guided by just one type of landmark, independent of their former prefential
landmark type. This shows that the information from the different landmark
types was represented in memory but not combined into a single cognitve map.

stationary landmark|shifted RIGHT shifted LEFT
optic flow — length difference 1.07 m 0.35 m -0.747 m
optic flow — turning difference -7.37° 44.95° -22.37°
landmark — length difference 1.07Tm 1.07 m 1.01 m
landmark — turning difference -7.37° -14.47 ° 5.26°

Table 2. 1st & 2nd rows: Differences of the measured vectors to the vectors defined
by optic flow; 3rd & 4th rows: Differences of the measured vectors to the homevectors
defined by the landmark
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In our experiment we find a comparable result for a working memory task.
Subjects were able to base their behavior on both types of information but
they didn’t integrate it in memory — otherwise the tranposition of the landmark
should be reported by the subjects. The landmark information dominates the
optic flow information. This could be seen by the differences to the corresponding
home vectors (Table 2). One reason for this could be, that landmark information
resulted in a smaller variance for the homing than optic flow. Similar results have
been found in the field of sensor fusion [2]. In a grasping task the information
with less variance — which was optic information in this paper in contrast to
haptic information — influenced the behavior most.

The difference in our experiment between the male and female subjects is
in accordance with the literature, where it is widely accepted that females rely
more on landmark navigation than male subjects [5]. For the latter the optic
flow should play a more important role. If this would be true in our investigation
than the f-values (fraction of variance of homing with optic flow / on the basis of
landmarks) should be larger for female than for male subjects. That is definitely
not the case. It rather appears that the overall performance of the female subjects
is worser compared to the male subjects in our experiments. This might be
explained by different amounts of experience with computers and in particular
with video games.

It is clear, that the type of the landmark and the position of the landmark
have a strong influence on the result. In our experiments we used a rather simple
landmark, placed along the route. In further experiments it will be worthwhile
to investigate the influence of other types of landmarks or landmark arrays.
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Abstract. A novel algorithm for simultaneous estimation of many local and a
few global parameters in image sequences is presented. Usual parameter estimation
frameworks as e.g. the structure tensor method for extended optical flow [8] are de-
signed for local parameters only. There the estimation can be performed for every pixel
neighborhood separately. Global parameters effect a full coupling of the model equa-
tion matrix. The main idea in this paper is to split the model equation matrix into an
easily invertible local parameter part and a small global parameter part. We compare
our new approach to two common estimation methods. In a performance evaluation
of systematic errors and noise stability the superior behaviour of the new approach is
demonstrated.

Keywords: extended optical flow, least squares parameter estimation, large-scale
optimization, image sequences

1 Introduction

Combined motion and brightness change estimation in physically motivated
models proved to be successful in many applications (e.g.[15, 16, 10]). In well es-
tablished parameter estimation frameworks as e.g. the structure tensor method
(total least squares (TLS) approach) [9,8] or its mixed ordinary least squares
(OLS) and TLS version [6] physical models with local parameters only can be
applied. These methods can be implemented efficiently in terms of RAM needed
and CPU time used as all estimations can be performed separately for each
pixel neighborhood. In other words, the model equation matrix is a block diag-
onal matrix with one block per pixel and we process one block after the other.
This is no longer true if global parameters have to be estimated as well. They
introduce full rows in the model matrix, thus coupling all blocks. In this paper
we present an OLS estimation method for simultaneous estimation of local and
global parameters. It has comparable complexity and memory requirements as
pure local methods.

The example model used here is designed for optical flow estimation where
the camera has an automatic gain control. This is the case for most consumer
camcorders and thus a quite interesting application.

Related work. Although there is a rich literature on optical flow estimation
techniques (see [12, 1] for current overviews), direct extensions have been studied
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to a much smaller extent. There are extensions towards affine motion estima-
tion [3,4], flow in texture and depth maps [18], physically motivated brightness
changes [11] and robust estimations [6,2]. Regularization schemes [19], special
filters [17,14,5] and coupled denoising methods [20] have been developed. But
to the best of our knowledge there is no extension using global parameters as
e.g. camera gain.

2 The Model
An automatic gain control changes gray values g(x,y,t) in space-time by

dg(z,y,t)

dt = k(t)g(x’y’t)

where k(t) a spatially constant factor describing gain changes. For optical flow
estimation we get for each pixel one model equation

dg(z;y,t) = g%% + %% + % = k(t)g(x,y,t)
~ Gy + GylUy + 9t = k.g
using the notation g, = g—i and substituting u, = %. The local parameters are
the motion components u, and u,, the global parameter is the gain factor k.
Let us in the following only consider the central image of a temporal slice of the
sequence, and order the N = N, x N, pixels of the image in some arbitrary
way, numbered with an index ¢ = 1,..., N, replacing the space coordinates.
Given the coefficients g}, g/, gi, and ¢ at each pixel (e.g. using the derivative
convolution kernels given in [17, 14, 5]), we want to determine an estimate for the
local parameters u, u), u2,u2, ..., u, u) and for the global parameter k, that is
best in a least squares sense. For this aim, we define a neighborhood £2; (with np,
pixels) around each pixel i. Then we define a least squares term je (giul +

gfluzy + gz —kg?)?, which measures the misfit of estimated parameters and image
data in each neighborhood. The approach followed in this paper is to minimize
the sum of all misfits:

N
SO (ghul+ ghul+ gl — kg’)? (1)
i=1je0;

by varying the parameters u’, “Z’ i=1,...,N, and k. If the global gain param-
eter k was not present (k = 0), the optimization could be carried out pixelwise
for ¢+ = 1,..., N, thus allowing for an efficient sequential processing over the
whole data set. The same applies for a local gain estimation, where k is replaced
by a local gain factor k* in each local misfit term. In our case, with a global
gain parameter k, a coupling between all terms is introduced. Thus, the above
optimization problem has to be treated as a large scale problem and can only be
solved for practical problems, if the problem structure is carefully exploited. In
this paper, we propose a numerical solution method which achieves this aim by
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making use of the so called Sherman-Morrison- Woodbury-Formula, which allows
to efficiently obtain the inverse of an easily invertible matrix when it is modified
by a low rank matrix.

3 The Novel Algorithm

The 1idea is as follows: defining the parameter vector = =
(ui,u;,ui,ui,...,uiv,uév,k:)T, z € R", n = 2N + 1, the large scale op-
timization problem with objective (1) can be summarized in the form
mingern ||[Az — b||3 and the solution vector Z necessarily satisfies the normal
equation

AT Az = ATD, (2)

ie, z = (ATA)"1ATp, if AT A is invertible. The matrix A has the following
block structure
By Vi
Bs Va
A= T =B (3)

By |V
with ng X Nip-blocks B; and ngp X Ngp-blocks V;. In the above application, we
have Nip = 2 and Ng, = 1. The squared system matrix consequently has the

form . -
r, |B"BB'V
AA_[V B\V*V |-

Each of these matrix products can be calculated efficiently using convolutions
(compare [13,15] for the TLS case). Finally, the squared matrix can be decom-
posed as

ATA= M + RSR"

BTB| 0 BTV|0 ol
M:[ 0 V7V}’R:[ 0 H}’S:{HO}’

where M is block diagonal and R is a matrix of low rank, 2N, so that the
Sherman-Morrison-Woodbury formula [7] can be used to efficiently compute the
inverse:

with

(ATA) ' =M1 M'R(S™'+ RTM—'R)"'RTM~'.

In addition to the matrix blocks Bl-T B; and Ei\;l V;TVi of M we therefore only
have to invert one further (2Ngp) X (2Ngp) matrix, (S7' + RTM~1R), and all
remaining calculations for computation of

7= (ATA)1ATh = (1-MR(S~'+ RTM~'R)"'RT) M~AT}

can be performed as matrix vector products. As the inversion of the matrix
blocks BI B; is by far the most time consuming step in the computations of the
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algorithm, the computational burden is comparable to that of an OLS velocity
estimation without gain estimation. When local gains k? are estimated, this re-
sults in a completely decoupled problem, but with larger local matrix blocks,
so that the computational burden is considerably higher than for the proposed
approach.

4 Experimental Validation and Comparison with Existing
Methods

In order to quantify the accuracy and noise stability we measure the veloc-
ity of a translating “wave”-pattern with a global brightness change g(x,y,t) =
exp(kt) cos(2m(z — ugt)/Ag) * cos(2m(y — uyt)/A,y) with varying wave lengths
Az, Ay. The camera gain factor is here given by exp(kt), and k is constant in
time. To those sequences, normal distributed noise with a standard deviation up
to o = 10% is added. For comparison, we calculated the velocities u, and wu,
using three estimation models: the first does not estimate the gain (“no gain”,
k = 0), the second estimates local gain factors k%, i = 1,..., N (“local gain”),
and the third is our new algorithm estimating a spatially global gain k for each
picture (“global gain”). The first two algorithms use the well known OLS method
for local parameters (see e.g. [12]). Below some results of these tests are shown.

no gain

local gain

global gain

\\\\\\\\\\\\

e
—_—
e = — —

e - —

Fig. 1. Estimated flowfields for three different models.

The picture shows the estimated velocity vectors for the three estimation
methods, using a a simulation with 5 % gain and 5% noise. It can be seen that
the velocity estimates of the first model, which is not able to capture the gain,
are highly distorted. The velocity estimates of the global gain model show less
variation than the local gain model. This is due to the fact that the effects of
noise are better dampened out by inclusion of the knowledge that k is spatially
constant. The corresponding variances in u, and wu, are shown in the second last
line of the table below, which also shows variances for some other gain and noise
scenarios.

As expected, all models capture well the scenario without gain and without
noise, whereas the no gain model has increasing difficulty with growing gains
in the data. Compared to the local gain model, the global gain model shows
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Fig. 2. Variances and relative estimation errors of the velocity estimates, tested for
different scenarios with varying gain k and noise level o, using different models

Variances [10~ 7] Rel. est. errors [10 7]
k o no local global no local global
(%] (%] gain gain gain gain gain gain
Uz Uy| Uz Uy| Uz Uy|| Uz Uy| Uz Uy| Uz Uy

o

0 0 0 0 0 0 0 0 0 0 0 0
5 56 71| 143 125/ 58 72 56 121| 103 232| 57 122
10| 283 349 531 266| 251 308| 172 676] 253 607| 163 590
0 19 31 0 0 0 0 0 50 0 0 0 0
75 99| 141 117 64 77 58 169| 101 211} 59 131
10|| 263 335 514 280| 256 311|| 165 641 254 625/ 165 603
0 477 763 0 0 0 0 0 1205 0 0 0 0
5 483 742 148 119 56 71 57 1262| 102 217 57 121
10| 587 816 523 270| 262 324| 157 1553| 249 604| 167 634

QLT A= = =O OO
ot

comparable or lower variances. Similar observations hold for the following table,
where the mean relative errors in the velocity estimates (compared to the correct
values) are listed for the same set of scenarios.

Note that the computational load of the proposed algorithm for global gain
estimation is smaller than that of the OLS method for local gain estimation,
because far less free parameters have to be determined.

5 Summary and Outlook

We have introduced a novel algorithm for simultaneous estimation of many lo-
cal and a few global parameters in image sequences. A numerically efficient
algorithm to solve the arising large scale least squares optimization problems
is presented. The algorithm is based on the idea to split the model equation
matrix into an easily invertible local parameter part and a low rank part in-
troduced by the presence of global parameters. The inversion of the combined
system is efficiently performed by means of the so called Sherman-Morrison-
Woodbury-Formula. The resulting algorithm has comparable complexity and
memory requirements as a pure local method without estimation of the global
parameters.

The capacity of the new algorithm to cope with global gains is demonstrated
in a first series of numerical experiments. The resulting velocity estimates com-
pare well with those obtained by existing OLS methods with local gain estima-
tion, and are affected less by noise.

Further work will focus on extending the simultaneous local-global parameter
estimation towards TLS formulations, and on replacing the normal equation
approach (2) by a suitable, structure exploiting Q-R factorization of the system
matrix (3).
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Abstract. A dynamical mapping strategy is introduced, that leads to a
novel representation of optical flow in which motion parallax depth cues
are reliably obtained. It is known that similar data preprocessing is per-
formed for visuomotor control tasks, and two dynamic mapping versions
are advocated by various groups; either mapping into eye-centered coor-
dinates, or into head-, and body coordinates. While for remembered tar-
get locations each of these mappings has its specific advantages, we show
here, that optical flow is only simplified when dynamically mapped into
head coordinates. There is little if any benefit for a depth-from-motion
algorithm in a dynamic retinotopic map. Our results can be utilized in
technical visual systems and we also suggest a verifiable hypothesis about
a such a representation of optical flow in extrastriate cortex.

1 Introduction

One of the chief problems in computational vision is the three-dimensional re-
construction of a static scene from two-dimensional images [1]. Motion parallax is
one of the depth cues that can be used to recover the three-dimensional structure
of a viewed scene [2]. Motion induces a velocity field on the retina called the
optical flow [3]. In the most general motion case, i. e., ego- plus object motion, the
resulting curved optical flow field pattern cannot be resolved for depth analysis
without additional assumptions [4] and even if simplifying assumptions are made,
the problem of depth-from-motion remains rather complex.

Purely translational ego-motion induces one of the simplest optical flow
fields. The optical flow has a fixed point, called the focus of expansion (FOE).
All optical flow trajectories move outwards from the FOE. A radial flow field
(RFF) contains reliable and rather easily accessible information about the three-
dimensional structure of the viewed scene [5]. It is readily seen that the motion
in such an RFF is one-dimensional in any retinotopic map—in a specific curve-
linear coordinate system. For example, in retinal coordinates the RFF is expand-
ing solely along the radial coordinate when an observer approaches an object.
In coordinates of primate striate cortex this radial flow is mapped roughly along
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parallel aligned neurons starting from the posterior pole to more anterior loca-
tion in the medial occipital lobe [6]. We show in this study, that a flow field, with
the only rotational components due to eye-gaze movements, is in a dynamic map
isometric to a one-dimensional RFF. In other words, this flow filed is invariant
to these specific rotational components. There are areas in extrastriate cortex
known to have similar features as the dynamic map we suggest.

One of us (FW) introduced earlier an algorithm that efficiently analyzes an
RFF, i.e., purely translational flow, and then reconstructs the viewed three-
dimensional scene [5]. Details of the algorithm should be taken from that ref-
erence. We will use this algorithm to explore the use of a dynamic map—as
described in the next section— for ego-motions with eye-gaze movements com-
bined with straight body motion. We would like to emphasize, that any other
depth-from-motion algorithms, that takes as input an one-dimensional RFF,
can utilize the dynamical mapping strategy. However, the RFF-algorithm has
been specifically designed to allow for parallelization of computations, and it is
foremost this feature which is conserved by dynamic mapping.

2 Dynamical Mapping

To map the retinal flow field to a head centric frame, the retina is sampled
by point-like receptive fields (Fig. 1, top layer). Initially, the receptive fields
are placed such that they sample an RFF where direction of gaze and heading
direction coincide. The receptive fields are positioned on a polar grid (receptive
field grid, RFG) defined by radial axes expanding from the FOE. If the distance
between successive receptive fields increases hyperbolically on each radial line,
the optical flow is sampled uniformly.

The layout of the receptive fields on the RFG matches the radial optical
flow field only if motion direction and direction of gaze coincide. When both
directions differ by a constant angle a the receptive field positions on the RFG
are re-mapped. After a gaze shift @ about the Y-axis (angle of yaw), the optical
flow is transformed by:

ey 6 cos (¢) cosa — fsina 6 sin (¢)
6%(0) = f\/(f cosa + 6 cos (¢) sina ot feosa+0cos(¢) sina)2 )
O sin (¢)

#"°(a) = arctan(

)

fcos(¢)cosa — fsina

The index hc indicates that these coordinates are head-centric while without
index they are retinotopic.

In a head-centric frame the rotational component of the optical flow is coun-
teracted by constantly updating the receptive field positions along with the ro-
tational component according to the mapping function (Eq.1). This is possible
because direction and magnitude of the rotational component depend only on
the angular velocity of the gaze change and not on any external information of
the viewed scene. The optical flow in a head-centric frame is then congruent to
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FOE

0 n+l
S rec Bn+2

neurons

memory banks

Fig. 1. Architecture of the three layer network. The top layer consists of receptive
fields sampling the optical flow. Each receptive field projects to a neuron in the middle
layer. The third layer consists of memory banks, one for each processing neuron. A
separate neuron represents a structure mapping eye-positions. A visual tokens (T) is
passed from the receptive field along the exemplarily shown grey connections towards
the memory bank of a consecutive neuron. A head-centric representation of visual input
in the middle neuronal layer is achieved by dynamically mapping the receptive field
positions according to the direction of gaze. To re-construct three-dimensional position
of viewed objects, the middle layer needs only locally exchanged information in one
spatial direction (from left to right).

an RFF obtained with stable direction of gaze. Consequently, this dynamic map
is invariant under eye-gaze movements and the RFF-algorithm can be applied
on this head-centric map.

3 Performance of the RFF-algorithm on a head-centric
map

An observer moving straight without changing the direction of gaze can ade-
quately detect the three-dimensional position of the edges of objects in view
by the RFF-algorithm [5]. For example, determining the distance of a teapot
by the RFF-algorithm, results in three-dimensional coordinates, shown in front
view (Fig. 2 A) and top view (Fig. 2 B). These detected coordinates outline
the contour of the teapot. The depth coordinate Z, as shown in the top view
(Fig. 2 B), is the actual output of the RFF-algorithm. The contour in the other
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fixed direction of gaze variable gaze

retinotopic = head-centric map retinotopic map head-centric map

front view

top view

Fig. 2. A teapot viewed with stable and variable gaze. The position of the teapot
in Cartesian coordinates (X,Y,Z) can be detected on a retinotopic map by the RFF-
algorithm only when the gaze is pointing toward a fixed direction (A and B). Otherwise
this algorithm makes systematic errors (C and D). If the position of the teapot is to
remain stable, this algorithm must operate on a head-centric map (E and F). See also
text.

two coordinates, X and Y (Fig. 2 A), are directly projected onto the retina and
therefore they are already implicitly known, except for a scaling constant.

The detection of the teapot deteriorates when the straight body motion is
combined with eye-gaze movements (front view Fig. 2 C, and top view D). There
is even a shift of the projection of the teapot in the X-direction, that is, in the
direction of one implicitly known coordinate (Fig. 2 C). This shift is inherent in
the retino-centric map. Such a map can not statically store spatial locations. To
be precise, edges of the teapot that are located on the retina right (left) from the
FOE are accelerated (slowed down) by the additional rotational flow component,
when the gaze rotates clock-wise about the Y-axis. This systematic change in
the flow velocity is falsely interpreted by the RFF-algorithm as an edge too near
(far), as shown by the tilt in Fig. 2 D. If the RFF-algorithm operates on head-
centric optical flow fields, the performance of the RFF-algorithm is invariant
under gaze sifts. (Fig. 2 E and F).

To quantify the performance of the RFF-algorithm on both the retinal flow
field and the head-centric flow field, we defined a standard detection task: the
three-dimensional reconstruction of a centric viewed square plane. For fixed di-
rection of gaze along heading direction this corresponds to a situation where
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edges move with hyperbolically increasing velocity along the receptive fields on
each radial line. The angles between the edge and the radius vary between 0°
and 45°. The average error in the detected three-dimensional position of the
edges of the square plane was normalized to 1 for fixed direction of gaze (Fig. 3).
If the gaze direction rotates stepwise by a total angle between 1° and 4° about
the Y-axis, the error increases when the RFF-algorithm operates on retinal op-
tical flow fields, as expected (see Fig 3). On head-centric optical flow fields the
performance of the standard detection task is stable.

[ . static mapping

dynamic mapping
1571

0.5 |

error

00L

eye-gaze movement

Fig. 3. Performance of the RFF-algorithm operating on a retinotopic map compared
to a head-centric map. While on a head-centric map the performance is stable, on the
retinotopic map it fastly deteriorates.

4 Discussion

Rotational components, foremost in form of smooth pursuit eye movements, are
likely to occur in the ego-motion even within short periods of time. As soon
as a rotational component is mixed with translation motion, the optical flow is
two-dimensional in any coordinate system of a retinotopic map and extracting
depth from optical flow becomes generally far more complicated. We showed that
with a simple dynamic mapping strategy of visual space, the effect of eye-gaze
movements on the optical flow can be eliminated. The resulting flow field on a
head-centric map is congruent to the one induced by pure translational motion.

Dynamical mapping provides an example of combining two visual brain maps
into one. In this case a subcortical sensor map that controls gaze direction in
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retinal coordinates [7] and a retinotopic cortical map. The resulting map has
qualitative new and advantageous features. We also attach importance to a head-
centric map because it serves multiple though related purposes. In several areas
in the parietal cortex: V3a [8], V5 [9], MST [10], V6 [11], V6a [12], 7a [13], and
VIP [14] the activity of neurons is influenced by gaze direction. Precise gaze
tuning together with a topographic representation of space can form a head-
centric map. Area MST [15] and 7a [16] are both known to represent optical flow,
although in different ways, and are likely candidates to utilize one-dimensional
flow fields as depth cues, as we suggest here. To test this hypothesis, one needs
to present radial expanding optical flow and introduce rotational components by
pursuit gaze movements.
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Abstract. In the present papewe proposea neurallyinspired model of the
primate notion procesing higarcly and desribe its implementationas a
conputer s$mulation. The nodel ains to explain how a hierachical
feedforward network consisting of neuransthe corttal aeasV1, MT, MST,
and 7a of primates achieves tihetecton of different kinds of motion patterns.
Moreover, the modeincludes afeedbackgating networkthat implements a
biologically plausible mechanis of visualattention. This rechanismis used
for sequentiblocalization and fne-graired inspection of evgrmotion pattern
detectedin thevisual scene

1 The Feedforward Mechanism of Motion Detection

In the present pape, we propose aneually-inspred model of the grimate motion
processng hierarchy and de<ribe its implementtion asa conmputer simulation. The
model aims to explin how ahierardical feedforward netvork consisting of neurons
in the cortical areasvl, MT, MST, and 7a of primatesachieves he detection of
different kindsof motion paterns.

Cells instriate area V1 are well known to be tuned towards a paticular local speed
ard drection of maotion in at least thee mainspeed ranges |1 In the model, V1
neuons estmate local speed and direction in fiveframe, 25%6x256 pixel image
seqerces usig smtioterrporal filters (e.g, [2]). Their drection selectivty is
restricted tol12 distinct, Gaussan-shapeal tuning curves. Each tning curve has a
standad deviation d 30° and represaits the sekcivity for one of 12 different
directions spaed 30° apd (0°, 3@, ..., 33°). V1 is represened by a 6(<60 array of
hypercolumns. The receptive fields (RFs) d V1 neuons are circular and
honogeneausly distributed acioss he visual field, with RFs of neighboring
hypercolumns ovelapping by 20%.

In area MT a high proportion of cells aretuned towards a paticular local spee
anddirecion of movenent, similar to direcion and sped slecive celsin V1 [3, 4].
A proportion of MT neurons are ao ®lecive for a paricular argle beween
movenent direcion and gatia speedgradient [5]. Both types of neuwons are
represated in the MT layer of the nodel which is a 30x30 aray of hypermlumns.
Each MT cell receives input from 4x4 fietl of V1 neurons with the same direction
and peed selectivity.
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Neuons n area MST are tuned b complex motion paterns: expand or appoad,
shrink or recele, rotation, with RFs covering most of the visualfield [6, 7]. Two types
of neurons ae modekd: onetype seécive for transhtion (as in V1) and anoher pe
selectie for spral motion (clockwise aml counterclockwise rdation expansion,
contraction and conbinations). MST is simulated as a5x5 aray of hypercolumns.
Each MST cell receiveisputfrom a largegrouy (covering 60% ofthe visual field) of
MT neuons that regpond to a paticular motion/gradient argle. Any coheent
motion/gradient angk indicates aparicular type d spiral motion.

Finally, area 7a seens toinvolve at least foudifferert types of canputations [8].
Here neuronsare selective for translation @duspiral motion as n MST, bu they have
even larger Rs. They arealso selectie for rdation (regardless of direction)nd
radial motion (regadlessof direcion). In the simulation, aea7a & represenied by a
4x4 array ofhypecolumns. Each 7a dereceives inputfrom a 4x4 field of MST
neuons hat have the rebvant tuning. Rotation cels and radial motion cels only
receive input fromMST neuronghat respand o spiral motion involing any rotation
or anyradial notion, respectiely.

Fig. 1 $iows the actvation of neurons in the model as nducel by a samle
stimulus. Note that inthe actia visualization differert cdors indicate the resp@e to
paricular argles betveen notion and speed gradient in MT gradient neurons. In the
presait exanple, the gray levels indicatiat the nairons seécive for a 90° agle
gaveby far the stongest reponses A consistent 9C° angle across &ldirecions of
motion sgnifies a patkern of clockwise rmtation. Correspondingly, the maximum
activation of the spiral neurona areasMST and7a correponds to the clockwise
rotation pattern (9C° argle). Firelly, area 7a also shavs a sbstartial respoise to
rotation in the medium-speedrarge, while there is novisible actiwation that wauld
indicake ralial motion.

2 The Feedback Mechanism of Visual Attention

Most of the computatonal modek of primate motion percegtion that hawe been
proposel concentrate on lmttom-up procesng and do rot addressattentional issues
However, there is evid®e that the rg®nses ofneurons in areas M and MST can
be modulated ly atteriion (Treue & Maunsell, 19%). Moreover, we clam that
attertion is necessary for @recise I@alization of notion patterrs in image seqerces.
As a resit of the nodel s fealforward computations the neural reponsesin the high-
level areas (MbT ard 7a)roughly indicat the kind of motion paterns presenéd asan
input but do not localize the smtial position of the patterrs.

In orde to aeate a comrehensive mtion model that is in ageeren with
biological findings ad is capdle of localizing notion paterns, we adled a
mechansm of visual atention to it. We decded to use the biologicaly plausble
Sekcive Tuning approad [9], requiring the introduction of a feedback gaing
network o the nodel. Eab neuron inthe original motion hiearchy receivel an
asserbly of gaing units that contol the bottom-up information flow to that neuwon.
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Fig. 1. The modi's response t@ clackwise rotathg stimulus (paneh). Brighness indicates
acivation in aeas V1, MT, MST, and & (pands b to e). Arravs repreent ®lecivity for
direction of motion or the angle betwesmotion and peed gedient, andthe three comwertric
circles standor thethreespeedselectivity rangesin the model.
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The attetiona processingworks as fdlows: First, a totion activity" map with
the sane size aa 7a layer isconstructedafter the botom-up pocesing. The value of
a rode in the activity map is a weighed sum d the actiwations of all 7a neurons at ths
position and it reflects tke overall activation. Secomd, a WTA (Winner-Tale-All)
algorithm finds the dobally most acive location. Then at ths location, two WTAS
will compete anong all the translational otion patterns and spirathotion patterns
respedtively and thus result in two winner neurons. A WTA runsanong the winners’
gating units, whose actiwation pattern is initially idertical to the ane in the winrer
neurons' RFs. The resiting winners activatehe comecied neurors in lower layers,
whereas he bottom-up information flow through the losing gating units is inhbited.
This pracess continues until the bottom layer, andthe recogized motions are
localized n the input sequence. The gahg network then inhibits the feedforward
processig of neighboring motion paterns so bat no interfering information reabes
the higher levels of the nodel Loosel spe&ing, the nodd “focuses s atention“ on
the winning motion patern. Afterwards a sinple inhibition of retirn mechansm
induces be nodel to switch attetion to the secod most active notion, andsoon.

In addtion, the wirings between the reurons within the sane laye ard the
direction-selective attribute of some of the neurors erabde our model to do a
simplified constah motion tracking. If a neuron sersitive to motion direction a is
activatedat time t,thenit passes its actition to neighboring neurons inthe drection
a at tme t+1. In this way, the nodel focuses onthe relevah area withot
reconputation of the whole motion hierarchy unde the assunption that the motions
do na change with time. In addtion to trackng motion, a sinple method for
detecing the gart and sobp of motion is included. We gplied a DOG operabr to the
area MBT  dekct motion chaiges[10]. Fig. 2 presets a D visualizaion of the
model receiving a image sequencehdt contans anapproachig object ad a
counterclockwise rdating object Both motion paterns are correctly detected and
localized.

3 Discussion and Conclusions

Due o the incorporation of functionally diverseneurons in the notion hierarcly, the
output of the preset model encompasses a wiel variety of selectiities at dfferent

resoltions. This enableshe computer sinulation d the model to detectand classfy

various notion paterns in atificial and natral image sequeces shwing oneor more
moving dojects. Most other modek of biological motion percetion foaus  a shgle
cortical area. Fpoinstarce, the mdels by Simoncelli and Heeger [11] and Beardley

and Vana [12] are biologically adequateapproabes hat explain some spedifi
functionality of MT and MST nreurors, resgctively, but do not include the
enmbeddhg hierarchy in the notion pahway. On he oherhard, there ae hierardical

models for the detection of motion (e.g, [13, 14]), but unlike the presehmodel they
do not provide a bblogically plausble replica of he notion procesang hierardy in

primates.

Another strength of our model is its mechansm of visual atention. To our
knowledge, he only other notion nodelenploying atention is the ane by Grosserg,
Mingolla, ard Viswanahan [15], which is a notion integraion and ssgmenttion
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model for motion capture. Their ideais that MST cells tuned to the winning direction
have an excitatory influence on MT cells tuned to the same direction and
nonspecifically inhibit al directionally tuned cells in MT. This kind of top-down
influence from MST to MT has not been proved to exist yet. The current knowledge
of effects of attention on single cell responsesin areaMT and MST suggests that cells
in these areas have stronger responses when attention is directed into their RFs
relative to when attention is directed outside the RF [16], which is compatible with
our model.

Fig. 2. Visualization of the attentional mechanism applied to an image sequence showing an
approaching object and a counterclockwise rotating object at the same time. First, the model
detects the approaching motion and attends to it (panel a); the localization of the approaching
object can be seen most clearly from below the motion hierarchy (bright area in panel b). Then,
input from the activated areais inhibited, and the model attends to the rotating motion (panels c
and d).

The model has been tested on a variety of artificial and real image sequences.
Simple motion patterns such as rotation, expansion, translation or combined motions
with two or three patterns can be correctly recognized, localized in the image
sequences and attended serially. Simple dynamic motions such as motion start,
motion stop and motion pattern changes have been correctly detected as well. We
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conclde that by conbining four stagesof motion processing with an atentional
mechansm, our aproad yields a bologicaly plausble model of visual motion
processig. No current motion processig system, wheter biologically inspired or
not, exhibits swch labeling and spatial-localization of motion patterrs in image
sequences

The campatibility of our model with currernt neurophysiological findings andits

incorporaion of the diverse ypes d neurons found in the motion pahways provide i
with predctive power for biological vision systens. Sene d its predctions abou
activation petterrs in V1, MT and MST are cuertly being testedin fMRI
experiments an human suwbjects. Fture wak will address tle perception of ego-
motion, including the use of the nodel for controlling autonomous robots.
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Abstract. This work summarizes the implementation and test of a vision guided
mobile system. A direct sensor-motor interaction scheme leads the mobile towards the
direction in which less optic flow is detected. The described system is inspired in the
visuo-motor system of some insects, it uses a low-cost CMOS camera, whose digital
output is captured and processed by a UP1x board of Altera. The designed digital
modules that form the processing kernel of the system have been defined in VHDL.
They implement real-time compression and change detection in both lateral sides of
the visual field, with thresholds that are adapted depending on the global luminance of
scene.

1 Introduction

The extraction and processing tasks of the visual information in real time need of
high computational power. Furthermore, on one hand the visual information
extraction usually requires such a computational complexity that makes difficult the
use of low cost systems, but on the other hand visual information represents a very
useful source for autonomous mobile systems. Clear examples of these systems are
the micro-robots, in which is easy to incorporate vision front-ends through low cost
micro cameras, but it is difficult to exploit this kind of sensorial information due to
the low processing capabilities of these micro systems and the processing complexity
required by the visual structure extraction task. For example, the visual systems of
some insects such as the Dropsophila or domestic fly, extract information of the optic
flow mostly driven by the ego-motion of the insect. It has been proved the existence
of a very direct interaction between the sensor elements (composed eye specially
sensitive movements in certain directions) and the motor elements that drive the
wings. Such a direct feed-forward interaction (by means of short neuronal connection
paths) provides these insects a high flying control efficiency despite their rudimentary
neuronal systems [1, 2].

The hardware implementation of processing schemes based on these biological
visual systems represent a valid option because simplified models [3] may be viable
despite the computational resource constraints of the current implementation
technologies. The current Field Programmable Logic Devices (FPLDs) are specially
indicated for these kind of implementations because of their high parallelism
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possibilities. This allows to allocate in the same chip the visual information extraction
modules and other sensorial sources modules (multi-modal perception schemes). All
this can work concurrently with the processing kernel that deal with these different
information sources and makes decisions to evolve the global system in its
environment.

A mobile platform (FrankeBot) [4] has been developed within the framework of a
docent innovation project supported by the University of Granada (Docent Quality
and Evaluation Department) that incorporates multiple sensors, digital and analog
communication elements using microcontrollers and FPLDs as computational
substrates. Although the system described in this work can be used in any mobile
platform based on FPLDs, it was originally conceived to be integrated in the
FrankeBot, in order to provide in real time measurements of the radial optic flow
detected in both sides of the visual field. This optic flow is produced by the relative
shift of the present features with respect to the mobile system depending on spatial
and temporal differences. The optic flow provided by these features shifts in the
visual field increases with higher spatial contrast patterns and when they are closer to
the mobile system.

In the next section, the structure of the reference model is briefly introduced. In
Section III is described the implementation of the model with diverse VHDL modules
that have been synthesised with the environment Max+PluslI of Altera [5]. Finally in
Section IV the final implementation is tested in a mobile platform.

2 Processing Module Structure

The flies have two composed eyes that are composed of multiple small eyes
(elementary sensors) whose outputs are cooperatively collected to generate an activity
pattern when a coherent movement is detected in a certain direction. A direct
implementation of this movement information extraction scheme (reduced to one
dimension and based on discrete analog optic sensors) is described in [2].
Furthermore, diverse VLSI approaches have been proposed that combine in the same
chip, the sensors and the required analog processing circuits to extract the optic flow
[3], that are called Focal-plane solutions.

In our case, the visual information is captured from a Back and White CMOS
camera with digital output. In a first step the visual field is divided in two areas (left
and right). Both areas will be processed separately producing different activity levels
that will drive the mobile system. Each of these two areas is composed of set of
elementary sensors, able to detect changes in the light intensity that reaches the
receptive fields. In Fig. 1 is represented the interaction between these elementary
sensors (only three in each side in this example), adding their contributions in order to
produce a final estimation of the optimum direction in which the movement should
evolve.
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Fig. 1. Basic processing scheme to evaluate the radial optic flow. Each sensor
element is a differentiator that contributes to the accumulated activity at each side of
the visual field when a temporal change in the light intensity is detected.

The temporal delay and the product elements that link the neighbour sensors
facilitate he contribution of those stimuli that move from the centre toward the sides
and with a certain velocity. This is the movement pattern that produces an
approaching object. Test results obtained from the software implementation of this
model and other simplified versions have motivated the incorporation of the delay
elements. The accumulated activity in one or other side of the visual field will be
higher when more lateral radial flow is detected in these areas. The global
accumulated activity will be calculated as the difference of these two levels (left and
right sides) as illustrated in Fig. 1. This global estimation can be directly used to drive
the mobile system.

In the fly the interaction between the sensors (composed eyes) and the actuators
(wing motors) is almost direct; the accumulated activity is used to control the
intensity that drives the wing motors. The relative movement of those efficiently
controls the fly movement direction, leading to a natural tendency to get away of
objects or to avoid any object with an approaching trajectory that would produce a
“repelling” global optic flow signal. This natural tendency that facilitates the
navigation avoiding objects is combined with an antagonist persecution and capture
tendency that helps the male fly to track and reach the female fly. For this purpose the
male fly eyes have a specific zone in the superior frontal eye called “love spot” [1, 2].

3 Hardware implementation of the model

As indicated in the previous section, the implementation here described uses a
CMOS camera (model M4088, [6]) that uses a chip of OmniVision (OV5017, [7]).
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This camera provides images of 384 columns and 288 rows (sampling the data in
rows in ascending order to cover the different columns).

We make two grouping processes in order to compress the image in origin and
reduce drastically the memory requirements. In a first step, we group all the pixels in
the same column (adding the data). This grouping process is much easier if the
scanning is done in a column order instead of a row order, and this motivates that the
final orientation of the camera is rotated 90° degrees. After this reallocation, the
camera provides images of 288 columns and 384 rows. In this way, the 384 data of
each column are easily added (during the scanning process), obtaining what we call
“macro-columns”. The first consequence of this groping is that we lose any sensibility
to movements in any vertical orientation, therefore we restrict our system to be able to
compute only horizontal optic flow. In a second step, we group some adjacent macro-
columns, computing the average, the resulting data are called “macro-pixels”. In this
way we gain robustness to noise although we loose resolution, we are not able to
detect slight horizontal movements that could take place in this macro-pixels. Fig. 2
illustrates how each image is compressed spatially. Grouping 8 macro-columns to
form a macro-pixel, we finally have 36 macro-pixels (numbered from O to 35) that
will be used as elementary sensors for our system. The activity produced by each of
this cells will be computed as the difference between absolute values calculated
through the grouping procedures and the values corresponding to the previous image
(temporal changes).

Macro-column
M
U

{/ Macro-pixels

Fig. 2. Grouping of macro-columns and macro-pixels of the image captured with a
rotated (90°) camera.

Now we distribute the elementary sensors to conform the left and right eye: the left
eye is composed by the sensors 2 to 15 and the right eye is composed by the sensors
20 to 33. The central zone of the image (macro-pixels 16 to 19) has been eliminated
as well as the lateral boundaries (macro-pixels 0,1 and 34,35).

For each frame is also obtained the average global activity that is related with the
scene illumination conditions. This value is used to choose the range of significant
bits in the accumulated activity, and provides the system with a certain robustness to
changes in the illumination conditions (this changes are much more frequent in
mobile systems than in static scenes).
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The VHDL design of the system has been structured in the modules that perform
the different tasks. The complete system, including the bits range selector, uses
approximately 30 % of the logic cells of a CPLD-SRAM Flex-10K70 of Altera, and a
12 % of the 18Kbits of its memory blocks (EAB). The most complex module is the
one that implements activity calculation stage, that uses 22 % of the logic cells of the
CPLD (about 15400 logic gates). This module is structured as a three stage segmented
processing pathway. This module compares the value of the captured macro-pixel
with the previous value, and the result is multiplied by the delayed activity of the
neighbour macro-pixel. This final magnitude is accumulated sequentially in both sides
of the visual field.

4 Test of the system

For the test of the system we have used a mobile platform based on the PICBOT-2
of Microsystems Engineering [8], with an added UP-1X board of Altera with a
CMOS camera. Figure 3. shows the complete system set up. An additional camera
and a micro RF broadcast video to enable the remote recording of sequences from the
point of view of the mobile system.

4
Fig. 3. Final system set up: CMOS camera, CPLD board and PICBOT-2 platform.

In Fig. 4.a can be seen the result of integration of the macro-pixels of the image
(the VGA synchronism signals generation module described in [9] has been used for
the visualization task). On the screen appears a dark band following the position of
the black cylinder waved in front of the camera (in this case on the right side of the
visual field). Finally, Fig. 4.b shows a photograph of one of the experiments of the
mobile platform moving through the black cylinder wood. The response speed of the
system is highly dependent of the number of processed frames per second. Further
work will focus on adapting this number depending on the optic flow intensity
detected in each instant.
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Fig. 4. (a) Macro-pixels capturing a moving cylinder. (b) Experimental set
up: Mobile robot in the cylinder wood.

Acknowledgement

This work has been carried out in the framework of the Docent Innovation Project
called Hardware/Software Environment for experiments based on micro-robots,
supported by the University of Granada. It has also received support from the EU
research projects CORTIVIS (QLK6-CT-2001-00279, http://cortivis.umh.es) and
ECOVISION (IST-2001-32114, http://www.pspc.dibe.unige.it/ecovision).

References

1. FlyBrain: An Online Atlas and Database of the Drosophila Nervous System.
http://flybrain.neurobio.arizona.edu/

http://student.biology.arizona.edu/honors96/group11/URLS.htm

2. N. Franceschini, J.M. Pichon and C. Blanes: From insect vision to robot vision,
Phil. Trans. Royal Society of London B 337, pp 283-294 (1992).

3. R.R. Harrison: An analog VLSI motion sensor based on the Fly Visual System,
Ph.D. Thesis. California Institute of Technology. (1992).
http://www klab.caltech.edu/~harrison/abstracts/thesis.html

4. R. Agfs, R. Carrillo, A. Cafias, B. del Pino, F.J. Pelayo: Entorno Hardware-

Software para experimentaciéon basado en un micro-robot. 11 Jornadas sobre
Computacién Reconfigurable y Aplicaciones, Granada, 18-20 Sept., 2002.

. Altera. http://www.altera.com/

. M4088 http://www.electronic-kits-and-projects.com/kit-files/cameras/d-m4088.pdf

. OmniVision http://www.ovt.com/

. Microsystems Engineering. http://www.microcontroladores.com/

. Hamblen et al.: Rapid Prototyping of Digital Systems. Kluwer Academic

Publishers. 2001.

O 00 3 O\ W



L ocal Models for Dynamic Processesin Image
Sequences

HagenSpies 2, TobiasDierig®2, andChristophS. Garbé

1 ComputeiVision Laboratory
Dept.of ElectricalEngineeringLinkdping University
58183 Linkdping,Sweden
hspi es@sy.liu.se
2 1CG-llI: Phytosphere
ResearctCenterdilich, 52425Jilich, Germary
h. spi es@z-j uelich. de
3 InterdisciplinaryCenterfor ScientificComputing,
University of Heidelbeg, INF 368,69120Heidelbeg, Germary,
{Tobi as. Di eri g, Chri st oph. Garbe}@ wr . uni - hei del berg. de

Abstract. We presenta computationaframevork that extendsclassicalimage
velocity estimationto include more generalparametersf dynamicbrightness
changesThe introducedmethodallows for an extraction of theseparameters,
ranging from modelsof linear illumination changesover diffusion and decay
constantgo expansionrates. We illustrate the benefitof suchan extensionon
arealimagesequencevith illumination changesWe alsointroducea new depth
estimationtechniquetermeddepthfrom diffusion andapply it to somereal ex-
amples.

1 Introduction

Classicaimagemotionanalysisrelies on the assumptiorthatall intensitychangesre
dueto motion. This implies that the total derivative of the intensity g with respecto
time vanisheswhich is the brightness change constraint equation [Horn and Schunk,
1981]:

dg

E:gxu+gyv+gt:0. Q)

Herewe denotepartialderivativesusingsubscriptsThis concepis illustratedin Fig. 1a
wherethe motion is alongisobrightnesscontours.Clearly this assumptionrdoesnot
hold in real world situationswherewe encounterchangesn imagebrightnesdueto
variationsin surfaceorientationor lighting conditions.An examplewheretheintensity
functionalsoundegoesadiffusionis shavnin Fig. 1b. Heretheisobrightnesfineswill

not correspondo the movementary more.Theresuling velocity field computedwith
andwithout incorporationof this addiional brightness changefor an exampleimage
sequencés shavn in Fig. 1c-f. Interestinglyhumanshave little difficulty in perceving
thecorrectmovementin this case.
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Fig. 1: lllustration of the brightnesschange equation:a with conservedorightnessb with in-
tensitychangingdueto diffusion.c firstand d last frameof a moving Gaussiarbell undegoing
diffusion. e optical flow assumingconservedorightnessand f estimatedvelocity using the ex-
tendedmodel.

To accountfor suchvariationsthe usedconseration law hasto be extended.To-
wardsthis end the use of multiplier and offset fields have beensuggestedNegah-
daripour 1998]. Below we give a more generalextensionthatreplaceq1) by alinear
partial differentialequation[HauRecler et al., 1999; Haul3eckr andFleet,2001]. The
novel contributionsof this paperarequantitatie resultsfor asequencevith motionand
illumination changesandtheintroductionof a new depthfrom X algorithm.

2 Modesfor Dynamic Processes

To describemoregeneraldynamicmodelswe alow for theintensityto vary alongthe
trajectorieswve areestimating We assumehatthis variationcanbe expressedn terms
of a mocel function f which may dependon the intensity time and a setof model
parameters. Thenthebrightnesschangeequatiorbecomes:

[g:z: gy]’v + 9t = f(gvtv a) . (2)

Herew is the geometricvelocity, for instancedescribedoy an affine motion(v = ¢ +
Az). The conceptis very generalin the sensethat the parameterof ary dynamic
procesghatcanbe modeledby a linear partial differentialequationcan be quantified.
Sincemog physical,chemical,andbiological processesanbe describedy equations
of thistype,it coversmary applications.
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3 Total Least Squares Estimation

As all the obsenationdatain (2) is suspecto noiseit is appropriateo useatotal least
squaregTLS) method[VanHuffel and Vandevalle, 1991]. Thismethodis in contrasto
ordinaryleastsquarestimaton wherethe noiseis assunedto be confinedto thetem-
poraldomain.It hasrecentlybeenpointedout thatsucha TLS modelcansuccessfully
describesomeobsenatiors madefor themammaliarvisual systemLangley, 2002]

To enablea total leastsquaressolutionwe note that(2) canbewritten asthe scalar
productof a known datavectord with anunknavn parametevectorp: d” p = 0. This
equatiorposesonly onecorstraintin theunknovn parameterghusfurtherassumptions
areneededn orderto solve for theparameteffield. A commonsmoothnesgequirement
assumesonstanparameterg asmalllocalneighborhooaf N pixel. A weightedtotal
leastsquare®stimatds thengivenby the eigervectore,, to thesmallestigervalue ),
of thesocalledstructureensorfHauRRecler etal., 1999]:

J=Bx(dd"), (3)

whereB is anintegrationkerneland+ denotesconvolution. A goodchoicefor B is a
binomialfilter asit is bothsymmetricandleadsto a decreasingnfluencewith distance
from the consideregixel.

Theabove estimationis only optimalif theentriesin the datavectord areuncorre-
latedzeromean randomvariableswith the samenoisevariance[M Uhlich andMeger,
1998;VanHuffel andVandavalle, 1991].Dependingonthe modelusedthis maynotbe
casehere.To accommodatéor thiswe simply scalethedatavectoraccordinglyimply-
ing diagonalcovariancematrices.More elaborde schemesrediscussedn [Muhlich
andMester,1999;VVanHuffel andVandevalle, 1991].

4 Experiments

In this sectionwe demonstrat¢he applicationof the describedechniqueto realimage
sequencesontainingillumination changesand diffusion causedby a small field of
depth.

4.1 Brightness Changes

In Fig. 2a,btwo framesof a sequenceontaininga translating planewith a random
dottextureareshowvn. In addition to the movementtheillumination changesmoothly
during the sequenceThe sceneis illuminated via a fiber optic bundle which moves
towardsthesceneandcauses gradualincreasen intensity Suchillumination changes
areeasilymodeledin (2) by a linear sourceterm f(g,t,a) = —¢ anda translational
velocity v = [u v]T:

Gout+gutg=—q — d=[g.9,10]": p=vel]". (4



62 Spies, H. et al.

Fig.2: Sequencevith illumination changes: a frame1l, b frame20 and ¢ correct displacement
field. d \elocity estimatedisingstandad optical flow constaint equation,e displacementvhen
a linear source term is modeledand f estimatedbrightnesschangesin the range of [0, 2.5]
greyvalues/fame

In this casethereevenis a constan{errorfree)termin the datavector Herewe simply
usean errorvariancefor this termthatis two ordersof magnitudesmallerthanthatin
the othertermsin the scalingprocedureln practicethis simplified approachusually
gives good results.However, it is possibleto take this error structure explicitly into
accounto achieve evenbeter results[Garbeetal., 2002].

The sceneconsistsof a planewhich is moved usinga linear positioner. In our lab-
oratorysetupgeometriccalibrationinformationfor the observingcarerais available.
Thuswe cancomputethe groundtruth velocity field asshowvn in Fig. 2¢. The veloc-
ity computedassumingconsered brightnesss givenin Fig. 2d andthatusingalinear
sourcetermin Fig. 2e.In the later casewe alsoobtainan estimate of theillumination
changewhichis givenin Fig. 2f.

Comparinghevelocityfields(Fig. 2c,d,e)we canclearlyseeanimprovementwhen
theextendedmodelis used However becauseve do have available groundtruthwe can
even put numbergo this improvement.The following table containsthe relative error
in the magnitudeof the velocity, the directionalerrorandthe angularerror often used
in opticalflow evaluationgBarronetal., 1994].

method density[%] rel. error[%] dir. error[°] ang.error[°]
standard 92.6 79+6.3 3.3+27 25+14
extended 94.7 13+12 0.5+ 0.5 0.4+0.3

Obviously thereis a dramaticincreasein accurag whenthe illumination changeis
modeled.
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4.2 Depth from Diffusion

An interestingapplicationof the presentedechniqueallows an extensionof the depth
from focusprocedureln its standardorm a seriesof imageswith limited depthof field
is acquiredand at eachpixel the depthis determinedby the frame whereit appears
in focus. This techniquedoesrequiretelecentriclensesasthe world point viewed by
eachpixel changesotherwise.lt is commonto modelthe blurring causedby out of
focusimagingwith a Gaussiarpoint spreadfunction. Hencethe assumedinderlying
processs diffusion.If wethusmodelthechangesn theintensityasatranslatiorplusa
diffusionwe cancaptureboththe motiondueto thenontelecentridens andtheamount
of blur. Suchamodelcanbeformulatedas:

gaU+ gy + gt = —DAg  — d:[gxgyAggt]T; p:[ule]T, (5)

whereD is thediffusionconstantlt canbe shovn thatthis diffusionconstants directly
proportionalto the distanceof the obsered point to the planein focus [Dierig, 2002].
HenceD is adirectmeasuref depth.

In Fig. 3 two real examplesare given. The displacementfield is diverging as ex-
pectedandthe estimatediepthappeargso be qualitatively correct.A quantitatve anal-
ysis of the recorereddepthon real datahasyet to be done.For a realistic setyp and
typical imagenoisewe obtaina relative errorin the depthbelov 5% on syntheticdata
[Dierig, 2002]. This shaws thatthe presentedjeneralparameteestimationframevork
canbeusedsuccessfullo computedepthfrom focus sequencesisingstandaraff the
shelflenses thusavoiding expensve telecentricsetupsandallowing for a muchwider
field of view.

5 Conclusion

We have presenteda generalframevork to estimatethe parameterof dynamic pro-
cessed imagesequencewheretheassumptin of conseredbrightnessloesnothold.
This haspotentially a very wide application.Here we quantitatvely investigatedthe
increasein accurag of the computeddispla@mentfield on one sequenceavherethe
illumination changesFurthermorave introduceda novel algorithmtermeddepth from
diffusion to computedepthfrom focusseriestaken with nontelecentriccamerasThis
is achieved by modelingblur asa diffusionprocess.
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Drawing an lllusion across Primary Visual Cortex:
Line-Motion revealed by Voltage-Sensitive Dye Imaging
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Abstract. Visual il lusions reved fundamental processing mechanisms of which
we ae unaware during ou daily perceptual experiences. The “line-motion”
illusion* consists of a flashed dot followed by a flanking bar with some time
delay. Instead of sensing the bar at once subjeds report an illusory line
drawing, away from the dat (see Fig. 1). Using voltage-sensitive dye optica
imaging, we visualized line-motion in red-time on the surfaceof ca areal8.

TIME

>

Fig. 1. The Line-Mation Illusion. a) A square of light (“pre-cue”) is presented just before abar
stimulus. b) Instead of sensing the bar at once, subjeds report an illusory line drawing starting
from the pre-cued location.



68 Jancke, D. et al.

Wertheimer (1921)° and Kenkel (1913)* made the surprising observation that even
stationary stimuli can give the impresson of motion, the “gamma movement”. An
appearing local stimulus is perceived as expanding or otherwise as contracting when
it disappeas from a homogenous background. This effect can be polarized and
strengthened if aloca cueis presented adjacent to an elongated bar stimulus. In such
acase, illusory motion is seen away from the cue’.

The line-motion illusion was attributed to an attentional gradient that facilitates
processng in the surround of the pre-cueing dot. Although many alternative
explanations exist, most psychophysicists encircled the origin o the line-motion
illusion in ealy processng stages likely after binocular fusion. Yet, in need of a
neurophysiologica method that offers both high temporal and high spatial resolution,
it remained unclea which neural mechanisms could acount for building-up motion
within abar.

In order to visualize cortical line-motion we used optical imaging of voltage-
sengitive dyes in area 18 of the anaesthetized and paralyzed cat®” This technique
measures changes in synaptic potentials of neural populations, thus monitoring
evoked adivity in real-time acrossa certain corticd region that entirely representsthe
stimuli shown’.

The spatio-temporal characteristics of activity evoked by a flashed square done
can be described in two steps. 1) Stimulus appeaance e/okes “subthreshold”
propagating adivity that gradually slows down as the response amplitude increases.
2.) Only at high levels adivity stays local, i.e. motionless The decderation of
propagating activity could be the result of a filter process that transmits adivity
through horizontal axons onto the wide arborisation of neural dendrites. How does a
flashed square then aff ed the response to a subsequently presented bar?

In the line-motion condition, the "subthreshold” propagating adivity is rapidly
enhanced (15 ms after the bar onset) by the following bar and thus, expressed above
threshold at a speed guided by the spatio-temporal properties in response to the
flashed square done. This leals to a very significant wave front that moves at a
constant speed, away from the pre-cued location. As a result, the cortica surfaceis
representing the progressve line drawing illusion.

Our results are in line with studies that referred to the phenomenon as motion
induction by pre-attentive fadlitation or as an apparent-motion processwith no need
of attention per se. However, high-level processes might modul ate speed and shape of
propagating activity. There ae evidences for attention-related components, operating
on a slower time scde on the perception of the line-motion illusion. It has also been
shown that line-motion can be induced voluntary. Thus, in the behaving subject,
additional mechanisms are interacting along the visual pathway. We suggest that the
cortical representation of the line-motion illusion uncovers an “automatic” processin
primary visual cortex that may serve to compute motion at higher processng stages
and guide bottom-up attention.

Bringing together psychophysics and neurophysiology using awake aiimals in
future studies may reveal influences of top-down attention and stimulus attributes on
the representation of speed in primary visual cortex.
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Abstract. To survive in a complex and ever changing environment, an
organism has to cope with sensory stimuli often varying on a short time
scale. Signal processing in the nervous system should, therefore, be dy-
namical and fast: often it is not feasible to wait until the neural activation
pattern of the brain settles into a steady state before an appropriate re-
action is initiated. Here, we study visual processing at the brink of its
temporal and spatial resolution by using the recently discovered shine-
through effect. We show how transient perception can arise by neural
dynamics described by a Wilson-Cowan type neural network. Moreover,
our results impose restrictions on the time and length scales involved in
visual cortical processing, and allow to predict under which conditions a
masked stimulus reaches visibility.

1 Introduction

One of the fundamental questions in visual processing is how a complex, time-
varying stimulus is segmented and interpreted by the neural hardware to form
a coherent percept. A particularly useful strategy to tackle this question is to
study the limitations of this process — because those limits effectively restrict
the search for possible mechanisms behind the information processing going on
in the brain.

Here, we present a new psychophysical effect, shine-through, that allows to
investigate the dynamics of transient perception in great temporal and spatial
detail. In contrast to many other pyschophysical studies, the stimuli as well as
the percepts are non-static, and therefore yield valuable conclusions about the
time-course of visual signal processing. These dynamical phenomena and their
underlying mechanisms are studied in a neural network model, where we focus
explicitly on the transients, and not on the fixed points or limit cycles that are
normally investigated.

2 Shine-through

In the shine-through effect a target element, for example a vernier (two abut-
ting lines with displacement d), precedes a homogeneous and extended grating
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Fig.1. A vernier presented for 20 ms precedes a grating of various spatial layout
presented for 300 ms. (a) Only for a homogeneous grating shine-through occurs: the
vernier appears as a transient, short flash superimposed on the grating looking wider,
brighter, and even longer than the vernier really is. For (b) and (c), the vernier element
is rendered invisible by the masking gratings — no shine-through occurs.

(Fig. 1(a)) displayed for 300 ms [1, 2]. In spite of the masking grating, for trained
observers the vernier is clearly visible even if display times are as short as 20 ms,
i.e. in the range of a few neural spikes. Visibility is assessed as the threshold
displacement d of the vernier necessary to yield 75% correct discrimination per-
formance.

Shine-through diminishes dramatically if the grating comprises less than
seven elements (Fig. 1(b)). Shine-through ceases also for spatially inhomogeneous
gratings. For example, a grating containing gaps renders the vernier completely
invisible (Fig. 1(c)). From a figure-ground-segmentation point of view, the grat-
ing is parsed into three independent entities. Performance deteriorates since the
central part is a small grating not allowing shine-through (see Fig. 1(b)).

In all three conditions the target vernier either appears as a transient entity
or is rendered invisible by changes of the spatio-temporal layout of the masking
grating. Hence, the underlying mechanisms point to a system in which neurons
compete with each other. Although the psychophysical results suggest that high
level Gestalt factors cause the changes in perception and performance, we show
in the following that a simple model can account for the empirical findings —
without including any explicit high order Gestalt processing.

3 Model

Our model employs the horizontal axis z of the visual field only and neglects
the vertical spatial direction and the orientation tuning of cortical visual cells to
simplify analysis. The network (Fig. 2) consists of a one-dimensional layer with
one excitatory and one inhibitory neuronal population, mutually connected with
coupling kernels Wy, ;3, with typical length scales o, ;},

Wieiy(x —2') = _r exp (—M) ) (1)

\ /2710%6’1,} 20%@}
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Fig. 2. Structure of model employed in the simulations. A spatio-temporal stimulus
S(z,t) is filtered by a difference of Gaussians and projected onto two populations in a
one-dimensional neuronal layer. The two populations, an excitatory and an inhibitory
one, are mutually coupled with synaptic weight functions described by the Gaussian
kernels W, and W;, respectively. The inset shows the neuronal gain functions mapping
the synaptic inputs Jy. ;3 to the firing rates hyc ;).

The dynamics of the system are given by a set of Wilson-Cowan type equa-
tions [3] (for an overview see [4]) for the excitatory activities A, and inhibitory
activites A; of the populations,

Te% = _Ae($7t) + he {wee (Ae *We) (I’t)+
Fwie (As W) (2, 8) + I(a, 1)} @
n% = —Ai(z, 1) + hi {wei (Ae x We) (2, 1)+

with wWee, Wei, Wie, wi; denoting coupling strengths, 7. ;3 denoting time con-
stants, I(x,t) denoting the efferent input, and h. ;3 describing the gain functions
(see Fig. 2 inset). The stars in Egs. (2)-(3) denote convolutions of the population
actitivies with the coupling functions as e.g. for

Wee (Ae * We) (2,6) = Wee / A&, t)We(z — 2')da’ . (4)
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The convolution of the efferent coupling kernel V,

1 (x—ac')2> 1 < (x—ac’)z)
exp | — - exp | ————=—1], (6
V2702, P ( 20% \/2mo? P 202 (5)

with the spatio-temporal pattern S(z,t) modeling the stimulus sequences used
in the experiment (see Fig. 1), yields the efferent input I converging onto both
populations, I(x,t) = (S+ V) (z,t). For the mutual couplings defined in Eq. (1),
the range of inhibition is chosen to be larger than the range of excitation; also,
we assumed that recurrent input dominates over efferent input [5, 6].

The psychophysical detection threshold d was related to the activity profiles
coming out of the model via the time interval T the excitatory activity A.(0,t)
in the center population remained above an observation threshold h;. While the
exact relationship between these two measures is analyzed elsewhere [7], let us
note here that with a longer duration 7', the more information about the vernier’s
displacement can be gathered, and a smaller detection threshold d can therefore
be expected.

Viz—1') =

4 Results

In the shine-through effect, the vernier appears as a bright flash superimposed on
the grating. Therefore, the processing of the vernier signal is expected to occur
as a transient in the neural dynamics and not as a steady state. Numerical
results for the stimulus conditions (a)-(c) of Fig. 1 are shown in Figs. 3(a)-
(c). The color-coded activities of the excitatory populations show peaks at the
position of the vernier and at the edges of the gratings, whereas almost no activity
emerges for the inner grating elements. The time course of the activity of the
central neural population in Figs. 3(a)-(c) is shown in Fig. 3(d). The central
peak in the condition with the small grating (Figs. 1(b),3(b)) decays faster as
compared to the condition with the extended grating (Figs. 1(a),3(a)). This
behavior is explained by the strong inhibition radiating from the active neurons
representing the nearby edges of the grating comprised of only 5 elements (see
arrow in Fig. 3(b)). However, if the extended grating comprises 25 elements, the
edges are too remote to exert a substantial inhibitory influence on the center
(Fig. 3(a)). Thus, the activity elicited by the vernier is sustained by feedback
excitation, and decays much more slowly than in condition (c). Inserting gaps in
the grating of 25 elements (see Fig. 1(c)) introduces inhomogeneities leading to
an enhanced activation at these gaps whose inhibitory surrounds suppress the
vernier activity as fast as in the 5 element condition (see arrow in Fig. 3(c)).
Perceptually, the fast suppression of the vernier activity by the small central
grating shown in Figs. 1(b) and (c) leads to a complete masking of the vernier
element. On the other hand, conditions which allow a longer persistence of the
vernier activity like the one in Fig. 1(a) result in a conscious perception of
the vernier and its displacement. Thus, the occurrence of shine-through can be
explained with the transient dynamics of a Wilson-and-Cowan type model.
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Fig. 3. Spatio-temporal activation patterns emerging from the Wilson-Cowan model
for the three different masking conditions in Fig.1. The activation levels of the excita-
tory population are color-coded (dark for high activation). The ordinates correspond
to the location of the neuronal population z, and time ¢ in milliseconds is shown on the
abscissa. (a) Vernier activity persists since peaks of neural activity appear only at the
distant edges of the 25-element grating, exerting no inhibition on the activity corre-
sponding to the vernier. In (b) and (c), the activities corresponding to the edges of the
5-element grating rapidly suppress vernier activity. The time course of the activation
of the center population is shown in (d), where the solid and dotted curves correspond
to the conditions modelled in (b) and (c), respectively, while the dashed curve shows
the slower decay from the condition modelled in (a). The thin line in (d) shows the
observation threshold h: choosen to be h: = 0.008.

5 Summary and Discussion

Our results demonstrate that a structurally simple model based on only two
partial differential equations is sufficient to explain psychophysical phenomena
of the visibility of masked stimuli. Transient activation of a neuronal population
instead of fixed points of its dynamics determines the visibility of the target
element. Moreover, global, Gestalt-like perceptual conditions can be explained
through simple interactions in topologically arranged neural layers.

The mechanisms behind the observed model dynamics can be summarized in
terms of the most important model parameters: The convolution of the stimulus
with the Mexican-hat efferent coupling kernel having the length scales og 1,
yields enhanced input at the edges of a regularly spaced grating, while input
from the inner elements is suppressed. The activity subsequently emerging at
the aforesaid edges then suppresses any activity in a distance of o; = 3 dpar,
being the length scale of the recurrent inhibition. This ”edge detection” on a
length scale dpq, [8], and the ”competition” between activity on a length scale
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of 3 dpar, leads to the differences between the shine-through (Fig. 3(a)), and the
other two stimulus conditions (Figs. 3(b) and (c)). These differences are most
pronounced when the ratio of the excitatory and inhibitory time constants, 7./,
gets large.

When interpreting the experiments and simulations in terms of a figure-
ground segmentation process, one may draw the following conclusions from the
observed dynamics. First, segmentation enhances inhomogeneities in a stimulus
being presented — in our case, the inhomogeneities correspond to the edges of the
masking gratings. Second, segmentation is a time-consuming process: the vernier
activity has to be high enough, and has to persist for a sufficiently long time, in
order to be perceived correctly. This condition is fulfilled only in Fig. 1(a), while
in Figs. 1(b) and (c), the segmentation of the masking grating rapidly disrupts
the segmentation of the vernier. Third, in contrast to the previous conclusion,
the onset of segmentation is very fast — even slight temporal and spatial changes
to the shine-through condition Fig. 1(a) render the vernier invisible (data not
shown, [7]). And finally, two on-going segmentation processes do not interfere
when the features of the stimuli are well separated either in time or in space
(see Figs. 1(a) and 3(a)).

Supported by the Sonderforschungsbereich 517 “Neurocognition” (M.H.H.,
C.W.E., and U.A.E.) and the Volkswagen Stiftung, Project 5425 (U.A.E.).
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Abstract. When observers are asked to localize the peripheral position of a
probe with respect to the mid-position of a spatially extended comparison
stimulus, they tend to judge the probe as being more peripheral than the mid-
position of the comparison stimulus. We investigated the relationship between
this perceived mislocalization and saccadic undershoots. The findings show
that the mislocalization corresponds to the saccadic behavior. Moreover, dif-
ferences in saccadic undershoots to the stimuli can be used to estimate quan-
titatively the amount of relative mislocalization.

1 Introduction: A Relative Mislocalization

Visual localization acuity measured with long-presented stationary stimuli is of high
precision. However, several studies indicated that spatial acuity is considerably poorer
under less optimal viewing conditions. We studied the ability to localize a flashed
stimulus and its relationship to saccadic eye movements with a relative judgment task
(cf. Fig. 1). When observers judge the peripheral position of a probe with respect to
the mid-position of a spatially extended comparison stimulus, the probe is seen more
peripheral than the mid-position of the comparison stimulus [4]. We suggested and
found evidence that this relative mislocalization emerges from different absolute
mislocalizations. When observers point to the position of the spatially extended com-
parison stimulus they tend to localize it more foveally than the spatially less extended
probe (see also [7]).

Comparable foveal tendencies in absolute localizations are known from eye-
movement behavior. Eyes tend to undershoot a peripherally presented target, before
they reach it with a corrective saccade [1]. Additionally, this undershoot seems to be
more pronounced with a spatially extended stimulus [2]. If these results based on a
spatial map, which is used by both the perceptual judgment task and the saccade task,
the probe's relative position should be perceived more peripheral when compared with
the mid-position of the comparison stimulus.

However, the mislocalization is only observed when stimuli are flashed succes-
sively (i.e., typically with a stimulus onset asynchrony of about 120 ms). In this case
two configurations with different spatial information have to be superimposed and the
relative mislocalization between stimuli can emerge. In contrast, when stimuli are
flashed simultaneously, they can be processed in one spatial map. Accordingly, the

! This research was funded by the German Science Foundation (AS 79/3).
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localization judgment of the probe relative to the comparison stimulus was found to
be more or less precise with simultaneous presentation [4].

comparison 5 o
stimulus < . — fixation
E RN / cross
1.4°I i 1 +
" | 3.5° :
probe | 6.5° |
-,
EENEN
- +
n

Fig. 1. Stimulus presentation (upper panel) and stimulus perception (lower panel).
The perceived mislocalization of the probe relative to the mid-position of the com-
parison stimulus (lower panel) is assumed to emerge from different absolute locali-
zations (as indicated by the arrows) of the stimuli with respect to the fixation cross.

To conclude our preliminary interpretation of the mislocalization is based on the
assumption that saccadic tendencies contribute to the position codes of a spatial map.
This map is used to determine the perceived localizations [4, 8]. In contrast, other
accounts suggest that eye movements are specified in a direct manner independent of
the perceived representation [3]. Several phenomena demonstrate dissociations
between perception and action indicating different neural pathways for goal-directed
behavior and for the perception of objects. Accordingly, the dorsal pathway is
assumed to be involved in the execution of saccades (especially in the medially
parieto-occipital sulcus, V5), while the ventral pathway is assumed to be involved in
visual illusions. If this is correct, saccadic behavior need not match with the
mislocalization observed in the relative judgment task. In order to clarify this issue,
we examined whether and how saccadic undershoots are related to the relative
judgments (for details see [6]).

2 New Findings and Conclusions

In Experiment 1, saccades to the comparison stimulus or the probe were compared
with the perceptual judgments. In the saccade task, subjects were instructed to execute
a saccade to a target (the probe or the mid-position of the comparison stimulus) as fast
as possible. In the judgment task the position of the probe was varied with respect to
the mid-position of the comparison stimulus and subjects were asked which stimulus
was more peripheral — the upper one or the lower one?

If the saccadic behavior and perceptual judgment correspond, saccades to the
comparison stimulus should show a stronger undershoot than to the probe. Indeed,
results show that observers produce smaller saccadic amplitudes to the comparison
stimulus than to the probe. This effect in saccades was observed when stimuli were



Saccadic undershoots and the relative localization of stimuli 79

presented separately, that is, only the probe or the comparison stimulus appeared on
the screen.

The subsequent experiments were run in order to check whether the eccentricity
of stimuli presentation exert an influence on both the judgments and the saccades. As
in previous experiments [4], the perceived relative mislocalization increased with
eccentricity. In contrast, the saccadic undershoot did not show a corresponding effect,
when both stimuli were presented separately (Experiment 2). However, they corre-
sponded to the perceived relative mislocalizations when both stimuli appeared on the
screen (as in the relative judgment task). In this case, subjects’ task was to generate a
saccade to the probe or the mid-position of the comparison stimulus and to ignore the
other stimulus (Experiment 3). The finding that only in this case saccadic behavior
and perceptual judgment correspond demonstrate the importance of targets’ context
on the saccadic behavior.

In sum, the pattern of results indicates that — if comparable temporal and spatial
configurations are used — the saccadic behavior corresponds qualitatively with the
perceived relative mislocalization. In an additional analysis the relationship between
both measures was analyzed quantitatively. In a first step of this analysis, the outer
edge of the stimuli and further stimulus parameters of the present experiments proved
to be important variables to determine the saccadic landing positions (for details see
[5]). In a second step, these landing positions were used to estimate the relative mis-
localization by computing the difference between the landing positions to the probe
and the comparison stimulus.

Observed and estimated relative mislocalizations of the present experiments and
of a previous study [4] are plotted in Figure 2. On the one hand, the plot shows a high
positive correlation. Thus, it is possible to estimate the perceived relative mislocali-
zation by the variables determining the saccadic behavior. On the other hand, the
slope and the intercept of the regression line does not equal 1 and 0, respectively.
Accordingly, one could still claim a dissociation between saccadic behavior and per-
ceptual judgment.
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Fig. 2. Observed and estimated relative mislocalization.
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Nevertheless, our findings demonstrate an obvious association between both
measures. An interesting problem to think about is why eye movements undershoot
the target at all and — more critically — why the system does not adapt to this error.
One might speculate that the undershoot is an inherent property of any motor system,
probably because it is easier to correct a movement in its direction than in the oppo-
site direction. Another argument would be that with an undershoot the retinal image
of the target remains in the same cortical hemifield and the system need not switch to
the other hemifield. A last, but not least possibility comes from considering more
ecological conditions. Usually, targets do not enter the visual field instantaneously but
appear in the visual field and move into it. It could be a saccadic undershoot
anticipates this movement.

Our interpretation is in accordance with the assumption that the saccadic be-
havior together with sensory information establishes perceived space. In other words,
we assume that the system in charge of the guidance of eye movements is also the
system that provides the metric of perceived visual space [8]. The position code for
the localization judgment and for saccades shows comparable tendencies, indicating a
common mechanism for both purposes. However, the differences in estimated landing
positions of the eyes were less pronounced than the relative observed mislocalizations
indicating a late modulation of the perceptual judgment.
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Abstract. Cortical organization of vision appears to be divided into
two pathways: the ventral pathway and the dorsal pathway. Models of
vision have generally adopted this separation into a functional division
such that recognition is supposed to be located in the ventral pathway
and spatial attributes are processed in the dorsal pathway. I suggest
a less distinct separation. According to my model the ventral pathway
contributes to the selection of the location of an object by feedback con-
nections. Those projections localize the object of interest by transferring
information about its features in IT to cells with smaller receptive fields
in V4 and earlier. I demonstrate the performance of the model in a visual
search task which demands an eye movement towards a target.

1 Introduction

Visual perception is proposed to rely on a pathway for object vision, the ”what”
pathway and one for spatial vision, the ”where” pathway [1]. A refinement of
this concept emphasized the relevance of the ”where” pathway for action control
[2]. Almost all computational models of visual perception and attention follow
this separation between ”where” and ”"what”. The general idea is, that the dor-
sal pathway first selects the location of an object and then the ventral pathway
recognizes it by analyzing only a spatially defined part of the scene [3]. This
decoupling of recognition and selection has the advantage of a facilitated recog-
nition as compared to a fully parallel approach, since it is not practicable to
apply several object models at the same time at several locations [4]. However,
such a model of perception has its limitation if we search for a specific object.
How could the ”"where” pathway know what is relevant?

The relevance of an object seems to be reflected by the activity of IT cells [5] [6].
Although the initial activation of IT neurons is largely stimulus driven and cells
encoding target and non-target become activated, different populations compete
for representation and typically the cells encoding the non-target are suppressed.
Such competition is assumed to be biased by top-down feedback from working
memory [5] [6]. A computational approach by Usher and Niebur [7] shows that
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a parallel competition based on lateral interactions is sufficient to qualitatively
replicate some of those findings, but they argue that the parallel stage is useless
in case of a search for a conjunction and the decision has to be based on a serial
scan of all objects.

It was suggested that the frontal eye field (FEF) could implement a saliency
map by the convergence of information from different brain areas [8]. This raises
the question how the FEF knows what is task relevant and where the object of
interest is located. The FEF has connections to occipital, temporal and parietal
areas, the thalamus, superior colliculus and prefrontal cortex [9]. The projections
from V2 and V3 are weak, from V4 intermediate and heavy from TEO. Anterior
IT cortex does not project directly to FEF. Information about the target features
could be received from prefrontal areas and compared with features of interme-
diate complexity from V4 and TEO. This would require that the FEF or related
areas perform a match detection in topological and topographic space. Alterna-
tively, Desimone and Duncan [10] speculate ”at some point in time, mechanisms
for spatial selection may also be engaged to facilitate localization of the target
for the eye movements”. Some authors proposed feature specific top-down influ-
ences [11] [12] that could guide attention before the eye movement is planned.
However, their implementation and exact function remained mysterious. Others
suggested a top-down directed beam within the ventral pathway [13]. Only re-
cently the influence of top-down feedback is beginning to be investigated more
closely [14] [15] [16] [17] [18] [19]. In this paper I suggest that the visual areas
process incoming stimuli first in a parallel bottom-up manner without a signifi-
cant bottleneck and then acquire a more detailed knowledge about an object of
interest by feedback. I show that such feedback within the ventral pathway can
account for goal directed covert and overt search. Even for conjunction search a
serial scan is not imperative.

2 Model

I model aspects of the areas V4, IT, FEF and PF and refer to the model by the
prefix M (Fig. 1). M-IT, M-V4 and M-PF are subdivided into different dimen-
sions (e.g., color and shape). My model consists of ascending populations, called
(s) stimulus cells that can be primed by feedback connections and descending
populations (t) target cells that project the dominant patterns back into the
source areas.

The model prefrontal cortex serves for two major functions, memorizing a pat-
tern in M-PFwm (working memory) cells and indicating a match of the incoming
pattern with the memorized pattern in M-PF match cells. Thus, M-IT cells can
only drive M-PFm cells when their pattern matches the prior knowledge from
M-PFwm cells.

The neurons in the FEF can be categorized based on their responses to visual
stimuli or to saccade execution into visual, visuomovement, fixation and move-
ment cells [20]. I consider (v) visuomovement, (f) fixation and (m) movement
cells in my model (Fig. 1). The M-FEFv neurons receive convergent afferents
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from features in M-V4 at the same retinotopic location and add-up across all
dimensions. M-FEFf cells generally inhibit M-FEFm cells. A threshold detection
of the M-PF match cells is applied to determine if the target is in the search
array. In this case the input into the M-FEFT cell is removed and thus the map-
ping from sensory to motor is facilitated. M-FEFv cells activate M-FEFm cells
by surround inhibition. Since there is evidence that saccades are elicited when
movement related activity in the FEF reaches a particular level [21], T assume a
fixed threshold in M-FEFm cells to initiate a saccade. A spatially organized gain
control input of M-V4 and M-IT stimulus cells originates from from M-FEFm
cells.

M-PFwm cells modulate visual processing via feedback into M-ITs according to
the current goal of the task. The resulting local increase of firing in M-ITs cells is
directed further downwards by feedback form M-ITt cells to M-V4s cells. Thus,
increased local activity in M-V4 enhances the visually responsive neurons in the
frontal eye field, such that these cells reflect the task-relevance of a location.
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Fig. 1. (A) Sketch of the simulated areas. Each box represents a population of cells. The
activation of those populations is a temporal dynamical process. Bottom-up (driving)
connections are indicated by a bright arrow and top-down (modulating) connections
are shown as a dark arrow. (B) Outline of the minimal set of interacting brain areas.
Our model areas are restricted to elementary but typical processes and do not replicate
all aspects of these areas.

3 Results

In order to demonstrate the possible role of feedback in the ventral pathway I
simulated a memory guided search task [6] (Fig. 2A). If the same cued object
reappears in the search array, the condition is called 'Target Present’. In the
"Target Absent’ condition the cue stimulus is different from the stimuli in the
choice array. Now a saccade has to be withheld.

The target was presented to the model and its features have been memorized in
M-PFwm cells. Prior to the onset of the search array the active M-PFwm cells
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increase the baseline activity of the M-IT cells selective for the target (Fig. 2B).
When the search array appears, inputs are processed bottom-up without any
strong bottleneck. Each cell initially encodes the presence of its preferred stim-
ulus, but the target cell shows an early advantage due to top-down modulation
from M-PFwm cells. Between 150 and 300 ms the cells encoding the non-target
get suppressed although the input is still present, whereas the cells encoding the
target remain active. A crucial condition is the target absent condition. Both
non-targets decrease their activity, but less than in the distractor suppression
case. A simple winner-take-all competition would not replicate the experimental
data because due to noise in the system, a non-target would be selected in the
target absent condition. My simulation results even match the temporal course
of activity of IT cells in the different conditions of the experiment from Chelazzi
et al. [6]. This constraint allows me to give reliable predictions of the processing
in other areas.

The model predicts that the early advantage of IT cells encoding the target is
sent to V4 cells, which have smaller RFs and creates an early target effect in
V4 (see also [15]). Recent cell recordings confirmed this prediction: During the
early phase until 150 ms after array onset, V4 cells show a slight target effect,
which is stronger when two stimuli are located within a V4 receptive field [6].
Since FEFv neurons receive their main input from M-V4 an enhancement within
the topographic/topological(feature) space is transferred into topographic space,
such that a target selection is possible. This result explains how the visual cells of
the FEF might discriminate over time the target from the distractor in conjunc-
tion visual search. The advantage in different dimensions adds up. The location
of the target receives enhanced input from both dimensions. Locations encoding
distractors sharing a single feature with the target receive enhanced input just
from one dimension. The temporal course of activity of the FEFv and FEFm
cells is similar to what has been found in experiments [8] [24]. FEFm cells quickly
discriminate the target from the non-target.

The fronal eye field and areas within the dorsal pathway form a fronto-parietal
network. These areas can use such a discrimination for overt and covert search.
In overt search an eye movement is executed when the activity of the FEF
movement cell reaches a threshold. Covert search is possible if activity, e.g. from
the movement cells, reenters extrastriate visual cortex and enhances the input
gain in V4 and IT in a spatially organized manner.

4 Discussion

This study demonstrates how findings in single cell recordings can be used to
constrain models of perception. Each modeled area exhibits a temporal course of
activity that has been observed by similar physiological experiments performed
by various investigators. What are the major findings and predictions of this
study for modeling object recognition and attention? First of all, the ventral
pathway encodes an object of interest as well as its location. The model predicts
that one role of feedback is to enhance the gain of cells encoding features of the
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Fig. 2. (A) Simulation of the experiment of Chelazzi et al. [6]. The objects are repre-
sented by a noisy population input, here illustrated by a snapshot. RF’s without an
object just have noise as input. Each object is encoded within a separate RF, illus-
trated by the dashed circle, of M-V4 cells in two simulated dimensions (only one is
shown). All M-V4 cells are within the RF of the M-IT cell population. The model has
to indicate a successful search, by selecting the previously shown object as the target
of an eye movement. (B) Activity within the model areas aligned to the onset of the
search array in the different conditions.

object of interest. Such a mechanism would allow for a foreground-background
discrimination throughout the ventral pathway down to V1.

Second, object recognition and attention recruit the same neural architecture.
Recognition is related to the firing of detector cells and attention is typically
implemented by control units. My model does not contain any control units.
Competition and cooperation within the recognition network implements a dy-
namic filter that allows the brain to connect planning processes with the physical
world. As a result, suppressive and facilitatory effects occur, commonly referred
to as ”attention”.

Acknowledgements: This research was supported by DFG HA2630/2-1 and in
part by the NSF (ERC-9402726).
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Abstract. Two experiments investigated the control of attention shifts. Exoge-
nous orienting [1], singleton capture [2], contingent orienting [3], and direct pa-
rameter specification [4] served as aternative hypotheses. Attentional alloce-
tion was assessed via its facilitating influence on perceived latency of stimuli.
Facilitation was larger for intention-matching than for non-matching masked
stimuli. This result tentatively supports the direct parameter specification ac-
count which predicts that masked visual information may directly specify open
parameters of a response to the extent that they match intended features.

1 Introduction

Control of attention shifts in dynamic visual displays may be of several different
types, such as exogenous or bottom-up capture, or endogenous or volitional orienting
towards relevant stimuli matching the current intentions. According to the attentional
capture account, sudden changes of peripheral stimulation €elicit involuntary, stimu-
lus-driven orienting towards the location of these changes [1, 5]. Recently, severa
aternative types of top-down control have been proposed. Folk, Remington, and
Johnston [2] observed that onset cues did not capture attention if observers did not
search for onset targets. They reasoned that attentional settings for specific feature
classes controlled orienting in a top-down manner (contingent capture). They further
observed limitations with respect to the features that can be specified in attentional
sets; Control settings can be directed to either dynamic features, such as abrupt onset
and motion, or static features such as specific colours. However, if observers are set
for abrupt onset targets, other dynamic features, such as motion targets, will also
capture attention.

An alternative top-down approach is the direct parameter specification model
(DPS) [4, 6]. It likewise proposes that stimuli may control attention only to the extent
that they match intended features. However, types of features apt for direct processing
are not restricted. Additionally, DPS explicitly allows for not consciously perceived
information to exert control over responses. The DPS concept was originally developed
while studying sensorimotor effects of masked stimuli [7]. It assumes that, as far as an

1 The research reported in this paper was supported by the Deutsche Forschungsgemeinschaft
(DFG), Grant NE-366/5-2 to Odmar Neumann.
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action plan is available, response paraters can be speted bydirect processig pab-
ways from simulus b responsehat bypass aconscous represeretion. Masked visual
information indeed has been showm lead b the actvation of a correspondg re-
sponse [8, 9]Control of atention shfts might be andter caseof DPSwith the pa-
rameters spedied beng the anplitude andhe direcion of an aention shft.

A third type of ntention-dependentontol has been proposed Bacon and Egét
[1]. Theyrepored thatif observers search for a fee¢ shgleton (a sihgle devating
feature), other singletons nay interfere wih visualsearch everf ithey do notcontin
the rekvant feaures. Theythus dstinguish betveen wo top-downcontolled search
strategies, singleton searclet($or any singleton preserdnd feature search (set for
any stinulus that has a certain feature).

The presentstudy explored he contibutions of hese ypes of orénting o per-
ceived latency of visual simuli. Distribution of atention over he visual field was
assessed by eans ofperceptual latency priming (PLP). In PLP, the latencgf a
stimulus is decreased by aasked prine that precedes it. PLP results froam atten-
tion shift towards the prime’s location which facilitates pocessig of the trailing
target Earlier suudies of PLP reveald evience for lhe contibuton of exogenous
orienting. For examle, PLP has been found lbe independenof similarity betveen
prime and target [10]. By contrast, inracent study, larger effects for intention-
matching than for non-ratching primes were found [6]The primeswereeither simi-
lar to the targetsor similar to irrelevart distracta stimuli. Target-like, kut not distrac-
tor-like, primes facilitated percepual latercies d targets trailirg at their positions
supporting the DPS account. However, tesultsof this study were also in line with
an expanaton bysingleton captire: Observes searched for singleton targets, and the
targetlike prime may thus have capted atention dueto a singleton-deecion strat-
egy. This was not possible for the distoadike prime since itwas always preceded
by atleastone similar distracbor.

2 Method

Throughoutthe expenmnents, PLP was assesk®y temporal order judgnent (TOJ).
Partcipants judged he temporal order of tvo targets in a snall setof distraciors.One
of the targets could be prined by a snaller stmulus (a pnne). Ske and émporal
sequence of pme and &rgetstimuli met the condiions ofmetacontastmasking [11].
Fromthe psyhometric distributions of ordejudgment, Points of Subjecive Simul-
taneity (PSS) were cqoated bylogit analyss [12]. PLP was masured by differences
between prirad and unprirad PSS valuesiscrimnation perforrance was mas-
ured by meanslope d the imer quartile d the psychometric distributions (Difference
Limen, DL). If necessarydegrees of freedomere corread bythe Greenhouse-
Geisser coefficient, and adjustalpha valies are gien [13]

If PLP is due toexogenous orienting towards the location of the prime, it will be
independent of whether the rimes reselle target featues. Onthe aher hand, it will
be influencedby prime validity, that is, the exert to which a gime predcts the loca-
tion of a subsequetdrget[13]. If PLPis dueto singleton capture, it will arise exlu-
sively if the paricipants have he opportinity to search fosingletons,andthe prime
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is a feature singleton. BPS is respondile for PLP, htention-metching, though not
non-mnetching, primes will attract attentiorBy contrast, if the control of attention in
TOJ tasks is due teontingent orienting, there will be ro difference tetweenmatch
ing and non-r&ching primes whth differ within a satic feaure shce paiitcipants are
set to search for a dynaerfeature (onset).

Two main experimental factors, prime match and prime validity, serve to decide
betveen hese aernaive accours. Prime nmetch was nanipulated by presening
primes hat resenbled either the targes (matching prime) or the distracbrs (non-
matching prime). Prime valdity wasmanipulated by the number of primespresengd.
In the valid case, singleprime waspresentd atthe locaion of one érget, and n the
neutal condtion, wwo primes appeared rsilltaneousy, one ata frget locaion and
the other one at an oherwise blank locaion. Accordhg © the exogenous-oening
account, a single valid prienwill have a largeeffectthan a prine that is presented
simultaneously with a campeting stimulus. This manipulation of validity alsoallowed
to contol for the influence of sigleton cajure since only the valid priewasa fea-
ture singleton. The manipulation of prime metch served @ differeniate betveen he
DPSand te oher accourst sihce ony the former predcts an exclisive influence of
matching primes n the PLP paradjm.

We contolled the observers’'ask stategy by presening two different targets or
two similar targets in different blocks. In he latter case, observers adoptfeatire-
search strategy whereas tftemer caseallows a sngleton-deecion stategy since
each of the targets is a singleton. Actogdo the exogenousrenting and singleton-
dekcion accountthough valdity effecs may be absentin feauure-deécion mode,
primes will have aninfluence o PLP insingleton-searchmode.

3 Experiment 1

Participants judged the tguoral order oftwo targets while disregarding additional
visual distracors. In one ofe two sesgns, hey perforned he task in singleton-
search mde, n the oher one, featre-search wde was forced. 16 vohtary parici-
pant with a mean age of 25ears vok partin the expennent. All had norma or
correced-b-norndl vision.

Stimuli were red, yellow, and blue ringm dark grey backgroundn eachtrial,
four non-offsetvisible rings were presead equdistant to fixation, two distracbors
defined bycolour, and Wo targets ako defned byspeciic colburs. Inervals betveen
the targets were 192, 128, and 64 ms. Prime stmuli were smaller rings. The prne
(presented for 32 s) preceded onef the targets by 64 snin thematching condtion,
it had the sane cdour as the masking target, whereas in tmen-matching condtion,
it had he distracior cobur. In te valid condtion, one prine was preseatl ata loca-
tion subsequeht occuped bya trget In the neutral condtion, a second prie was
simultaneousy presentd at a furher unoccupd locaion. As a baséte, unprmed
trials were ircluded In singleton-search mode, targets had diferent colours so hat
each target was a feature singleton. Obserieticated which targ colour had been
the first oneln feature-search mode, targets had he sane colour. After preserdtion
of the trial, one of hemwas narked and observers hadindicatk if it hadappeared
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first or second. Apart fronthe unprined baeline condition, there were 8 conditions
(2 tasks x 2 pnine metch condtions x 2 pnine valdity condtions).

Experiment 1 revealed a primg effecton PSS: The prira facilitated perception of
the primed target by an average of 20 si(see Fj. 1). However, PLP dinot differ
dueto the experimental factors (main effecs and mteracions:F < 1). Separatt-Tess
of PLP values for each condition reveatbdt with oneexcepton (feature search /
non-metch / neutral condition), all latenadiffered significantly fronzero (all p <
.00625). Dscriminaion perfornance wasdwer in feaure searchthan in singleton
search (F[1, 16F 6.25;p < .05). Itwas sightly lower with a non-natching thanwith
a metching prime (F[1, 16]= 3.98;p = .0634)andwith neutal conparedwith valid
primes (F[1, 16F 3.76;p = .0703).

50
20 1 I featue seach

. || singleonsearch
£ 30
£ .
o ]
g 20 E
10
0 _

match non-math match norn-math

valid neutral

Fig. 1. PLP values in Experiment 1. The combinatiof the main experimental factors (prime
match and prime validijyare given on the ahissa, the two tasks as separate colsim

The DL resuts indicae that the visible dstracior prime may have nterfered wth
TOJ. The vald and he neutal condtion were nostictly conparabk since he vald
prime was nasked by the trailing target whereashe neutal prime was noand may
have &d to a confusbn of prime and &rget This was contolled for in Experiment 2.

4 Experiment 2

Experiment 2 replicaied Experiment 1 with the shgle excegdon that both primes n
the neutral condition were asked, the secondne by a distractor trailingt its loca-
tion. Therewere 16 valintary paricipants with a nean age of 27.6ears. Al had
normal or correceéd-b-normel vision.

Again, PLP was found. On averagewias 16 s (see Fj. 2). Search shtegy had
no effect on PLP (F[1, 16] = 2.46;p = .1367), as wklas prime valdity (F < 1).
Matching primes entiled larger PLP effed than non-natching primes (F[1,16] =
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13.78;p < .01), a fnding which was quafied by a task x natch interacion (F[1, 16]

= 5.5; p < .05). The dfferenia effecs of metching and non-r&ching primes were
larger in the singleton-seartask than in the feature-search task. Separate t-Test of
PLP values for eachonditionrevealedthat three PLP values differed significantly
from zero:the feature search/ matching / valid condtion (PLP:16 ns), and he sn-
gleton search fmatching /valid (25 rs) as wel as singleton search matching / neu-

tral condtion (30 ns; all p < .00625). DL was &htly largerin feaure searchthanin
singleton search (F[1, 16¥ 8.48;p < .05). No futter nfluences on DL were found.
In sum Experiment 2 reveadd an advamige of natching primesin the contol of
attertion shifts.

50
20 1 I featureseach

. || singletonsearch
£ 30
k= .
Q ]
T 20 E
0 _

match non-maith match non-match

valid neutral

Fig. 2. PLP values in Experiment 2. The combinatof the main experimental factors (prime
match and prime validijyare given on the abissa, the two tasks as separate colsim

5 Genera Discussion

The abserce of aprime validity effect m PLP inthe experiments is rot in line withan
exogenous-orienting account: According tastlexplanation, presenting thaime
simultaneousy with a second pnie impairs its effecton orienting of atention since
the prines conpete for capture. It alsalisfavours a singlen-capture account. If
subjects searched for feature singletonth@T OJtaskand the rime capured atten
tion due ¢ its being a singleton, agam no effecs in the neutal condtion would have
been expected.

Sone supportfor top-down conl of atention is reveaéd byExperiment 2: Dif-
ferental effect of nmatching and non-raching primes were foundn Experiment 2, as
predcted by the DPS accounfThis effectis not predited by the coningentorienting
account The contol of atention shfts thus seem o be posdile in a node of DPS.
However,the influenceof non-netching primes on PLP foundhi Experiment 1 indi-
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cakesan addtional effectof an rrelevant simulus. Ths captre effectmay be nvol-
untary, or it may be due d other bp-down processes, such as wieetarget anddis-
tractor features are linearBeparablg15, 16]. Comparison with earler studies [10]
revealsthat the priming effectin the presen study is ratter snall. With priming inter-
vals of 64 ns, PLP ypicaly anount o abouthal of this interval. With anaverageof
28 and 24 g, the priming effectof matching primes was subantialy smaller evenin
the singleton-searckessions; in the featusearch sessions, it was further reduced to
17 and 20 ms. This may be due @ an ncrenentin task diffi culty that could have &ft
less space for differential effects of inteddd non-intended signals to show up.
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Abstract. There 5 same neuropsychological evidence for a dfferential capacity
of the cerebral hemisphees to piocess local and globd levels of conpourd vis-
ud stimuli. Corresponding visua field (VF) effects in respon® time studies,
though, are mainly obtaned with stimuli that induce respon conflicts with re-
spect to the levels. Here we investigate why respong conflicts are favorable to
VF—effects. Two experiments with hierarclical letters are reprted, in which the
difficulty of respons selection was varied for conflicting and ron-conflicting
stimuli. For the difficult situaion, VF-effects were dso oltained for non-
conflicting stimuli. The results ae interpreted in the way tha in both @ses the
letter identity and thecorresponding stimulus level had to beintegrated.

The ruman brainis subdivided into two homologous areasthe left ard right cere-
bral remisphere, which perform some cogritive functions with differert efficiency.
One eample is the differential hemispheric capaciy to proces large-saled (i.e.,
global) and snall-scaled (ie., bcal) agpecs of compourd visual objecs. This asym
metry was often repored in studies with bran-damaged pafents, where rght- and
left-hemispheric lesions were acconpanied by impaimments for the procesing of
global aml local simulus agects, repectively [1].

Corregording hemispheric differerces n repong ime studies, though are ony
obtained if a number of favorable canditions are met [2]. One such condition that
turned out to be particularly important is a response caflict between the information
on the global and that on the local level of the stimulus [for a meta-analysis see 3].
For instance, Hibner and Malinowski [4] presemed compound stimuli to the left
visual field/right hemisphere (LVF/RH) or right visua field/left hemisphere
(RVF/LH), ard let their subjects rmme the form on the globa or local lewel. In all
three eyeriments they corducted, Hilbner ard Malinowski only fourd aninteraction
betveen visual field ard target lee for those gimuli where the dobal aml local in
formation was mapped b differert reporses.

To explain this effect, Hibner ard Malinowski suggested hat reponse selection
for non-conflicting and for conflicting stimuli is performed in qualitatively differert
modes, respectively. They argued that for the former type fast ard auomatic re-
sporees can be releasl before th hierarclical structure of the stimulus is repre-
sented. This coud be accmplished with equal efficiency in the LH and RH. Contrar-
ily, amore catrolled mode of resmpnse seletion is required for conflicting stmuli.
Here, sibjectsmust integrate he dobal aml localforms with the correponding stimu-
lus level in order to slect acorrect aswer. Hibner and Malinowski suggeged that
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Fig. 1. Two examples of compound letters, where the global shape is composed by local ele-
mentsin a5 by 5 grid. Four letters (A, S, H, and E) were used and combined to 16 hierarchical
stimuli. The size of the local and global lettersis given in degrees of visua angle

this binding process is performed with different efficiency in the left and right hemi-
sphere.

Unfortunately, there is as yet no clear evidence for this hypothesis. A major draw-
back of the reported study was that hemispheric asymmetries were exclusively ob-
tained with conflicting stimuli. Consequently, it can not be ruled out that conflicting
responses are necessary to produce these effects [3]. If, however, the mode of re-
sponse selection is crucial to hemispheric asymmetries, then it should be possible to
induce them by means other than response conflicts. This prediction was tested in the
present study. Two experiments were conducted, where response conflicts and the
mode of response selection were varied independently. To achieve this, the assign-
ment of stimuli to response keys was held variable. The underlying rationale was that
a varied mapping procedure would hinder subjects from giving automatic responses,
because a more thorough evaluation of the stimulus must be performed to select the
correct answer [5]. Under this constraint, we expected that hemispheric asymmetries
would be obtained with conflicting as well as non-conflicting stimuli.

Experiment |

Eight right-handed volunteers (4 female, 4 male, aged 22-30 years) participated in
this experiment. They performed 16 blocks of 32 trials within one experimental ses-
sion. The trials started with a central 300 ms presentation of a cue that indicated the
target level for the following stimulus. After a cue-stimulus-interval of 300 ms, the
subjects were presented with hierarchical letters [6], which appeared in the LVF or
RVF for 93 ms (for a description of the used stimuli see Figure 1). Between the re-
sponse and the following trial, there was an interval of 1000 ms. The task was to cate-
gorize the letter at the cued level of the hierarchical stimulus by pressing the left or
right button of a response device.
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Fig. 2. Interaction between target level, visud field, and stinulus ¥pe as revealed in thefirst
experiment

As in the Hibner ard Malinowski study, half of the gresened stimuli were can-
flicting, whereas thb other half was ron-conflicting. The four letters $ed were
grouped b two reporse caegoris, which were mapped o the left ard right reponse
key, regectively. However, only one letterwithin ead categry was consstently
mapped b a fixed reporse, whereasthe mapping of the other letters was changed
after eat block For example, tte letters A ard H could have a fixed mapping,
whereasthe mapping of the lettersS ard E was variable. Inthis ca®, the mapping of
lettersto the repective Ift/right resporse in succeedingblocks was AS/HE, AE/HS,
AS/HE, AE/HS and soforth.

Because stimulus-regpone mappings were changed frequently, it was unlikely that
auomatic reporses would develop [7]. We hus expectd hat sibjects would appy a
more controlledmode ofregorse selection, whereform and lewl of the hierarctical
stimulus are integrated. Accordingly, the hypothesis was that hemispheric asymme-
trieswould be obtained with conflicting aswell as non-conflicting stimuli. The factas
in the first experiment were target level (global, local), visual field (LVF, RVF),
stimulus type (canflicting, nonconflicting), and target mapping (fixed, variable),
which were all radomized

Results & Discussion

Error ratesand laterties of correct reporses were ertered nto anaralysis of vari-
arce ANOVA) with repeatedneasireson all factors The focusin this aswell asin
the £cord experiment was on visual field (VF)-effects, thatis, onthe geater capaojt
of the LH and RH to proces local ard global stimulus aspects, reecively. In parat
lel to HUbner and Malinowski, we will express VF-effectsfor local elenents by sub-
tracting respnse latecies to RVF-stimuli from those to LVF-stimuli, and arelo-
gously VF-effect for global forms are gven by sibtracing repong latencies to
LVF-stimuli from those to RVF-stimuli. For both levels, thus, positive values indicate
VF-effectsin the expected direction
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Generally, reponsswere faster for non-conflicting compared b corflicting stim-
uli [929msvs. 1011ms, F(1,7) = 15.23p < .01], am for targetswith fixed campared
to variable mapping [928 ms vs. 1012ms, F(1,7) =2114, p < 01]. Sinilar effects
were ako rewvealedwith the error rates Reliable VFeffeds, though, were only ob-
tained for resmnse ldercies. First, here was atwo-way interaction between target
level and visual field [F(1,7) = 1169, p < .05]. However, this was qualified by a
three-vay interaction between target level, visual field, ard stimulus type [F(1,7) =
9.02,p <.05. The coregpording resilts are depicted ifrigure 2. As ore cansee, tle
expectedinteractin between target level and VF held for conflicting stimuli [F(1,7) =
19.24 p < .01], but nat for non-conflicting simuli [F(1,7) =0.12,p = .74]. The inter-
actionfor the former type was due to larg, though non-significant, global aul local
VF-effects (57 ms and 50 ms, regectively). The coregpording (non-sgnificant) ef-
fecs for non-conflicting simuli were 2ms and 5ms, regpectively.

The aboe resits did coviously not meetour hypothesis. One posible explaraton
for this flaw is that the aubjects cald estalish automatic responsesdespte the varied
mapping. This might have been favored by the fact that only haf of the pregnted
letters were indeedmapped b variable reponses. Moreower, he reporse mapping
was only changed ater ead block To acount for this possible shortcoming, a sc-
ond experiment was corducted, where al four letters were mapped b variable re-
sporses. As well, the mapping wes changed within the blocks

Experiment 2

16 right-handed \olunteers (12 émae, 4 male, aged 19-27 garg took part in the
secord experiment. The proedue ard the gimuli were bascally the sme as in ex-
periment one. The main differernce b the first experiment was the reponse mapping.
Here, tle four letterswere gouped to tvo reporse categries (‘A, S, ‘H, E’), which
were consstently mapped o the left and right repong key, repecively. However,
the mapping rules were reersed for global am local targts. For example, the aib-
ject had to pres the left button for a dobal A or S, but the right button if A or Sap-
peared athe local lewl. Accordingly, a dobal H or E required a right button press,
whereasa localH or E were mapped to the lett respnse key. The sane letter was
thus always mapped to wo differert reponses. As a corsequence, tte subjectscoud
not give a properarswer bebre the Herarchcal dructure of the gimulus was repre-
serted This applied to non-conflicting stimuli as well as o conflicting stimuli. An
exceptionfrom that were those dimuli with the same letters on both lewls, eg., a
globalH with local Hs. Ndice that this type of stimulus was caflicting, becaise the
global aml the localH were asgjned to different respnses. Toillustrate tle dffer-
erce between conflicting simuli with different letters(conflicting/d) and those with
the same letters (caiflicting/s) on the dobal and local lewel, consider a trial vinere the
tak was to categrize tte local letter ofthe desribed exanple gimulus. It is clear
that this local elenent could only be H, becase there was no alterrative letter inthe
compourd gimulus. In contrast to conflicting/d stimuli, though, the respnse tothe
local letter cold here be slected fom anearly, incomplete stimulus repregntation
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Table 1. Response latencies and visua field-effects (ms) to global and local targets in the
second experiment. The last row shows the interaction between target level and visual field
(VF, seeresults section for details)

Target and VF Stimulus Type
non-conflicting conflicting/d conflicting/s
Global
LVF 756 757 720
RVF 793 780 742
Local
LVF 926 915 908
RVF 925 898 903
VF-effects
Global 37° 23 22*
Local 1 17 5
Global + Local 38 40° 27

Note. #p < .10, " p<.05, p < .001

Two hypotheses could be tested with the present experiment. The first is that re-
sponse conflicts are necessary to induce hemispheric asymmetries in global/local
processing. If so, then one should obtain respective VF-effects only with conflicting
stimuli (conflicting/d and conflicting/s). The second hypothesis is that the hemi-
spheres differ in their capacity to integrate the stimulus level and form. If this was
true, then respective VF-effect should only show up with stimuli where such integra-
tion needs to be performed (non-conflicting and conflicting/d). The factors in the
second experiment were target level (global, local), visual field (LVF, RVF), and
stimulus type (non-conflicting, conflicting/d, conflicting/s), which were all random-
ized.

Results & Discussion

Latencies of correct responses and error rates were subjected to an ANOV A with
repeated measures on all factors. Asin the first experiment, reliable VF-effects were
only obtained with response latencies. The corresponding results are depicted in Table
1. One can see that the global V F-effects were reliable for non-conflicting stimuli [37
ms, F(1,15) = 17.30, p < .001] and for conflicting/s stimuli [22 ms, marginally signifi-
cant: F(1,15) = 3.563, p = .08]. The global VF-effect to conflicting/d stimuli was con-
siderably high, but not significant [23 ms, F(1,15) = 2.68, p = .12]. As well, none of
the local VF-effects was significant.

The most important results with respect to the hypotheses were interactions be-
tween target level and VF. When the data was collapsed over al stimuli, this interac-
tion was reliable [F(1,15) = 5.63, p < .05]. However, planned comparisons revealed
that this would not hold for all stimulus types. Thus, the results are given separately
for non-conflicting stimuli, conflicting/d stimuli and conflicting/s stimuli (see last row
of Table 1). Here, the size of the interaction is expressed as the sum of global and
local VF-effects. The value is higher the larger the expected hemispheric differences
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are. @nversely, the value is lower if the expected kmispheric diferencesaresmall,
or if one or boh of the VF-effects point in the unexpecied drecion.

In line with the resiits from former exeriments, a reliabe interaction between tar-
get level and VF was found for conflicting stimuli. This, however, only held for con-
flicting/d stimuli [ margnally significant: F(1,195 =3.63 p =.08], but not for conflict-
ing/s dimuli [F(1,15) =1.43, p = .25] Mind that the interactioneffectfor the former
type was corsiderably larger than that for the later type (40msvs. 27 ms). As a ®c-
ond major resllt, the expected lemispheric differenceswere al® reliablewith non-
conflicting stimuli [38 ms, F(1,15)= 6.79, p < .05. Both results are ckarly in odd b
the hypothesis hat respnse conflicts are a ecesary condition for hemispheric
aymmetries in global/local pocesing. Contrarily, the results support tre notion that
both hemisphere dffer in their capacity to integrate he form and the level of com-
pound visua stmuli.

Conclusions

Both experiments showed ajain that hemispheric agymmetries for the procesing
of global ard local simulus agpecs canbe obained if the sibject regpord to con
flicting simuli. However, the data also swygestthat regonse coflicts arenot the anly
way to induce VF-effects Rather, kemispheric agymmetriesoccured al® under other
conditions tha require a thorough stimulus evaludion, i.e. conditions where the
stimulus level and form had to be ntegrated. Thus, the preent dag suypport Hibner
and Malinowski’s feaure-integration accaunt of hemispheric aymmetries in global/
local procesing.
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Abstract. We present a system for tracking persons which is suited for
environments with a constant as well as a moving background. It is based
on a variant of the condensation algorithm and is capable of combining
the outputs of several measurements, so that it can be considered as
a multimodal tracking system. The measurement modes which are cur-
rently implemented are a pseudo 2-dimensional hidden Markov model
(P2DHMM), a color based skin finder, and a motion detector. The pur-
pose of the combination of several modes is to make the tracking system
more robust in critical situations by combining the individual strengthes
of different modes. The architecture of this tracking system is described
and some exemplary results are depicted.

1 Introduction

The tracking of moving objects in video sequences is a major problem in the
area of visual surveillance and vision-based man-machine-interfaces. We have
proposed approaches where the main goal was the possibility to track persons
in front of moving backgrounds. For this we used a combination of a pseudo 2-
dimensional hidden Markov model (P2DHMM) and a Kalman filter (see e.g. [1,
5]). This combination delivered good results, and so the question arose how this
approach could further be improved with regard to robustness and the possibility
of handling occlusion effects.

Because it seems that each method for locating a desired object has its spe-
cific advantages and disadvantages, one could try to combine the advantages of
different measurement methods and at the same time to overcome their special
disadvantages. This leads to the idea of so-called multimodal tracking methods,
where several modes are exploited in order to increase the robustness of a track-
ing algorithm under real-world conditions.

The two basic problems when developing a multimodal tracking system are
firstly to select and implement the different modes and secondly to successfully
combine this modes. The approaches that we investigated here are a combination
of a P2DHMM with a skin finder or a motion detector for person tracking. The
motivation for this choice was to sustain our proven P2DHMM system as one of
the modes in our new multimodal system. As second mode a color based skin
finder has been considered to be a good complementary information source, since
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skin and face information is not explicitly considered in the P2DHMM (which
operates on gray level images) and especially since this second mode would be
suitable to recover the tracking process in case of occlusions of the lower body.
As a third mode a motion detector has been used, which robustly works on im-
age sequences with a constant background. The tracking modes are merged in a
probabilistic way using the condensation algorithm [2]. The condensation algo-
rithm has found to be especially interesting for multimodal fusion since it offers
flexible methods for a stochastical combination of the conditional measurement
probabilities which are generated by the different tracking modes.

2 Principles of the condensation algorithm

The purpose of this algorithm is to describe the temporal propagation of con-
ditional densities, which can be decomposed into three temporal consecutive
steps, namely a deterministic drift, a stochastic diffusion and a reactive effect
of a measurement. This is also done e. g. by a Kalman filter, but the condensa-
tion algorithm has the advantage that it is simpler from a mathematical point of
view and therefore allows an uncomplicated combination of several measurement
modes, as will be shown later.

In the following text we denote the state of the modeled object at the discrete
time k as x; = x(¢x) and its history as X = {x1,X2,...,%%}. In an analogous
manner a set of image features is gathered in a measurement or observation
vector zj, with the history Zy = {z1, 22, . .., zx}. Using these symbols and Bayes’
rule the tracking problem can be formulated in terms of conditional probabilities:

P(xk|Zy) o p(zr[xk)p(xk|Zk-1) (1)

The condensation algorithm uses a set of samples of the state vector to
approximate its conditional probability density function p(xx|Zy). This sample

set consists of N samples sfcn), each weighted with the probability ﬂ,in) which

is obtained from the measurement p(zg|x; = s,(cn)). Now the conditional state

density can be represented by the weighted sample set (s,(cn), w,(cn), n=1...N).
For a description of how this sample set can be obtained recursively from the
previous sample set and for further details see e. g. [2].

3 Computation of the conditional probabilities

The conditional probabilities w,(cn) have to be acquired by a measurement within

the current image. Our approach is currently able to utilize three methods for
acquiring this measurement data, namely a P2DHMM, a skin finder, and a
motion detector.

The problem is now to evaluate a measurement vector z; which results from
one of the measurement modes (delivering e.g. a bounding box) in such a way
that we can compute the conditional probability of this measurement under the
condition of a given sample, expressed as p(zx|xx = s,(C")). The relation between
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zj. and Xy, is expressed by the measurement equation z; = H-xj + vy, where H is
the measurement matrix and vy, is the measurement noise. If v, is white noise, it
is a reasonable assumption that the variable zy, is a stochastic process that can be
characterized by a Gaussian distribution where Hxy, can be considered as mean
value of the process. In this case the above mentioned Gaussian distribution
can be interpreted as the probability of the measurement vector z; under the

assumption that the sample S,(gn) is the correct state vector, resulting in

plas i = 5i) ox exp(— 3 (7 — Hxi) " Clax — Hx)). (2)

In this function C denotes the covariance matrix which has to be chosen appro-
priately. The resulting probabilistic values are subsequently normalized so they
will sum up to 1.

The state vector x (and each sample vector s) consists of the components
X = [Ze, Ye, Vg, Uy, W, h]T , where x. and y. describe the center of a bounding box
with the width w, the height i and the velocity components v, and vy.

The functionality of this approach can be confirmed easily by the following
assumptions: If the current measurement vector zj is almost identical to Hxy,
then measurement and sample must be located very closely together (i.e. zg
confirms xj, very well) and thus (2) will yield a very high probability for this
sample. It is therefore a suitable equation for the probabilistic interpretation of
the output z; of our various modes.

3.1 P2DHMM

The abbreviation P2DHMM stands for pseudo 2-dimensional hidden Markov
model. We will describe this method only very briefly here; for further details see
e.g. [4,1,3]. The model which we used consists of 20 states which are arranged
in 4 superstates (modeling columns) with each of them containing 5 normal
states. The model has been trained to several hundred images that each show
just one person surrounded by some arbitrary complex background. After this
training has been accomplished, an image containing a person can be presented
to the P2DHMM, and by means of the Viterbi algorithm the most probable state
sequence and assignment of states to image areas can be calculated. In this way
one obtains a segmentation of the image into person and background blocks.
From this segmentation a bounding box (the smallest rectangle with horizontal
and vertical edges that contains all pixels classified as person) and its center can
be extracted.

Furthermore, the velocity of this bounding box can be calculated as the
difference of the position of the center of the bounding box in the current frame
and its position in the previous frame. Because this value can be very volatile, we
smooth it by calculating a weighted mean value of the current velocity (70 %)
and the previous velocity (30 %). Thus the result of the measurement of the
P2DHMM will be a measurement vector of the form zpap = [2c, Yc, Uz, Vy, W, h]T,
and the appropriate measurement matrix is a unity matrix.
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3.2 Skin finder

As a second method for acquiring measurement data we use a simple implemen-
tation of a skin finder. The intention here was not to optimize this skin finder,
but to demonstrate how a second measurement can be integrated into our con-
densation based tracking approach. As will be shown later, this measurement
can have a strong positive influence on the tracking results, even if it is not
always very accurate.

The skin finder is based on an approach using color histograms and condi-
tional probabilities as it is described e.g. in [6]. The result of this measurement
will be a two dimensional vector which describes the center of gravity of the
skin colored pixels and has the form zg, = [xcogﬁskin,ycog,skin]T. Because this
point is expected to indicate the position of the face of a person, it will be po-
sitioned somewhat higher than the center of the bounding box by an amount
which can be estimated to be approximately 30% of the height of the bounding
box. Therefore, for the measurement matrix of the skin finder we use

10000 0
H“m_[01oooaﬁ' (3)

3.3 Motion detector

As a third method for acquiring measurement data we use a motion detector.
Again here the intention was to demonstrate how another measurement can
be integrated into our condensation based tracking approach and thus improve
the tracking results. The motion detector bases on a calculation of differences d
between pixels i(z, y) in the current image and corresponding pixels in a reference
image according to

dk(way) = ”ik(‘ray) _iref(xvy)” (4)
and a subsequent thresholding. For those pixels with a difference exceeding the
threshold, a bounding box will be calculated, and its parameters (center, width,
height) are combined in a motion measurement vector with the components

_ h T
Zm = [xcobb,ma Ycobb,m; Wbb,m; bb,m]

4 Combining multiple modes

A very interesting aspect of the condensation algorithm is the possibility to
rather efficiently integrate the data of several measurements. As mentioned in the
introduction, such a combination can make it possible to overcome disadvantages
of a single method and to combine the strong points of several methods.

The point where we merged our measurements into the condensation algo-
rithm is the calculation of the weights ﬂ,i") for the sample vectors s,(cn). Thus, if
one has as for example two (normalized) measurement probabilities which are
obtained from (2), using different measurement vectors and appropriate mea-
surement matrices, the resulting sample weight is calculated by multiplying them
according to the equation

p(z1,22[8") = p(z1s\"”) - p(zalsi") (5)
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and a subsequent normalization. These modified sample weighting probabilities
will have a strong impact on the tracking result, which is now the result of a
multimodal fusion of different information channels.

5 Results

Some interesting results of our tracking algorithm are depicted in Fig. 1 and
Fig. 2, where the bold white bounding box indicates the expectation value of
the samples.

In Fig. 1 an indoor tracking scenario with a panning camera is depicted. Here
the major difficulty is that the legs of the person are partially occluded by the
desks in the foreground while the person is walking along behind them. Because
our P2DHMM was trained only to fully visible persons, it has some problems
in this case, and the tracker using only the measurement data of the P2DHMM
will fail after a while, as can be seen in the upper row. In the lower row however
we see the results after we combined the P2DHMM with a skin finder which is
calculating the center of the skin pixels in the upper part of the search region
(indicated by the large bounding box) which should be nearly the face of the
person. This measurement is indicated by a white cross. As can be seen, now
our tracker with combined resources is capable of tracking this sequence. If the
tracking process is solely based on the skin finder, it fails as well because this
measurement alone is quite unreliable. Thus, both modes support each other in
an optimal manner.

In Fig. 2 a typical outdoor surveillance scenario with a non moving back-
ground is depicted (data from PETS 2001). For this sequence we used a com-
bination of a P2DHMM and a motion detector. In the upper row we can see a
case where the system with the P2DHMM mode alone loses the track after a
while (see the third frame in this row), whereas in the lower row it can be seen
that after integration of the motion detector mode the system keeps the track.
In the last frame in the upper row a detailed result of the motion detector with
the detected motion area and its bounding box can be seen. Also here, the use of
the motion detector as single measurement mode will fail because other moving
objects (see the passing car in the second frame) are severely disturbing this
measurement.

6 Conclusion

In this paper we presented a novel approach for a multimodal tracking sys-
tem based mainly on a variant of the condensation algorithm and a P2DHMM.
The architecture of this system has been described and implemented, and some
exemplary results have been shown. The major innovation of our approach is
the computation of conditional probabilities from the measurement vectors and
the probabilistic mode fusion based on these values. Tests have shown that the
combination of several tracking modes is a suitable approach to increase the
performance of a tracking system in critical scenarios where a single approach
alone fails.
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Fig. 1. Tracking results on a difficult indoor sequence with partial occlusion of the
lower body. Upper row: Only P2DHMM. Lower row: P2DHMM combined with the
skin finder (indicated by a white cross). See text.

Fig. 2. Tracking results on a realistic outdoor surveillance sequence. Upper row: Only
P2DHMM. Lower row: P2DHMM combined with the motion detector (indicated by an
additional bounding box). See text.
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Abstract. 'Biological motion perception’ refers to the impressive abil-
ity of human observers to visually identify the motion of humans or an-
imals solely from the moving patterns of a small number of light points
attached to the body. Although the first experiments concerning the
perception of biological motion already took place in 1973 [1] the per-
ceptual mechanisms are still poorly understood. Based on experiments
with a novel biological motion stimulus Beintema and Lappe [2] recently
proposed that the perception of biological motion relies more on form
than on motion signals. We developed an ideal-observer-model which is
based on form information only. In various forced-choice experiments we
compared the model’s performance with that of human observers in psy-
chophysical studies. The model results showed striking similarities with
the data from human subjects. These findings lend additional support
to the idea that biological motion perception is based on an analysis of
sequential poses each derived from form signals.

1 Introduction

A walking human person produces a highly complex visual motion pattern. How-
ever, despite its non-rigidness and its many degrees of freedom this pattern can
be recognized by human observers in a fraction of a second. Johansson [1] re-
vealed that this is even true when the visible information is reduced to only a
few light points fixed on the joints of the walker. The information transmitted
by this ’point-light’ display, which is commonly presented as a computer ani-
mation [3], can be subdivided into motion and position signals (figure 1a). A
single frame of this animation provides form information via the joint positions.
A sequence of frames provides motion information via apparent motion signals
of the individual points. Since a single frame does not induce the percept of
biological motion in naive observers, many studies and models argued that the
rapid recognition of biological motion is based on motion signals [1, 4]. Interest-
ingly, however, some patients with lesions in the motion processing areas of the
brain are impaired in perception of general aspects of image motion but not in
the recognition of biological motion [5, 6].

Beintema and Lappe hypothesized upon these findings that the recognition
of biological motion is based on spatiotemporal integration of form information
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rather than directly on motion signals [2]. They created a new biological motion
stimulus by placing light points at random positions on the extremities rather
than on the joints, and then removed local motion signals by jumping points ran-
domly to new positions on the body for each animation frame. Psychophysical
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Fig. 1. A: Subdivision of the signals from the walker into position and motion compo-
nents. B: The single-frame-lifetime (SFL) stimulus consisted of dots that changed their
position on the limbs randomly from frame to frame

studies with these ’single-frame-lifetime’ (SFL) stimuli showed that biological
motion was still perceived from this stimulus, and that two classical 2AFC tasks,
direction (SFL-Walker walking either to the right or to the left) and coherence
(upper and lower part of the SFL stimulus walking either in the same or in op-
posite direction) discrimination, could be performed reliably [2]. In the present
work, we developed an ideal-observer-model based on position signals in order
to obtain a quantitative grasp on the role of position information in the per-
ception of biological motion. We analyzed model behavior and compared it to
experimental data.

2 Methods

2.1 Experiments

For the classical biological motion stimulus, we used an algorithm adapted from
Cutting [3]. It computes the joint positions for a point-light display (classical
walker) giving the impression of a person walking on a treadmill. For the SFL
stimulus, the point-light positions were computed to be somewhere between the
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joints, the exact placement changing randomly from one frame to the next. The
walker subtended 5 by 11 degrees of visual angle and consisted of white dots.
Each animation frame was shown for 52ms. The entire stimulus lasted 2.1s. Ref.
[2] provides more detailed information on the stimulus.

In each experiment 2-6 observers participated. They watched the walker stim-
ulus on a dark monitor screen and performed one of several discrimination tasks.

2.2 Simulations

Experimental discrimination tasks were recreated in model simulations. The
model used an internal standard of a human walker. We recorded the limb
movements of 9 human walkers with a motion tracking system (Ascension Mo-
tionStar). A step cycle of the average of these walkers was subdivided into 100
temporally equidistant frames acting as the internal model of the limb configu-
rations of a human walker during a step cycle. For every stimulus frame in the
experiment simulation, the model computed the mean distances between the
dots in the stimulus frame and the limbs for each frame of the internal standard
(figure 2b). The decision for every stimulus frame was then based on the set of
standard frames with the minimum distance.

Fig. 2. A: The internal standard consisted of a step cycle of an average human walker
subdivided into 100 frames, B: The model’s decision is based on linear distance mea-
surements between internal standard and stimulus

In the case of right/left discrimination the model’s internal standard con-
sisted of 100 frames of a walker facing and walking to the right and the same
number of frames for a walker moving to the left. After the entire stimulus se-
quence was analyzed, the single answers for each stimulus frame were averaged



112 Lange, J. et al.

to yield an over-all decision. The same approach was taken in the case of coher-
ent /incoherent discrimination, the only difference being that the model’s internal
walker was subdivided into upper and lower part of the body, a left /right decision
was made for each part separately, and then the two decisions were compared
for coherence. In both tasks, the model’s decisions were therefore based entirely
on position information and did not include apparent motion signals between
frames.

In the model, we must take into consideration that because of visible per-
sistence [7] for frame durations smaller than 100 ms the number of point-lights
perceived at any moment in time is more then the number shown on the display.
For instance, for 52 ms frame duration the number of points perceived is about
twice the number of dots presented in one frame. To mimic the effect of visi-
ble persistence, the model always superimposed any individual frame with the
immediately preceding one.

3 Results

3.1 Influence of number of points

As a first quantitative determinant of form information we varied the number
of points per frame in several 2AFC tasks. In the direction task, model and
human observers had to judge whether the SFL-walker was facing to the right
or to the left. In the coherence task they had to discriminate between a coherent
and an incoherent walker. A step cycle of the stimulus consisted of 40 frames
with a duration of 52 ms (5 monitor refreshes) each. Figure 3a,b shows that the
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Fig. 3. Comparison of correct answers between model and psychophysical data for A:
right/left - , B: coherent/incoherent - and C: forward/backward discrimination

percentage of correct answers increased with rising number of points, both for the
model and for the human observers. The similarity between model and human
data is surprising as the model does not use any information about the local
motion of the points nor about the sequence of the frames. This suggests that
the major information used by human observers in the direction and coherence
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tasks is frame-by-frame position information, rather than motion signals derived
from an analysis of the frame sequence.

We next wished to study a task which cannot rely on form information alone,
but which requires sequence analysis. Therefore, we asked observers in a further
experiment to discriminate a forward moving display from a backwards moving
display. This required the analysis of temporal order over animation frames. The
model computed again the distance measures for individual frames but thereafter
took the temporal order of the frames into account. Again, performance strongly
depended on the number of points per frame (figure 3c). However, the slope was
not as steep as for the two previous tasks and performance did not reach 100
percent. Nevertheless, model and psychophysics were again strikingly similar.

3.2 Influence of point lifetime

Beintema and Lappe [2] investigated the potential contribution of local motion
signals by prolonging the time over which each light point stayed at one position
before jumping to another position (52, 104, 208, or 416 ms) in the direction
discrimination task. They argued that if local motion contributes to the percep-
tion of biological motion one would expect the percentage of correct answers to
increase with prolonged lifetime. But instead of an increase the performance re-
mained constant or showed even a slight decrease with longer lifetimes. Beintema
and Lappe speculated that perhaps the reduction in the number of independent
position samples that resulted from the increased lifetime led to the decrease in
performance.

Model simulations supported this hypothesis (figure 4) as they revealed the
same qualitative and quantitative behavior as psychophysical data. This confirms
that human observers do not take advantage of additional motion signals. Instead
the reduced position information leads to a decline in correct perception rate.
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Fig. 4. The influence of lifetime on the percentage of correct answers for A: 8 (two
upper curves) and 2 (two lower curves) points and B: for 4 (two upper curves) and 1
(two lower curves) point. Comparison between model and psychophysics
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Beintema and Lappe [8] also investigated the potential contribution of local
motion signals in the forward/backward discrimination task. In this task, too,
prolonged point lifetime did not aid performance. Model simulations showed
again similar behavior. No positive influence of prolonged lifetime on the correct
answers was observed. This strengthens the conclusion that motion signals do
not contribute to performance in this task.

4 Summary and discussion

We investigated the role of position signals in the perception of biological mo-
tion using a novel biological motion stimulus that allowed to vary the availability
of motion signals. We compared psychophysical studies with an ideal-observer-
model that relied only on position information. All experiments revealed striking
similarities between model and human data. This suggests that perception is pos-
sible from the analysis of form information alone. The model demonstrated that
two common psychophysical tasks, direction discrimination and coherence dis-
crimination, could be solved with the same accuracy as human observers without
using any motion information. A further task, the discrimination between for-
ward and backward display of a walking person, clearly involved a judgment of
motion direction. The model was able to solve this task with the same accuracy
as human observers by first analyzing static postures of single frames and then
the order of frames in the sequence. Thus, also in this case visual motion signals
were not needed.
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Abstract. A framework is outlined that can be employed to obtain gender and
other characteristics of the agent from human motion patterns and subsequently
use this information to synthesize motion with particular, well-defined
biological and psychological attributes. The proposed model is based on the
statistics of a data base of motion capture data. Based on linearization of the
motion data, a motion space is defined which is spanned by the first few
principal components obtained from the data base of input walkers. Using
biological and psychological traits attributed to the input walkers, linear
discriminant functions are computed which define vectors in the motion space
that generalize the respective trait. These vectors are in turn used to generate
walking patterns with the respective properties.

1 Introduction

Biological motion contains plenty of information about identity, personality traits and
emotional state of the moving person. The human visual system is extremely sensitive
to retrieve such information from motion patterns. We can recognize a familiar person
by the way he or she walks and we can attribute gender and age as well as psycho-
logical attributes such as personality traits and emotions to an unfamiliar person with
motion being the only source of information. We are also extremely sensitive in
detecting deviations from natural behaviour. The high degree of perceived realism of
modern computer graphics in animated movies and computer games is often disturbed
by the fact that the animated movements are perceived to be unnatural. For modern
atavars or in the case of virtual replacements of real actors (“virtual stunt men”) the
observer is not supposed to even realize that the real actor is temporarily replaced by a
digital character. To achieve the desired realism, there is considerable demand on
methods to synthesize psychologically convincing biological motion.

I want to outline a framework that can be employed to obtain parameterizations of
biological or psychological attributes from human motion. Subsequently, I will use
this information to synthesize motion with the respective attributes. Gender
classification is used as the main example, but | also present examples of how the
framework can be applied to other attributes.

The data material to start with is raw motion capture data, i.e. the three-dimensional
trajectories of discrete points on a persons body. The primary goal is to transform
those data into a representation that would allow us to apply standard methods from
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linear statistics and pattern recognition. Such representations have been termed
“morphable models” [1-3] in the computer vision community, expressing the fact that
the linear transition from one item to a second item of the data set represents a well
defined, smooth metamorphosis. Another term that has been used for the same class
of models in the context of human face recognition is “correspondence-based rep-
resentations” [4,5]. This term focuses on the fact that morphable models rely on
establishing correspondence between features across the data set resulting in a
separation of the overall information into range specific information on the one hand
and domain specific information on the other hand [6].

The procedure developed in the present study contains elements of earlier work on
parameterizations of animate motion patterns [1,7-10]. Unuma [7] showed that
blending between different motions works much better in the frequency domain. At
least for periodic motions, such as most locomotion patterns, Fourier decomposition
can be used to achieve efficient, low-dimensional, linear decompositions. In fact,
decomposing the time series of postures of a single walking person by means of
principal component analysis reveals components, which are almost similar to Fourier
components [10]. This demonstrates that Fourier decomposition of walking data is
nearly optimal in terms of covering a maximum of variance with a minimum of
components.

The focus of the current study is to obtain a system that is sensitive enough to extract
biologically and psychologically relevant attributes. Based on the linearization of the
motion data, a motion space is defined which is spanned by the first few principal
components obtained from a set of input walkers. Within this space, linear
discriminant functions are computed that generalize the respective trait. Those vectors
are in turn used to generate walking patterns with the respective properties in a psy-
chologically convincing manner.

2 Linearization of motion capture data

For the current study, twenty men and twenty women, most of them students and staff
of the Psychology department of the Ruhr-University served as models to acquire
motion data. A set of 38 retroreflective markers was attached to their body.
Participants wore swimming suits and most of the markers were attached directly to
the skin. Others, like the ones for the head, the ankles and the wrists were attached to
elastic bands and the ones on the feet were taped onto the subjects’ shoes.

Participants were then placed on a treadmill and were asked to walk. They could
adjust the speed of the treadmill such that they felt most comfortable. To ensure that
they did not feel too much under observation and that they did not “perform” in an
unnatural manner, we let them walk for at least 5 minutes before we started to record
20 steps (i.e. 10 full gait cycles) from each of them.

Recording was done by means of a motion capture system (Vicon 512, Oxford
Metrics). The system tracks the three-dimensional trajectories of the markers with
spatial accuracy in the range of 1 mm and a temporal resolution of 120 Hz.

Based on the trajectories of the 38 original markers, we computed the location of
“virtual” markers positioned at major joints of the body. The 15 virtual markers used
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for all the subsequent computations where located at the ankles, the knees, the hip
joints, the wrists, the elbows the shoulder joints, at the center of the pelvis, on the
clavicula and in the center of the head.

The walk of an individual subject can be regarded as a time series of postures. Each
posture can be described in terms of the position of the 15 markers. Since three
coordinates are needed for each position the representation of a single posture is a 45
dimensional vector p=(ml,, ml,, ml,, m2, ... m152)T .

Linearization of the data was achieved in two steps. In the first step, the series of
postures obtained from a single walker j was decomposed into a second order Fourier
expansion:

pi(t) = Pio *+ P1 Sin(wjt) + P2 cos(wjt) + p;3 Sin(2w;t) + p; 4 cos(2wit) + err; (1)

The power carried by the residual term err is less than 3% of the power of the input
data and we discard it from all further computations. A particular subject’s walk is
therefore approximated by specifying the average posture p;, the four characteristic
postures pj1, P2, Bis, and P4, and the fundamental frequency w;. Since each of the
components is a 45 dimensional vector, the dimensionality of the model at this stage
is 226=5*45+1,

Although this number already reflects a considerable reduction in dimensionality as
compared to the raw motion capture data the number of effective degrees of freedom
within the database is probably much smaller. For classification purposes it is
necessary to reduce the dimensionality of the representation such that the number of
dimensions becomes much smaller than the number of items represented in the
resulting space.

The advantage of the above representation is, that it provides the possiblity to
successfully apply linear operations. Linear combinations of existing walking
patterns result in new walking patterns which meaningfully represent the transitions
between the constituting patterns [7,10]. We can therefore treat the 226 dimensional
vector describing the walk w; of walker j as a point in a linear space of the same
dimension and apply linear methods.

This makes it also possible to use principal components analysis in order to further
reduce dimensionality. Applying PCA to the set of walkers W results in a
decomposition of each walker into an average walker vy and a weighted sum of
Eigenwalkers v.

WERVEDY Y %)
or in Matrix notation:
W=V, + VK ©)

V, denotes a matrix with the average walker vq in each column. The matrix V contains
the Eigenwalkers as column vectors v;. Matrix K contains the weights (or the scores)
ki,; and is obtained by solving the linear equation system:

VK = W-V, ()

The variance of the first 15 components sums up to 80% of the overall variance.
Truncating the expansion (Eq. 2) after the 15th term thus means loosing 20% of the
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overall variance. For all further computations we used a space spanned by just those
first 15 Eigenwalkers.

3 Gender discriminant function

Given this relatively low-dimensional linear representation of human walking
patterns, we can now construct a linear classifier ¢ accounting for gender-specific
differences in human walking. This is achieved by finding the best solution
(according to a least-square criterium) of the overdetermined linear system

cK=r (5)

r is the row vector containing 80 values r; accounting for the desired output of the
classifier. r; equals 1 if walker j is male and -1 if the walker is female. K is the matrix
containing the coefficients of each walker in the 15-dimensional Eigenwalker space.
The resulting row vector ¢ contains the coefficients of the linear discriminant function
best accounting for the gender of the walkers.

The invertibility of the representation can be used to visualize what is happening
along this discriminant function by displaying walkers w, , corresponding to different
points along this axis as point-light displays or stick figure animations:

Weo = Wo + V' (6)

As above, w, denotes the average walker. The matrix V contains the first few
Eigenwalkers - one in each column. As o changes from negative to positive values
the walker appears to change its gender. On our Web page (http://www.bml.psy.ruhr-
uni-bochum.de/Demos/WDP2002.html), such animations can be viewed and interac-
tively manipulated by changing the value of o.

We have therefore retrieved a vector ¢ that generalizes the attribute “gender” in the
obtained motion space. Adding or subtracting this vector from a given walker makes
its appearance more male or more female, respectively. The same procedure can be
used to extract vectors accounting for other attributes as well. For our database, we
registered for every walker a number of easily available attributes such as sex, age
and weight. In addition to being able to change the perceived gender of a walker, the
above mentioned demonstration also visualizes a dimension obtained from using the
weight of the walker to compute a respective discriminant function. Light and heavy
walkers show clear differences which are easily extracted by our visual system.

Other attributes, however, are not directly available but have to be determined
through psychophysical experiments. In such experiments, observers are presented
with displays of the 80 walkers and have to rate them on a 6 point scale with respect
to the respective attribute. Here, we report the results of rating two different emotional
attributes: happiness vs. sadness, and nervousness vs. relaxedness.
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4 Psychophysical determination of emotional attributes

The walking patterns were displayed on a computer monitor as point-light displays
subtending 5 deg of visual angle. Each of the 15 markers that were used for the above
computation was rendered as a white dot on a black background using orthographic
projection from one of three different viewpoints (0 deg = frontal view; 30 deg; 90
deg). The display therefore shows the positions of the major joints of the body
changing over time. This results in a vivid percept of a walking human body without
providing any information about the person except the one carried by the motion itself
[11]. Point-light displays have been widely used in experimental psychology in order
to isolate biological motion from other cues about identity, psychological and
emotional attributes of a person [12-17, to mention just a few of the classic papers].

A single rating session consisted of 80 trials with each walker shown once for 7 s in a
randomized order. All walkers within one session were shown from the same
viewpoint. In order to indicate their rating observers had to hit one of 6 buttons dis-
played on the top of the screen above the point-light display by using the computer
mouse. An intertrial interval of 3's, during which a blank screen was shown, separated
the trials. Six observers participated in the experiments. For three observers the most
left and right buttons were labeled “happy” and “sad”, respectively. The other three
observers were presented with the labels “nervous” and “relaxed”. Each observer
carried out three sessions, one for each viewpoint, with short breaks between the
sessions. The order of the three sessions was counterbalanced across observers.

The average of the ratings (across the three observers in each group and across the
three different viewpoints) was used to form a vector r which, in turn, was used to
compute the respective discriminant function c¢ according to Equation 5. The
animation at http: //mww.bml. psy.r uhr -uni-bochum.de/Demos/WDP2002. htm
visualizes the results. Animations both along the happy-sad axis as well as along the
nervous-relaxed axis give a clear percept of a change in the respective emotions of the
walker.

5 Discussion

Visualizing the respective discriminant functions shows that we have really captured
the particular attribute and that the resulting walker vividly changes its characteristics
in accordance with the intended characteristic. In all four cases examined so far,
changes are a complex composite of structural and dynamic properties of the walker.
For instance the exaggerated male walker has wider shoulders than hips whereas in
the female walker this ratio reverses. Male walkers display considerable lateral body
sway whereas this is not the case for female walkers. Hip motion in male walkers is
180 phase shifted with respect to the hip motion in female walkers. The position of
the elbows is very different in male and female walkers. Men tend to hold their
elbows away from the body whereas women hold them close to the body. In general,
the exaggerated man seems to attempt to occupy much more space than the
exaggerated woman -- a display not unique to the human species.
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The differences in waking between light and heavy walkers are much harder to
describe. Heavy persons have a somewhat smaller gait frequency and vertical
movement components seem to be more pronounced in light-weighted walkers as
compared to heavy walkers. However, there remains a discrepancy between the clear
percept of a change in weight and the ability to identify the sophisticated composite
features that communicate this information. The power of the proposed method for
generating characteristic motion, however, is that it is not necessary to specify the
features that carry the impression of changing biological or emotional attributes
explicitely. Instead, we can extract them in terms of the statistical features of a data
base that contains variations along the dimensions of interest.
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Abstract. All point tracking mechanisms sometimes fail due to ambigu-
ities in the visual data, a problem which can be alleviated by introducing
model knowledge in the form of constraints on groups of feature points.
Starting from a point tracking mechanism based on Gabor phases we
introduce model constraints, on the one hand by posterior regulariza-
tion (externally) and on the other hand by incorporating them directly
into the tracking mechanism (internally). In the special case of facial
feature tracking we show how the necessary model knowledge expressed
in the constraints can be learned without explicit user interaction. To
this end typical transformations of point groups are learned from noisy
but automatically determined correspondences via principal component
analysis.

1 Introduction

Tracking feature points reliably through a sequence of images is a much desired
skill for all applications where trajectories need to be measured and evaluated.
In this context Gabor wavelets have turned out to be well suited to determine
the disparity between two points from consecutive images [3, 4]. The phase of the
complex response to a Gabor filter varies nearly linearly for small translations
in the image plane [1], which allows disparity estimation with subpixel accuracy.
Another important feature are the multi-scale properties providing a very flexible
point description and the ability to robustify disparity estimation over a wide
range of scales.

Despite these advantages the tracking of individual feature points using Ga-
bor wavelets still suffers from local image ambiguities like the infamous aperture
problem that cannot be resolved without taking a larger context into account.
Such a context can often be provided by a set of constraints on a whole group
of points to be tracked. We propose a method which allows to incorporate the
constraints directly during disparity estimation. Full details about method and
results can be found in [3].

* Funding by European Commission in the Research and Training Network MUHCI
(HPRN-CT-2000-00111) and the German Federal Minister for Science and Education
under the project LOKI (01 IN 504 E 9) is gratefully acknowledged.
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2 Disparity estimation

In the tracking algorithm in [3] the disparity of a point from one frame to the next
is estimated in terms of phase differences of single Gabor jets with amplitudes a
and phases ¢. Extracting two jets at positions x and «', their relative disparity
d can be calculated by maximizing their similarity

s ok ak(@)ar(x') (1 — 0.5(¢r(x) — dr(z') — k7 d)?)
[T ()| (=) '

(1)

The disparity is first estimated using only the lowest center frequency k. Af-
terwards, in each iteration one additional level is added, and the corresponding
phase differences are corrected modulo 27. Thus, the lower frequencies can re-
solve the natural ambiguity modulo the wavelength for the higher frequencies. In
case the estimated intermediate disparity exceeds twice the actual width of the
Gabor function on the next higher frequency level, the process is terminated.

3 Tracking individual feature points

A tracking algorithm can be based on this disparity estimation, by executing the
following steps for each frame (the parameter « can be adjusted to the expected
variability of the visual features during tracking).

1. Extract jets J; (€1 (¢:)),...,Ji (@m (t;)) at current positions in frame I;.

2. Update model jets Jmode! (z, (¢;)) = (1 — ) JRO (z, (tim1))+ad; (x4 (t:)).

3. Calculate disparity to the jets extracted from the next image ;11 at the
same image-coordinates dy, = d;, (JT° (zy, (t:)) , Jis1 (®n (£:)))-

4. Calculate new positions in image I;11: @y, (tir1) = 2p (t;) + dy.

4 Tracking constrained groups of points

Constraints for the disparities d,, of the points n can only come from a parame-
terized model of the possible variations. They take the general form

dy— fn(€e)=0. (2)

In this situation f,, is a model of the possible group motion and € are the model-
parameters. E.g., if only image plane rotations are possible, € would contain the
center and angle of the rotation, and f, (€) the resulting displacement of point
n. In practice, the equality is relaxed to a minimization of the norm of the left
hand side of (2).

These constraints can be incorporated by first estimating the disparities as-
suming all nodes to be mutually independent and then calculating the con-
strained disparity configuration that is closest, in a least square sense, to the
estimated disparities. The disparities are subsequently changed to those given by
the constrained configuration. This method, which we call ezternal constraints,
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Fig.1l. Examples of automatically labeled faces: Displayed are 10 arbitrarily
chosen examples of a set of approximately 1000 images. The retrieved correspondences
are displayed by superimposing the bunch graph.

has serious drawbacks, as the separation of model knowledge and motion estima-
tion forces decisions while estimating the initial disparities, even if the available
image information is inadequate. This can cause small errors to accumulate and
the total tracking result to deteriorate.

A better way is integrating the the model knowledge directly into motion
estimation. Substituting constraints in the form of equation (2) into the phase-
based disparity estimation of equation (1), the constrained disparities can be
found by maximizing

S an(@n)an@(1 = 0.5 (du(@n) = dufd'= K7 £ ()")
(€= 2 EESIFER - ©

n

Applying a first order Taylor expansion and maximization in terms of Ae yields
a linear equation system for Ae, which can be solved during the coarse-to fine
tracking described above. We term this use of model constraints internal.

5 Learning constraints from example data

Having established the need for constraints and a good way to apply them dur-
ing tracking the question remains of how the correct constraints for an object
class can be found. An analytical description will only be feasible in the sim-
plest of cases, and it is desirable to learn the constraints from example images.
We demonstrate a solution to this problem on face tracking. We match a bunch
graph [6] onto a large set of more or less frontal faces. The resulting correspon-
dence fields are converted into vectors and subjected to Principal Component
Analysis (PCA) in a way similar to [2].

PCA yields the mean deformation and the deformations with the largest
variation in the dataset. The first 6 are visualized in figure 2. As it turns out the
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Fig. 2. Textured principal components of correspondence fields: The principal
components P; through Pg (top to bottom) of the feature point locations are illus-
trated here in terms of the mapping they perform on the standard gray value image

shown in the central column. Each row shows the deformation from the mean along
one principal component by -4,-2,0,2 and 4 standard deviations, respectively.

principal components are readily interpretable. They code transformations that
are easily identified and named by visual inspection. The first one is a mixture of
vertical translation and tilt, the second is horizontal translation, the remaining
four contain scaling and rotation in depth. This is remarkable for several reasons.
First, the results are based on a noisy database of automatically resolved corre-
spondences. Although the database contained a lot of different individuals and
was restricted to approximately frontal pose, the inter-individual variations (such
as, e.g., jaw size or eye distance) are not dominant. The main variations seem
to stem from geometrical variations. The only inter-individual variation visible
in the first six components is expressed in the independence of scaling in x- and
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Fig. 3. Tracking of faces: (a) shows the point positions on selected frames of a
sequence, (b) the tracking error over time for internal, external, and no constraints,
respectively. The constraints were derived from the first six principal components

y-direction (P3 and Pj5), which might be attributed to different head shapes.
Although no explicit knowledge about the three-dimensional transformations of
rigid objects went into the constraint construction, their main properties were
captured. Moreover, the degrees of freedom are nicely separated in an intuitive
fashion.

An accurate model of the group motion of the selected feature points can
thus be derived by assuming that the whole motion is restricted (or close) to
the space spanned by the first principal components P, through Pg. Thus, the
projection onto these components can serve directly as model parameters €.

6 Results

Although the correspondences derived from bunch graph matching are far from
perfect, the components with the highest eigenvalues seem to capture the major
transformations that a face undergoes (see figure 2). They can directly serve
as constraints and result in improved tracking performance. The results of three
tracking procedures, namely unconstrained tracking, tracking with external con-
straints and the method proposed here using internal constraints are compared
in figure 3(b) and clearly show the superiority of the latter.

Furthermore, the same constraints can be used to give rough pose information
and distinguish 3D-motion of a true face from a rotated image of a face. It is
remarkable how well the model captures the transformations of a moving face
although no image sequences were provided when deriving the model. If the
model parameters estimated by projecting the flow fields onto the first PCs are
plotted over time for a sequence showing a moving head, as it was done in figure
4, it can be clearly seen that the derived motion model can be used for more than
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(a) Head rotated by 30° (b) Journal cover rotated by 45°

Fig. 4. Principal components under rotation in depth: Shown are the projections
of the correspondence fields on P3, P4, and Pg, respectively, component as functions of
the frame number for a real head (a) and a flat photograph of a head (c) monotonously
rotating in depth. It can be clearly seen that P4 and Pg are closely related to a head’s
rotation in depth and its three-dimensional structure.

constraining the tracking. The transformation properties of faces, especially their
behavior under rotation in depth, are so well captured that the model parameters
themselves can be exploited to yield at least a qualitative pose estimation. The
experiment with the journal cover shows that the resulting horizontal scaling
can be clearly separated from the 3-D rotation of a real face.
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Abstract. In this paper we present an approach for the modeling com-
plex movement sequences. Based on the method of Spatio-Temporal
Mophable Models (STMMs) [7] we derive a new hierarchical algorithm
that, in a first step, identifies movement elements in the complex move-
ment sequence based on characteristic events, and in a second step quan-
tifies these movement primitives by approximation through linear com-
binations of learned example movement trajectories. The proposed algo-
rithm is used to segment and to morph sequences of karate movements
of different people and different styles.

1 Introduction

The analysis of complex movements is an important problem for many technical
applications such as computer vision, computer graphics, sports and medicine.
For several applications it is crucial to model movements with different styles.
One method that seems to be very suitable to synthesize movements with differ-
ent styles is the linear combination of movement examples. Such linear combina-
tions can be defined efficiently on the basis of spatio-temporal correspondence.
The technique of Spatio-Temporal Morphable Models (STMMs) defines linear
combinations by weighted summation of spatial and temporal displacement fields
that morph the combined prototypical movement into a reference pattern. This
method has been successfully applied for the generation of complex movements
in computer graphics (motion morphing), as well as for the recognition of move-
ments and movement styles from trajectories in computer vision [7].

In this paper, we extend the basic STMM algorithm by introducing a second
hierarchy level that represents motion primitives. Such primitives correspond to
parts of the approximated trajectories, e.g. individual facial expressions or tech-
niques in a sequence of karate movements. These movement primitives are then
modeled using STMMs by linearly combining example movements. This makes
it possible to learn generative models for sequences of movements with differ-
ent styles. The extraction of movement primitives is based on simple invariant
features that are used to detect key events that mark the transitions between
different primitives. Sequences of such key events are then detected by matching
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them to a learned example sequence. This matching is based on standard se-
quence alignment methods that are based on dynamic programming. We apply
this hierarchical algorithm to model and synthesizes complex karate movements.
In particular, we show that movement primitives from different actors and with
different styles can be generated and recombined to longer naturally-looking
movement sequences.

2 Algorithm

2.1 Morphable Models as Movement Primitives

The technique of spatio-temporal morphable models [6,7] is based on linearly
combining the movement trajectories of prototypical motion patterns in space-
time. Linear combinations of movement patterns are defined on the basis of
spatio-temporal correspondences that are computed by dynamic programming
[2]. Complex movement patterns can be characterized by trajectories of feature
points. The trajectories of the prototypical movement pattern n can be charac-
terized by the time-dependent vector ¢, (t). The correspondence field between
two trajectories ¢; and ¢, is defined by the spatial shifts £(¢) and the temporal
shifts 7(t) that transform the first trajectory into the second. The transformation
is specified mathematically by the equation:

Cat) = it +7(2)) + £(1) (1)

By linear combination of spatial and temporal shifts the spatio-temporal mor-
phable model allows to interpolate smoothly between motion patterns with sig-
nificantly different spatial structure, but also between patterns that differ with
respect to their timing,.

Segmentation

‘Warping

- o

Fig. 1. Schematic description of the algorithm to analyze and synthesize complex move-
ment sequences. In the first step the sequence is decomposed into movement primitives.
These movement primitives can be analyzed and changed in style defining linear com-
binations of prototypes with different linear weight combinations. Afterward the indi-
vidual movement primitives are concatenated again into one movement sequence. With
this technique we are able to generate sequences containing different styles.
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The correspondence shifts £(t) and 7(¢) are calculated by solving an optimiza-
tion problem that minimizes the spatial and temporal shifts under the constraint
that the temporal shifts define a new time variable that is always monotonically
increasing. For further details about the underlying algorithm we refer to [6, 7].

Figure 1 shows schematically the proceeding for generating linear combina-
tions of spatio-temporal patterns for complex movement sequences.

2.2 Representation of Key Features for Movement Primitives

For the identification of movement primitives within a complex movement se-
quences it is necessary to identify characteristic features that are suitable for
a robust and fast segmentation. Different features have been proposed in the
literature [4][3]. The key features of our algorithm are based on zeros of the ve-
locity in few ”characteristic coordinates” of the trajectory ¢(t). These features
provide a coarse description of the spatio-temporal characteristics of trajectory
segments that can be matched efficiently in order to establish correspondence
between the learned movement primitives and new trajectories. For the match-
ing process that is based on dynamic programming (see section ??) we represent
the features by discrete events. Let m be the number of the motion primitive
and r the number of characteristic coordinates of the trajectory. Let x(t) be
the ”reduced trajectory” of the characteristic coordinates that has the values
K" at the velocity zeros. The movement primitive is then characterized by the
vector differences Ak = k* — k™, of subsequent velocity zeros (see figure 2).
A formal description of the algorithm can be found in [8].

3 Experiments

We demonstrate the function of the algorithm by modeling movement sequences
from material arts. Using a commercial motion capture system (VICON) with 6
cameras and a sampling frequency of 120 Hz we have captured several movement
sequences representing a "Kata” from karate from two actors. The first actor
was a third degree black belt in Jujitsu, the second actor had the 1. Kyu degree
in karate (Shotokan). Both actors executed the same movement sequence but
due to differences of the techniques between different schools of martial arts
with different styles. In addition both actors also tried to simulate different
skill levels, e.g. by mimicking a yellow belt. Three sequences of actor 1 have
been segmented manually resulting in six movement primitives, which served
as prototypes to define the morphable models of the first actor (see figure 3).
Based on the 6 morphable models prototypical representations with key features
for the automatic identification of the movement primitives were generated in
the way described in section 2.1. The ”reduced trajectories” k(t) consist of the
coordinates of the markers on both hands.

3.1 Automatic Identification of Movement Primitives

Figure 4 shows the results for the identification procedure for one sequence of ac-
tor 2. The automatic segmentation was successful on for all 16 sequences recorded
from both actors. Figure 3 shows a morph that was created based on the auto-
matically identified primitives.
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4] Window w+1
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Sequence Window

Match
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Prototypical Movement Primitive

Fig. 2. Illustration of the method for the automatic identification of movement primi-
tives: (a) In a first step all key features ki are determined. (b) Sequences of key features
from the sequences (s) are matched with sequences of key features from the prototypi-
cal movement primitives (m) using dynamic programming. A search window is moved
over the sequence. The length of the window is two times the number of key features
of the learned motor primitive. The best matching trajectory segment is defined by
the sequence of feature vectors that minimizes 3 [|Axf — Axj*|| over all matched key
features. With this method a spatio-temporal correspondence at a coarse level can be
established.

3.2 Morphing between different Actors

Based on the movement primitives identified by automatic segmentation morphs
between movements of the two actors were realized. The individual movement
primitives were morphed and afterward concatenated into a longer sequence.
The details of this procedure are described in [5]. Figure 3 shows snapshots
from a morphed motion sequence, which corresponds to the ”average” of the
two original sequences. This sequence looks very natural and shows no artifacts
at the margins between the individual movement primitives. In cases, where the
styles of both actors are different, the morph generates a realistic movement
that interpolates between the styles of the 2 actors original movements. Our
technique is thus suitable to generate morphs that cover a continuous spectrum
of styles between the actors!.

4 Discussion

For the Karate data our algorithm successfully morphs between the movements
of the same, and of different actors without visible artifacts. In particular the
transitions between the individual segments are invisible. The method allows
the synthesis of the same Kata with different constant styles, or styles that vary

! Movies of the karate animations are provided on the web site http://www.uni-
tuebingen.de/uni/knv/arl/arl-demos.html
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Actor 1

Morph

v

Actor 2

Fig. 3. Snapshots from a sequence of karate movements executed by two actors and
a motion morph. The pictures show the initial posture at the beginning and the end
postures of the movement primitives 1-5. The end posture is similar to the initial pos-
ture. The morphed sequence looks natural and there are no artifacts at the transitions
between the 6 movement primitives. Especially interesting is the comparison between
the different karate styles of the actors that becomes obvious in the third movement
primitive (4th column). Actor 1 is doing a small side step with the left foot for turn-
ing. Instead of this, actor 2 turns without sidestep. The morph executes a realistic
movement that interpolates the two actors.

over the movement sequence. We were also able to create exaggerations of the
individual styles [5].

Interestingly, the algorithm even in the present very elementary form does not
lead to the artifact that the feet are slide on the ground plane. This seems to be
understandable because correct correspondence between the prototypical move-
ments automatically implies that these constraints are fulfilled by the morphs.
However, we expect that morphing between very dissimilar movements in uneven
terrains might require to introduce a special handling of such constraints.

Several other approaches rely on statistical methods like hidden markov mod-
els to perform a segmentation of movement trajectories [1] [4] [3]. The reason
why we prefer dynamic programming, is that our algorithm is also designed for
the quantitative analysis of patients with rare movement disorders [9]. This re-
quires algorithms, that contrary to most HHM-based methods work efficiently
with very small amounts of data. Our method has also been applied successfully
to face movements [5]. We think that the method is interesting for a number of
applications. Beyond obvious applications in computer graphics and the quan-
tification of movements in sports, we plan to apply the proposed method for
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Fig. 4. Results of the automatic segmentation of one movement sequence of actor 2
based on the prototypical movement primitives of actor 1. As an example, the identifi-
cation of the primitives 1 and 6 is shown. The diagrams show the distance measure ¢ for
different matches of the corresponding movement primitive over the whole sequence.
The circles mark the time of the matched key feature " in the sequence. Each match
of a whole movement primitive is illustrated by a row of circles with the same §. The
number of circles corresponds to the number of key features of the movement prim-
itive (in both diagrams two examples are indicated). Both movement primitives are
correctly identified by a minimum in the J-function.

the generation of stimuli for psychophysical experiments in order to test the
recognition of movement sequences in humans.
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Abstract. Psychophysical and neurophysiological studies suggest that
human body motion presented as point light displays can be readily rec-
ognized. So far it has not been investigated whether the recognition takes
place on the basis of stored innate templates or if we are able to learn
the discrimination of totally new complex motion patterns. To address
this question we generated novel artificial biological movement patterns
by linearly combining the trajectories of prototypical natural movements
in space-time that were recoded by motion capturing. After training the
subjects we found a significant improvement in discrimination perfor-
mance for all stimuli. Our results show that humans are able to learn
to recognize completely novel biological motion patterns and that it is
possible to learn the discrimination between these artificial stimuli. This
suggests that we do not purely rely on stored innate templates.

Introduction

The term biological motion is often used by researchers studying the patterns of
movement generated by moving animals and humans. By far the most frequently
studied biological motion is human gait. Johansson was the first researcher to
investigate systematically the perceptual sensitivity of the visual system for the
recognition of biological motion [1]. He developed a technique that minimizes
form information by presenting only the joint positions of moving actors as
illuminated dots. Psychophysical and neurophysiological studies suggest that
human body motion presented in form of such point light displays can be readily
recognized. Point light stimuli are sufficient to allow a discrimination of the type
of action and even the gender and other details of the walker [2]. However, the
perceptual impression of a walker usually breaks down, if the dots are presented
as stationary pattern [1]. Nevertheless, the small amount of motion information
provided by a few subsequent stimulus frames is sufficient for the visual system
to organize the elements into a coherent percept of articulated motion.
Sensitivity to biological motion stimuli arises early in the human develop-
ment. Sixteen - week - old infants already prefer a point light walker display
over the same display rotated by 180 degrees, or dynamic noise stimuli [3].
Additionally it has been shown, that by the age of 3 - 5 months, infants
are able to discriminate between a locally rigid point-light walker display and a
similar display, in which the local rigidity between the dots is perturbed [4].
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The sensitivity of infants regarding biological motion displays, has motivated
the hypothesis that perception of biological motion might be an innate capacity
of the visual system rather than acquired by learning through experience [3].

In this study we try to investigate whether the recognition and discrimination
of biological motion patterns takes place on the basis of stored innate templates,
or if humans are able to learn to discriminate completely new complex motion
patterns. To address this question we created novel artificial stimuli by motion
morphing. This technique allows us to create novel motion patterns that are
embeded in a metric space that allows to quantify the spatio-temporal similarity
between the morphs.

Methods

Stimulus generation

Stimuli were generated by tracking biological motion from video sequences show-
ing locomotion patterns (walking, running, marching), different types of physical
exercises (aerobics, boxing) and martial arts techniques. Twenty one different
prototypical motion patterns were recorded.

Motion tracking

The movement patterns were filmed using a Kodak VX 1000 camera with the
actor facing and moving on a line orthogonal to the view direction of the cam-
era. All movements were executed periodically, but only a single cycle of the
movements was used for motion morphing.

To track the trajectories of the movements, first the translation of the whole
body was subtracted from the video sequence by hand-marking the hip position
in a number of frames and fitting the translation of the hip by a linear function of
time. When the fitted translation was subtracted from the sequence, the resulting
movement looked like a person performing the movements on a tread mill. Twelve
feature points were tracked manually. These were the head, shoulders, elbows,
wrists, hip, knees and ankles.

The tracked trajectories were time-normalized and smoothed by fitting with
a second order Fourier series. Afterwards they were used as prototypes for the
motion morphing.

Motion morphing

To create morphs between different forms of biological motion we used the tech-
nique of spatio-temporal morphable models [5]. This method makes it possible
to generate new trajectories by linearly combining the movement trajectories of
prototypical motion patterns in space-time. Linear combinations of movement
patterns are defined on the basis of spatio-temporal correspondences. Complex
motion patterns can be characterized by trajectories of feature points, in our
case the 2D coordinates of the joints of the moving figure. With the help of this
method it becomes possible to interpolate smoothly between motion patterns
with significantly different spatial structure and also between patterns that differ
with respect to their timing. The twenty one recorded motion patterns were di-
vided into seven groups, each of them containing three prototypical movements.
For each group the stimulus trajectories were generated by motion morphing.
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Figure 1: (a) Graphical illustration of the pattern space. The positions of the points in the triangle
symbolize the relative contributions of the three prototypes. The distances of the points from the
prototypes are related to the weights of the prototypes in the linear combination. (b) Results of
experiment 1. Shown are the mean percentage of correct responses (+ s.e.m.) for the five blocks.

Weights define the contributions of the individual prototypes to the linear
combination. By adjusting the weights, it becomes possible to create a morph
that resembles more or less the individual prototypes. Hence, the class of gen-
erated biological movements is equipped with a metric for the spatio-temporal
similarity of the patterns.

Separately for each of the seven groups we generated morphs from the three
prototypical patterns within this group. The prototypical patterns were arranged
in such a way, that the morphs of three of the groups resembled natural human
movements, while the other four looked quite unnaturally. The weight of the
first prototype was always chosen from the set of [0.33, 0.45, 0.53, 0.56, 0.6, 0.7,
0.8, 0.9, 0.95]. The remaining weights were equal to 1/2 (1 - weight of the first
prototype), because the sum of all weights for each morph was restricted to one.

It has been shown, that stimuli created with the help of this technique allow
for smooth and continuous variation of the categorization probabilities with the
weights of the prototypes in the morph [6].

Stimulus presentation

The biological motion stimuli were generated with an Apple Macintosh G4 com-
puter and displayed on a Sony color monitor (75 Hz framerate; 1024x768 pixels
resolution). The monitor was viewed binocularly. The locations of the points in
the display were at the ankles, knees, elbows and wrists. Because the locomotion
patterns were presented from a side view, only one dot was presented at the
hip as well as the shoulder. The 10 black stimulus dots had a diameter of 0.5
degrees of visual angle and were presented within a virtual window, centered on
the screen of the monitor on a white background. The size of the whole figure
was about 5 x 10 degrees and the center position within the virtual window was
randomized uniformly within an interval of + 2 degrees horizontally and verti-
cally.

Procedure
Subjects watched the computer screen from a distance of 40 cm. They were
briefed about the experimental procedure and were given the opportunity to
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practice for seven trials showing one example stimulus from each of the seven
groups. In all the trials, morphs with equal weights of the prototypes (center
stimuli) were compared to morphs with non-equal weights (off center stimuli)
in a pair comparison paradigm. First a single center stimulus was presented for
six movement cycles, followed by the same center stimulus next to an off center
stimulus generated from the same triple of prototypes, again for six cycles. In a
two alternative forced choice test, the subjects were asked to choose the stimulus
that was identical to the center stimulus that had been presented before.

The experiment consisted of test blocks and training blocks. In the test
blocks, each of the seven groups was presented three times, while in the training
blocks every group was shown eight times in random order. The prototype that
was contributing the most to the off center stimulus was randomly chosen in all
cases. As can be seen in figure 1a), the weights of the off center stimuli were
different for test and training. Therefore the test patterns were more similar to
the center stimuli than the training ones. In preceding piloting experiments the
individual weights for the seven groups were calibrated to assure that the diffi-
culty level within test trials and within training trials was similar. During the
training the subjects received feedback after each trial whether their response
was correct or not. In the test blocks no feedback was provided.

The experiment consisted of three test blocks intersected by two blocks of
training. After the experiment the subjects were asked to categorize each of the
seven groups into natural and artificial looking movements.

In a control paradigm three consecutive test blocks were presented, followed
by one training block and another test. This control experiment served to test
whether spurious learning occurred during the presentation of the test trials.

Subjects

We tested 14 naive subjects in the discrimination and 7 naive subjects in the
control paradigm. All subjects had normal or corrected-to-normal vision. They
were tested individually.

Results

All subjects perceived every biological motion pattern as a human being, per-
forming different kinds of exercises. Yet the interpretation of the underlying
action was very different between subjects.

Figure 1b shows the averaged results over all 14 subjects. It can be seen that
there is a gradual improvement in performance in the test blocks starting from
62% to about 85% in the third test. In contrast to the first test session, the
correct responses in the first training block were already way above chance level
(> 80%) and there was no significant improvement in the second training block.

A one-way ANOVA for repeated-measurements comparing pretest, posttest 1
and posttest 2 showed that the observed increment in performance was significant
(F13 = 16.3;p < 0.001). A Wilcoxon signed rank test was performed on the
data comparing the results of the pretest with the first posttest. The results
of this analysis revealed a significant difference between these two blocks (p <
0.001; W+ = 1.5;W— = 76.5). No significant difference was observed between
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posttest 1 and posttest 2. However we found that the performance of the second
posttest tended to be slightly higher compared to the first posttest.

The results for the test blocks sorted by the categorization judgments (nat-
ural/artificial) are presented in figure 2a. The mean percentage of correct re-
sponses separated for the groups of morphs that subjects classified as natu-
ral are shown in black, while the performances for the artificial looking move-
ments are presented in gray. The gradual improvement during the test sessions
seems to be uniform for movements categorized as natural looking as well as for
movements the subjects classified as artificial. A two-way ANOVA for repeated-
measures with the factors condition (Pre, Post1 and Post2) and category (natural
/ artificial) was performed on the data obtained from the categorization judge-
ments. The results of this analysis show a significant main effect of condition
(F13 = 13.3; p < 0.001) but no mean effect for category (Fi3 = 0.9;p > 0.1) and
no significant interaction (Fiz = 0.7;p > 0.1).

The results of the control paradigm are presented in figure 2b. It can clearly
be seen that there is no improvement in performance over the three consecutive
test blocks. The probability for correct responses was around 60% in all blocks. A
one-way ANOVA comparing the three pretests revealed no significant difference
(Fg = 0.7;p > 0.5). However, if we compare the third pretest with the first
posttest in a Wilcoxon test, we find a significant difference (p < 0.05).

Discussion

We have investigated the ability of human observers to learn the discrimination
between new complex artificial stimuli. At first, we found that all subjects were
able to learn to recognize completely new biological motion patterns.

Starting slightly above chance level, the subjects reached a level of about
85% correct responses after the two training sessions. Even one training block
was sufficient to significantly increase the performance. However, if we tested
subjects on three consecutive test trials without feedback, the number of correct
responses did not increase. This suggests, that intermediate training together
with feedback signaling whether the subjects answers were correct or not, was
critical to improve performance. That is consistent with other studies, showing
that discrimination performance can be improved by an “easy-to-hard” proce-
dure. Subjects, that are first exposed to easy, highly separated discriminations
along one dimension perform much better on subsequent more difficult discrimi-
nations along the same dimension. A possible explanation is that first presenting
the easy discrimination allows humans to allocate attention to the relevant di-
mension [7].

With the help of the technique of motion morphing we were able to generate
a pattern space in which the spatio-temporal similarity of the movements could
be controlled by the weights of the prototypes. The fact that the performance for
the first training block was much better than that for the first and second test
block is consistent with the fact that the training patterns were more dissimilar
to the center stimuli than the test patterns.

The main interest of this study was to investigate whether humans purely
rely on stored innate templates to discriminate biological motion. The results of
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Figure 2: Results of experiment 1. Shown are the mean percentage of correct responses (+ s.e.m.)
for the pretest and the two posttests. The data is split up in the performance for the groups,
subjects classified as natural looking (black) and artificial looking (grey). (b) Results of the control

experiment. Shown are the mean percentage of correct responses (+ s.e.m.) for the five different
blocks.

our experiments seem to suggest that new templates can be learned. It seems
unlikely that the recognition was purely based on innate templates, otherwise
subjects should have more difficulties to discriminate between movements that
appeared artificial than between those they classified as natural looking.

Our results clearly indicate that learning of complex biological motion pat-
terns is possible and suggest that humans do not purely rely on stored innate
templates. However, we cannot exactly specify the underlying learning process.
For example, it remains unresolved whether the subjects exploited local or global
features of the biological motion pattern to improve their performance. This mo-
tivates further studies that include more precise control of the strategies that
subjects use in order to perform the learning task.
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Abstract. We describe an approach for the autonomous detection of
skin-colored moving objects in man-machine-interaction scenarios. Based
on low-resolution video images from an optically and mechanically un-
calibrated low-quality camera, a simple image-processing algorithm ex-
tracts two visual cues from the scene: color and movement. By fusing
these cues in real time, an implementation of the approach detects and
tracks important scene-elements such as the moving hand or the face of
a human interaction partner. The system builds a substantial part of an
upcoming multimodal man-machine interaction system for mass-market
applications.

1 Man-machine-interaction for mass-market applications

Currently, keyboard, mouse and text-based output on the monitor are still the
most common means of communication between man and computer. However,
regarding the tremendous development in speech recognition, image processing
and virtual reality, it becomes obvious that in the future it will be possible to
interact with machines by means of more natural communication channels such
as speech, gestures and mimics. Although highly specialized solutions do already
exist, the real breakthrough will happen once the systems become cheap, stan-
dardized and robust enough to be integrated in mass-market devices available to
everyone (see Fig. 1). A major driver for this development will be the availability
of robust recognition techniques which put only low demands on the hardware
and processing power. These techniques should require only a minimum of cal-
ibration and adaptation by the user and no specific setup of the environment.
In this paper we describe such a robust recognition technique which is able to
track dynamic human hand movements based on ultra low-resolution video im-
ages from an optically and mechanically uncalibrated webcam. The aim is to
implement a means of specifying and selecting objects displayed on a computer
monitor just by pointing at them (see Fig. 1 and [2]).

2 An image-processing algorithm for extracting color and
movement

The basic idea of our approach is the following: dynamic hand gestures are
characterized by two basic features which correspond to so-called early visual
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Fig. 1. Possible application of multimodal man-machine-communication in a wvirtual
shop scenario: the user communicates with an artificial personal assistant on his tv-
set (here in the lower right corner of the screen) by means of speech, gaze, pointing-
and head-gestures using uncalibrated cheap devices like webcam and microphone. A
combination with a video-conferencing system for the simultaneous communication
with human partners (upper right) is planned.

cues in neurobiology (see also [1]): the object to track (i.e. the hand) has a
specific color (i.e. the color of skin) and it moves in the image with a characteristic
speed. Of course, there are many more high-level cues, such as the form, texture
or specific trajectory which characterize a moving hand [3]. However, in order to
be fast and robust, we stick with the simplest approach that still does the job. For
similar reasons we want to get along with video from a monocular webcam only.
As capture format we choose 80x60-RGB video images from a camera standing
at an arbitrary position besides or on top of the monitor. The only requirement
is that the hand is visible by the camera when it points to any position on the
screen.

In the following, we describe our detection algorithm in detail. At first, the
video stream is transformed from RGB to the Hue-Saturation-Intensity (HSV)
color model in which H defines the so-called color-angle independently of the
overall intensity (compare also with [4]). The full 360° color-angle is mapped
onto the interval H € [0,1]. Human skin has an empiric color angle around 0°,
so we generate a binary image Igin(t) in which all pixels s in a small range
cos(2mHg) > cskin around the skin-color angle are set to Igin(rs) = 1 while all
other pixels k vanish (i.e. Isin(7x) = 0). The vector r; denotes the position of
the corresponding pixel 4 in the image. From the definition of the HSV-color
model it follows that for low intensity and saturation, the color angle is not well
defined. In the sunlight with high intensity V', white colored objects tend to have
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a color angle similar to the human skin. Therefore, we ignore pixels that exceed
an empirically chosen constant range for .S and V. Summarizing, we have:

Iskin('ri) = {
Next, we extract movement from the intensity-image V using a dynamics
Linean (t) = a(V(t) — Imean(t)) (2)

which, depending on a > 0, follows the temporal change of the intensity image
V (t) over a time scale 7 = o~ L. In the difference image Iig (t) = [V (t)—Imean(t)],
only those areas appear that change on a time scale faster than 7. Hence, the
image Lqig (t) represents movement and the static background is suppressed (see
Fig. 2, upper right panel).

1if (cos(2mH;) > cekin) and (S; > ¢s) and (cy1 < Vi < cya)
0 otherwise

(1)

Fig. 2. Original video (upper left) in 80x60 resolution RGB24 captured by a webcam
on top of the monitor. The skin-image Isin (lower left) and the difference image Iqig
(upper right) are multiplied to obtain the fused image Ifuse (lower right). The position
of the maximum of the fused image is fed into the tracking dynamics and marked with
a cross in the original image (upper left).

We are interested in movement of skin-colored objects only. Therefore, we
fuse the color information with the movement cue. Based on the binary nature
of the skin-color image Igin (%), this can simply be done by multiplying the cue-
images pixelwise:

Ifuse(t) = Iskin(t) * Idiﬂ (t) (3)
In this fused image only those pixels appear that move and are skin-colored. We
estimate the overall amount of movement in the fused image by calculating the
number S(t) = >, (Tuse(7i, ) > Imin) of pixels which exceed a level Iy.
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Finally, we simply track the maximum of the fused image by feeding its
pixel-position 7. (t) = arg max; Ityse (75, t) into a fixed-point dynamics:

o (t) = )\tanh(S(t) ; Smin) +1 (e () — 7o (1)) (4)

Herein, Spin is a parameter which guarantees that the movement is only tracked,
if it exceeds a certain amount, i.e. if the number of active pixels in the fused
image exceeds a given threshold. The dynamics (4) ensures that only continuous,
smooth hand movements on the time scale A™! are tracked while spontaneous
jumps (e.g. due to sensor noise) are filtered out.

3 Cursor control by means of pointing gestures

By setting the parameters appropriately (for their concrete values see next sec-
tion), the algorithm can find and track any skin-colored moving object in the
video image. However, for man-machine-interaction tasks, the machine must
know the pointing direction in the current scene, i.e. in real world coordinates.
Therefore, a method must be found which transforms the video-image-based
coordinates r,(t) into normalized coordinates () on the computer screen.

An exact form of this transformation could be derived on the basis of the
relative position of the camera with respect to the screen and the distance be-
tween hand and camera. While the former requires a mechanical calibration of
the camera, the distance information can only be obtained by using complex
algorithms like optical flow analysis or by means of a stereo camera system.

However, for the applications we have in mind, neither a stereo camera nor
an exact mechanical calibration is possible: the system should work already after
just placing a webcam on top of the monitor. On the other hand, for the virtual
shop scenario no high precision cursor control is required as only objects which
cover large portions of the screen are to be selected by the pointing gesture.
Therefore, we implemented a very simple method similar to the classical mouse
control: we assume that all possible coordinates 7, (t) cover roughly a rectangular
region in the video image and map this region onto the rectangular screen by
the following transformation:

T, (t) — 7o

re(t) :=
ot Thi — Tlo

(5)
The vectors 71, and 7y; represent the lower left and the upper right corner of
the rectangle in the video image. These vectors are determined during an initial
calibration phase in which the user is asked to point to the lower left and upper
right corner of the monitor. The normalized screen coordinates r(t) are used to
control the position of the mouse pointer of the operating system.

4 Experimental results

We have implemented the algorithm in the form of a small MATLAB program
(30 lines of code) using the VEM-capture plug in [5] and a Winnov PCMCIA-
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Camera on Microsoft Windows. Using a video-resolution of 80x60 pixels and
setting the parameter values cgin = 0.85,¢cs = 0.05,¢cy1 = 0.3,¢cv2 = 0.9, =
0.9, Inin = 0.1, A = 0.1 and Spin = 20, hand movements can be tracked robustly
independent of the user’s tone of skin, the actual lighting conditions, the back-
ground and the position of the camera: as long as the hand is in the camera’s
field of view and represents the only skin-colored moving object, its movement
is tracked (see Fig. 3). Due to the extreme simplicity of the algorithm, problems

Fig. 3. Robust hand-tracking in the presence of skin-colored but static distractors
(upper left), with different camera position (lower left), for different persons (upper
right) and with difficult lighting conditions (lower right).

arise when in addition to the hand another skin-colored object moves through
the field of view. In that case, the system may switch from the hand to tracking
the distractor. In practice this happens, for instance, when the user adjusts his
seating position and moves his face or when other people move behind the user.
However, as the user can observe the state of the tracker at any time, he can
attract the "attention” of the system again by waving the hand anytime a track-
ing error is detected. In an interactive man-machine-communication scenario this
behavior appears to be quite natural.

The transformation from video image coordinates to screen coordinates works
relatively robust: in all experimental runs it was possible to use the screen co-
ordinates r(t) for controlling the windows mouse cursor. By reducing the task
to the selection of one of nine rectangular areas on the screen, even naive users,
who were unfamiliar with the operation of the system, were immediately able to
select the corresponding regions by means of pointing gestures (see Fig. 4).
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Fig. 4. Selecting rectangular areas on the screen by means of pointing gestures (here,
the lower middle region was selected). The rectangle on the video image (upper left)
indicates the region (rni, 71,) resulting from the calibration phase.

5 Conclusion and outlook

We have presented a simple algorithm for tracking skin-colored moving objects
based on the visual cues color and movement. The robustness against varying
lighting conditions, camera position and background allows non-experts to use
the algorithm in uncontrolled real world applications. The algorithm operates on
low level sensor information (images) only and can be implemented in a highly
parallel manner. The concept of cue-fusion by multiplication allows for a seamless
integration of additional information such as a detector which separates head-
from hand-movement.

Our work proves that high level behavior such as the robust visual tracking
of specific objects can be generated by the direct fusion of low level (i.e. early)
sensor information.

Future work will deal with the separation of head- from hand-gestures by
means of additional cues and the integration of the algorithm into a multimodal
man-machine-interaction scenario.
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Abstract This paper features a method for acting in a real world en-
vironment with rapid dynamics, based on behaviors with different com-
plexity, that emerge from: (1) direct sensing (2) on-line prediction about
the future development of the environmental dynamics, and (3) internal
restrictions derived by the robots strategy. The method is built upon the
understanding of perception as dynamic integration of sensing, expecta-
tions, and behavioral goals, which is necessary when the environmental
dynamics depends also on other intelligent agents. T'wo central aspects
are considered: prediction of the development of environmental dynamics
and the subsequent integration. The integration captures the dynamics
of processes that happen in different temporal intervals but relate to
the same perception. A real time object tracking method that is used
is briefly described. Experiments made in a RoboCup environment with
physical robots illustrate the plausibility of the method.

1 Introduction

In real-time dynamic environments reactive control has proven to be advanta-
geous to the usage of symbolic representations and world modeling alone [1].
Reactive control relates direct sensing to robot actions, reflecting the under-
standing of perception as sensing. In this work is argued, that perception has
to be considered as dynamic integration of factors related to the surrounding
environment as sensing and predictions about the expected changes in the envi-
ronmental dynamics, and the internal constraints of the robot as derived mainly
by its behavioral goals. The internal constraints are also shaped by the robots
physical body and the predefined constraints of the environment. Such an as-
sumption is by far more realistic when the underlying environmental dynamics
can deliberately be changed by other intelligent agents.

The integration is worked out within the application framework of the Robo-
Cup scenario: competing robot teams in a soccer game. Since the goals of the two
teams are obviously incompatible, the opposite team can be seen as a dynamic
and obstructive environment [5]. The context of the environment narrows the
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possible specter of plausible actions. Since sensor readings are available and
behavioral goals are definable during the robots operation, the prediction of the
opponent players behavior (which in a general context is a prediction of the
dynamics of the environment) will further determine the best action.

Gross et al.[4] and the preceding works of Kosslyn [6], Moeller [8], and Pfeifer
& Scheier [9] emphasize on the interrelated nature of action and perception, and
lead towards an anticipatory model of perception, i.e. perception defined by the
anticipatory action. Gross et al.[4] realize an internal anticipation and evaluation
of several alternative sensory-motor sequences as a basis for an action-oriented
perception. In addition, search methods are proposed, that will help selection of
anticipative action. The performance of this neuro-biologically plausible model
showed good results in navigation tasks in a static environment.

In dynamic environments however, the behavioral goals, which determine
rather strategy-defined than logically straightforward actions, is a substantial
part of the perception-action cycle. For instance, often in a real world the pre-
diction of what is going to happen will determine one type of behavior, but goals,
which have to be achieved can lead to completely different behavior.

To enable prediction, visual input data needs to be processed. The most
widely used approach for object recognition in RoboCup is assigning pixels to
color classes by thresholding, segmenting images by color, and assigning objects
to so-called blobs in the segmented data [2]. It is clear that thresholding needs
adjustment in different environments and that blob assignment to objects works
only under highly restricted conditions. A newly developed approach that is
robust under lighting conditions and that makes use of knowledge from the
environment is proposed.

This paper is organized as follows: Section 2 outlines our hypothesis and
approach. In Section 3 the vision method that is developing towards the state-of
the art requirements of the sensing system is described. Section 4, features the
prediction method. Some results with data from real games are shown. Section 5
outlines the integration process and finalizes the paper.

2 Perception-action model

The suggested perception-action scheme (Figure 1) accentuates on three ele-
ments of the action-oriented dynamic perception: direct Sensing, Predictions
(expectations) and Behavioral goals and constraints. Sensing denotes the infor-
mation, that is directly recorded by the sensors. It refers to the instant moment.
Predictions are made on the basis of the on-line learned information about the
environmental dynamics during the recent history and describe the expectations
about its future development, i.e. it describes a future time event. The Behav-
ioral goals (and constraints) reflect the available knowledge to the robot about
the short-term goals it has to fulfill by taking the restrictions of the environment
and its physical body into account.

Moreover, since perception is an intrinsically active process, it guides the
actions of the robot and, conversely, the actions can take place in order to capture
sensory information. The integration of the instant perceptions in the context
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Figure 1. Proposed scheme of the perception-action interplay. The dynamic nature of
this cycle is not explicit in this scheme, but has the following meaning: A history of
sensing triggers predictions, the predictions shape the short-time behavioral goal which
determine the action. Conversely, the action can be chosen to gather specific sensory
information.

of the current situation (e.g. learned experiences and prediction about future
development of the environmental dynamics) is the ultimate aim to be achieved.
The plausibility of this model has few aspects. First, it is closer to the actual
nature of the perceptual process. Second, the multi-agent dynamic environment
adds another degree of complexity to the behavior-oriented robotics: the robots
action depends on various moving objects, some of which can commit deliberate
changes into environmental dynamics due to opposite behavioral goals.

3 Object recognition

The proposed system for object recognition is build on a novel solution of real
time object recognition. A combination of color and spatial reduction of im-
age data insures a strong reduction of the visual information stream, and eases
real time processing. Due to the fast dynamics of the environment this reduc-
tion is advantageous to all existing object recognition and tracking methods in
RoboCup. The method insures real time perception and therefore makes predic-
tion possible.

Detection of objects for a soccer playing robot comprises the following stages:
color space reduction, spatial data reduction, color grouping, and object recog-
nition.

Color space reduction transforms a full color image to an image of 7 different
colors, white, black, green, blue, yellow, orange, and magenta. This reduction
method is similar to the evaluation of colors by humans and therefore robust to
lighting conditions, contrast differences, and moderate noise. Spatial reduction
is performed to guarantee real time processing and is obtained by constructing
a two dimensional perspective grid. The gridlines are obtained by calibration of
both lens and camera angle with respect to the playground. The gridlines are
separated by steps of 10 cm in the real world, which suffices, since all objects are
at least 20 c¢m in size. The constructed grid is used to perform color segmentation.
Objects, in turn, are evaluated as a set of segments and evaluated by their
physical properties.
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Figure 2. Robot path by no-attack a) and attacks from the left b).

4 Forecasting the environmental dynamics

Forecasting is build upon learning of the opponent robots behavior, or (initially)
on the assumption of what the opponents behavior might be in the current
scenario. Real-time prediction of the upcoming event based on on-line coming
sensory cues is a very ambitious task. Instead, the forecast of a "type” or a
"model” of the opponent behavior, is made during the ongoing game.

The on-line learned information of how the environmental dynamics tends
to change, is a basis for predicting the complete upcoming event. The on-line
coming sensory readings alone can be a base of a prediction of upcoming temporal
history of the considered variables, if a drastic change does not take place. In
environments with rapid dynamics unexpected changes are very possible. To
cope with that fact, a representation on event level of abstraction is needed,
together with incorporating the knowledge for the behavioral goals, the robot
has to achieve.

More concretely, forecasting is build upon learning of the opponent robots
behavior and the ball trajectory, or (initially) on the assumption of what the
opponents behavior might be in the current scenario. For experimental testing
an attacker-robot is used, that has to predict the goalie behavior. Within the
RoboCup scenario, there are several possibilities for the behavior of a goalie: it
opposes the movement of the ball; it opposes the movement of the ball and the
attacker, it makes intermediate strategic movements (for instance in randomly
chosen direction) in order to increase the complexity of the attackers decisions,
the robot has unpredictable behavior (due to inaccuracy or malfunctioning).

It is important to say that the robot soccer programming and development
environment provides processed sensory information in real time. For instance,
instead of raw images, time series of distances and angles to the ball, goal,
and recently other robots are available. In addition, the dynamics of behaviors
like " following the ball” or ”avoiding obstacles” can be recorded. A snapshot of
sensor recordings and behavioral dynamics during a RoboCup game are shown
in Figure 3a.

By combining the data from sensory and behavioral tracking the trajectory
of the goalie is restored. The robot trajectories from many games and from simu-
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Figure 3. a) Recordings of sensor and behavior time series from a soccer game. b)
Correlation between ball angle (top) and angular velocity of the robot (bottom).

lations are clustered by a neural gas algorithm [7] to represent various attacks or
non-attack situations. In Figure 2 two typical trajectories of a goalie are shown:
no attack (Figure 2a), and two subsequent attacks from left (Figure 2b). The
trajectories, as clustered by the neural gas algorithm are used to derive the time
the attacker has and the itinerary it has to take.

Once the dataset of trajectories are clustered, on-line classification of data
takes place. The type of the attack situation is distinguished and the correspond-
ing trajectory can be added to the attackers "normal” movement.

In the second experimental stage the relational trajectories are clustered,
instead of trajectories that describe the movement of the robot. The relational
trajectories describe the behavior of the goalie with respect to other moving ob-
jects: the ball and the attacking robot. Figure 3b illustrates that there is a strong
correlation between the direction of movement of the ball and the response, i.e.
the movement, of the goalie. Strong correlations can be found as well between
the movement of the goalie with respect to the combined trajectories of ball and
attacker.

5 Integrated perceptions in perspective

The dynamic interplay between the three elements (sensing, perception and be-
havioral goals) reveals the following stages: Initially, sensing and the straightfor-
ward behavioral goals are naturally integrated into the programmed behaviors.
Acting in dynamic environments requires forecasting the tendency of environ-
mental changes for adapting the behavioral outcome. Drastic changes in the
robots surrounding indicate dynamics, caused by the actions of other intelli-
gent agents or moving objects. They accentuate the need of incorporating the
strategic knowledge, expressed as emerged short-term behavioral goals into the
behavioral system. The three elements finally are expressed as trajectories or
deviation from the trajectory, that will be taken by direct sensing only. Hence,
the integration task transforms to combining the corresponding trajectories.
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Previously, integration based upon temporal coherence principle has been
proposed [3]. Due to its dependence of temporal cooccurrence of the information,
the approach is not directly applicable for events that have happened in different
temporal segments: sensing (current time), predictions (reflecting a future event,
estimated on recent history), and (predefined) strategic knowledge. In this work
the temporality is defined as relatedness to an event. After defining which part of
every trajectory is related to the same event, the method proposed in [3] can be
applied. In addition, the combination of the three trajectories has to cope with
the problem of competing aims and is a self-contained problem to be solved in
the future.

The suggested prediction method remains the central problem in this work.
It has been put forward, that the prediction has to be made only within the
interdependence of sensing and behavioral goals. The prediction captures the
strategy of the goalie trough on-line analysis of the motion trajectories of the
robot and its surrounding objects. To accomplish the on-line analysis, classi-
fication to previously learned types of behavioral models is made. The neural
gas algorithm allows inclusion of a new class, if an unknown situation is en-
countered. As discussed before, this makes it suitable for on-line processing. An
on-line version of the algorithm, that does not subdivide between clustering and
classification will be considered. Additional experiments will be made that adapt
to the extensions of the newly developed vision system.
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Abstract. The results of single-unit recordings from area MST duiing the
execution of smooth pusuit eye movernents suggest tha these neurons codefor
the target movement within an externd frame of reference. We supprt this
assunption by the reslts of electical stimulatons within area MST.
Stimulation dfects the ongoing pursuit in a predictive and mndstent manne
accading to the peferred direcion at a given site. We observed more
pronounced effects of stimulation if thetarget was absent duiing stimulation.

1 Introduction

One important coseqience of the procesing of dynamic visual scenes is the
execuion of smooth pursut eye movements (SFEM). The smtial resdution of our
visual system declines dramatically with eccentriciy. Therefore we are costantly
performing saccades(up to five per ®cord) to direct the fovea tavards items of
interest h our visual suround ard to utilize the high spatial resdution of foveal
vision. Whenewver such an item moves, we exeaute SPFEM to maintain the retiral
image d this item on or near tre fovea. It iswell estalished that the neuronal activity
in the middle syerior temporal area (MS) in the pogerior paretal cortex of non-
human primates is involved in the generation of SPEM (see Ilg 1997). Hre, we
addres the qledion whether this area process exclusively visual information or,
alterratively, proceses visual and extra+retinal information.

2 Pursuit-related activity recorded from area MST

Wherever reuronal reporses are recorded ding execuion of SFEM, the origin of
this activation has to be detemined carefdly. One posible urce is self-induced
retinal image motion if pursut was performed acros a visible baclground auch as the
bordersof a conputer monitor. To awid this source, he pursit experiments have to
be execued in anab®lutely dark laboratoryequippedwith a backprojection system
onto a tamgent screerfor the visual stimuli. Another visual source is he retnal image
motion of the target itself. Since SEEM can only be perbrmed in the pregence of a
moving target, it is very difficult to avoid retinal image motion of the taget itself. We
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decided to use animaginary target defined by peripheral visual cues. We initially
trained the monkeys to track the cenre of an hour glass. The imaginary target
corsisted of the hour glass with a blanled cerral area. V¢ previously reported tht
rhesus monkeys could be traned to direct tieir eyestowards animaginary target (llg
ard Thier 1999). Figure 1 $iows the pike raes of anindividual neuron in area MJ
during pursuit of the real ad imaginary targets. A statistical aralysis revealed tlat the
regporses to both targets were not sgnificanty differen. Basd on the resits from
pasive visual simulation, we were able to gclude the posibility thatthe repon to
the imagirary target was due to simulation of peripteral partsof the receptie field. It
is important to note that we did not observe this indepemnlence of discharge rat from
type of pursuit target when we recorded fom the middle temporal area (MT). A
others (Newsome et al. 1988; Thier ard Erickson 1992), ve corclude hat individual
neuronsin area MBT ercode targt movement in gpace lased ona canbination of
retinal image motion and eye movement relatedsignals.

right
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Fig. 1. Respons of a nairon recorded from Area MST duiing pursuit towards real (A) and
imaginary target (B). The real target condsted of an hour glass (size 20°); in the case of the
imagnary target, the central area (12°) was blanked. The uppe row of raster display and the
black spike densty fundions give the respons during purstit in the preferred direction; the
lower row and thegray densty fundionstheresponse in the non{preferred direction.

3 Intracortical microstimulation within area M ST

To verify the aboe mentioned hypothesis, we appled intracorical microgimulation
(ICMS) within area MSTat steswith known preferred directiorduring the exeaution
of SFEM. The gecific location of area MSTwas deternined duing the aboe-
mentioned single-unit study. We used ICMS in two differert pursuit conditions. In
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both conditions, a fixation target was presetted in the cetre o a tarment screen
Visual targets were backprojectedonto this screa in absdute darkness the borders

of the prgecion screenwere not visible for the monkey. After a fixation period of
1000ms, the pusuit target started to move ata castant velocity (10°/s). Simulation

currert ranged from 40 A to 120pA. Simulation garted 200ms after the onset of

target movement and laded for 200ms. In the first condition, the moving pursuit

target was \Jsible while we applied ICMS. In the secod condition, the targt was

switched off during the ICMS perbd. To deermine exacly the stimulation efiect we

sanpled eye movement data during idertical control trials laking ICMS. Eadt

condition was measured ten times; trials ¢ all conditions were pesened in

randomized order. The intiation of SFEM is accanplished by the time of the initial

saccade. Bst-saccadic ehancement guarantees that eye velocity matches target

velocity after the initial saccade (isberger 1998). $nce his saccade lavays appeared
during ICM S (mean saccadiclatercy 394 +-96 ms, n=11840),we decided to se the

pod-saccadic ge-velocity (50ms time window) to quantify the dfect d ICMS. We

compared ge velocity from stimulated trialswith eye velocity from non-stimulated
trials to cdculate avector d stimulation dfect (VSE) for eachmeasired pusuit

direction Figure 2 shows a typical example of the dfects of ICMS in area M5T

during exeaution of SFEM. Single trials were aligned to the end of the initial saccaé

and median eye velocity traces were calclated. As Figure 2A shows, ICMS

influenced possaccadic ge \elocity. If the directionof pursuit was in the preérred
direction of the stimulated #te, the stimulation yielded & increag in pog-saccadic
eye velocity. This effect of ICSM was stronger if simulation was appied when the

pursuit target was switched off, but did not change its direcion.

0 T
A = B
w |
o
. ™ |
z |
[*]
s
s 0F---p-F----—- F-=--F-F---=-
>
Qo
-15 " i " -
-200 =100 0 100 200 =200 -100 0 100 200

time [ms] time [ms]

Fig. 2. Mean eye velocities during execution of SPEM in the preferred direction & the
stimulation site. Single trials were aligned to the erd of the initial saccaé. Bdd eye \elocity
profiles represent the eye velocity obtaned from stimulated trials; nomal profiles represent
control trials without ICMS. The occurrence of ICMS in theindividud trial is indicated by the
horizontal lines. In A, the pursiit target was visible throuchou the entire trial; in B the target
was switched off duringICMS. The gray rectangles mark post-sacadic velocity.

Figure 3 slows the dfect of ICMS of another site for pursuit in four different
directions ard the resiting VSE for eachcondition. The direction of the VSE was
more or less indepemlent of pursuit direcion. By adding the four vecbrs we
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determined the mean effect of stimulation at this site. Note that the direction of the
mean effect was very similar to the preferred direction of the stimulated site. We did
not observe any effects of stimulation on the behavior of the monkey other than the
reported modifications of eye movements.
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Fig. 3. Effect of ICMS for four different (left, up, right and down) pursuit directions. For details
see Figure 2. Thin arrows show the direction and strength of the stimulation in the specific
condition. The black arrow in the center represents the mean stimulation vector, the gray arrow
gives the preferred direction at this stimulation site. Only eye velocity profiles obtained during
stimulation in the absence of the pursuit target are shown.

4 Mean effectsof ICMS

So far, we tested the effects of ICMS during SPEM in 74 stimulation sites in area
MST of one rhesus monkey. Stimulation of 53 sites gave significant modulations in
post-saccadic eye velocity. These sites were presumably al located within the
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posterior bank and floor of the sulcus temporalis superior (STS) known as MST-l. We
did not observe a significant difference in the preferred directions of these sites and
the direction of the observed stimulation vector (t-test p = 0.068). The distribution of
the angular difference between the two directions is shown in Figure 4.
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Fig. 4. Histogram of the angular difference between the preferred direction during execution of

SPEM and the obtained mean stimulation vectors for 53 stimulation sites that had significant
effects on the ongoing eye movements.

For al 53 stimulation sites, the mean absolute value of the V SE was 32% larger when
the target was switched off during stimulation than when the target was visible for the
completetrial. This difference in stimulation effect was significant (ttest, p=0.003).

In a previous study by Born and colleagues (2000), it was shown that area MT
consisted of neurons with either wide-field or local field response properties.
Stimulation of sites with wide field response properties resulted in a modulation in the
opposite direction to the preferred direction of the stimulated site, whereas stimulation
of sites with local motion characteristics resulted in a modulation in the preferred
direction. For 42 out of the 53 sites, we determined the size tuning of the neuronal
response observed at the given site to a moving stimulus during fixation. The vast
majority of sites (37 out of 42) did not show an increase in the neuronal response with
stimulus size. Conversely, these neurons gave a maximal response to a rather small
stimulus, suggesting local motion characteristics. So our finding that the stimulation
vector was in the same direction as the preferred direction of the individual
stimulation parallels the earlier description for local motion sites (Born et a. 2000).
The absence of wide field neurons might be for one of the following reasons: either
our actual data sample is simply too small or area MST-I only contains local motion
neurons. Nevertheless, in our present data sample, we did not observe the restriction
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of the gimulation effect to an increag in eye welocity in ispisvergve direction as
repored by others (Komatsu and Wurtz 1989).

Conclusions

The cortlusions of our resllts obtaired from intracortical microgimulation in area
MST arequite draight forward: smooth pursuit eye movements were accelerated in
the preerred directiorof the stimulation site. The dfectwasmore prorounced f the
pursuit target was invisible during stmulation. If the pursuit target was visible during
ICMS, acombination of signals relatedo retina image motion, eye movement, ard
artificial stimulation occured On the aher hand, if the pursut signal was switched
off during ICMS, a canbination of only eye movement related signals ard artificial
signals occured. This observation further suggeds the notion that the dicharge rates
of neurons in area MSTrepresert target tragctoryin spacewhich is computed by a
combination of retinal image motion of the target with eye and head movement
relatedsignals.
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Abstract On the basis of wo different motion stirruli, we were able to
demonstrate that rhests monkeys perceive these dimuli ard are abe to track
these stimuli with ther eyes. However, we did not observe directiondly
selective adivation of neuronsin area MT and MST, commonly beieved to be
important for visual motion processing. We condude tha both perception of
motion & well as find sensorimotor processing are achieved in cortical areas
beyond aeas MT and MST.

1 Introduction

It is well estaldished that the processimg of visual motion in the middle temporal (MT)
ard middle superior temporal (MST) areasin the poserior parietal cortex of monkeys
is closely relatedto the eeaution of smooth pursuit eye movements (SFEM) (for
review see lig 1997 ad chaper of Ilg and Schumann) as well as he percepbn of
visual motion (e.g Celebrini and Newsome 1994, 199). The propeties of individual
neurons in these area are \ery well suited for these tasks since they codefor the
directionaswell asfor the geed of a noving stimulus.

It was suggeded that percepion ard acton might deperd on separae visual
mechanisms (Goodak ard Milner 1992).In orde to ak whether this dichotomy also
holds true for the procesing of motion underlying motion percepion and generation
of smooth pursuit eye movemerts, we combined psghophyscal, eye movement and
single-unit response studies in awake and behaving thesus monkeys. Specifically, we
investigatedwhether directionaly selective single-unit activity in areasMT ard MST
indicating the drection of amoving objectis a recessar condition for the exeaution
of SFEM aswell as for the percegtion of motion. In adlition to a first-order (fourier)
motion stimulus, we used two other types of motion stimuli: a paradoxical secod-
order notion stimulus and a visual-auditory multimodalmotion stimulus
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2  Typesof motion stimuli

The paradxical scord-order motion type used in owr experiments was the theta
motion as degribed byZanker (1993). In this stimulus, a restangular patch of rardom
dots moves over a dyamicaly flickering rardom dot baclground; the dos within the
recargle move in the oppoge direcion asthe recéinde itself. Therebre, he local
motion (motion of the dbts) and the dobal motion (motion of the doject) @mponents
are moving in opposte directions. As a corrol, we used te first-order notion
stimulus, which conssted of an idertical recangle of coheretly moving dots. It is
important to note that the rav motion sgnal (nurmber ard velocity of the moving dots)
is idertical in these o stimuli. Only the relatimship between the drection of dot
movement ard object movemert differsbetveen the wo simuli.

The visual-auditory multimodal motion was prodiwced ty a forizontal arrgy of 48
LED ard loudspealer elenents(disance betveentwo elenents 0.95°).To generate
the percept ofmotion, we activated he elaments sequentially for 25 ms with a
temporal ¢gp of 25 ms. We activated eiher anly the LED elements (visual motion),
only the loudspealers (white noise, aiditory motion) or both (multimoda motion).
This presemation resuted in an apparent motion of the stimulus at te velocity of
18,7 9s.

3 Moaotion perception of rhesus monkeys

We tained three rtesus monkeys to a direcion discriminaton task of the various
motion stimuli used here. The monkeys had to fixate a cetral fixation point. After a
randomized tme period, he notion stimuluswas displayed while the monkeys had to
maintain fixation. Folowing an adlitional delay, the monkeys had to report the
perceivd direction of motion by a saccade directedowards ore of the two
simultaneoudy preented aicade targts

All monkeys learred to repot correcty the drecion (leftward vs rightward) of the
preened gimuli (85% correct reporses for the first-order simulus, 78% for the
theta simulus, 93% correct rgmorses for the visual and visual-acowstic gimuli, 76%
for the acostic gimulus).

4  Smooth pursuit eye movements

Having shown that the monkeys were able to discriminate the motion direction of the
theta ¢imulus, we asked whether monkeys are able to peofm SFEM to the theta
stimulus. This was previously demonstated for human subjects Butzer et d. 1997,
Lindner & 1lg 2000). Ater fixation of a cetral stationary target for a rardom period
of time, the monkeys had to ttack asprecigly asposible the ram-like movement of
the stimulus (10%s). After a brief period of training, the monkey pefformed SPEM to
the firg-order al theta-rotion stimuli. However, the gead/-state g/e velocity gainin
the cag of theta-motion (averag of 0.6 for 46 periods of measuement including
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abou 7000 tials) was significartly lower (p<0.00) thanthe gain obtained for SPEM
to a firstorder $imulus (average of 0.9 Pr 3 perbdsof measuremert including abou
1000 tials) (see Hg. 1). Perods of slow eye movements were interrupted by cath-up
saccadeswhich compensate for the insufficient eye velocity during the SPEM
periods

first—order
Pos [°]

500 1000 0 500 1000

Theta

0 500 1000 0 500 1000
Time [ms]

Fig. 1. Horizontal eye position and de-saccadd eye velocity elicited by a firstorder (uppe
row) and by a theta-motion gimulus (lower row) moving a a speed of 10%s. The monkey was
able to perform sead/-state PEM (black arrav) to the two simuli, however the SPEM was
less preisewhen the theta stimulus wes presented. Notetha during initiation of SFEM (open
arrow), the eye movemerts were tarsiertly in opposite drecion in case 6the theta stmulus.

As indicatedin Figure 1, the initiation of smooth pursuit eye movements drected
towards a theta gimulus followed tke movement of the individual dots i.e. were
opposte to the drecion of the moving object In a gudy of human pursuit, we
quartified exadly the eye accelerationAlthough the rav motionsignal in fourier ard
theta motion was identical, the elicited acceleratiowas significantly smaller in the
ca® ofthetamotion (Lindnerard Ilg 2000).
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5 Single-unit responses recorded from areas MT and MST

We recorded 38 neurons from area MT and 68 neurons from area MST in both
monkeys performing the direction discrimination task. We only included those
neurons which gave a direction selective response to the first-order motion stimulus.
The receptive fields of the neurons recorded from area MT were dightly but
significantly smaller than the fields from area MST. Besides this difference, we did
not observe any other significant differences in the response properties of neurons
from the two areas.
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Fig. 2. Responses of a neuron from area MST to first-order and theta-motion stimuli shown as
raster display and spike density function. The left column shows the responses elicited by
leftward stimulus movement, the right column shows the responses elicited by rightward
movement. The preferred direction of the neuron is apparently inverted for the theta-stimulusin
comparison to the first-order stimulus. Despite this apparent inversion of preferred direction,
the monkey reported correctly the direction of the moving stimuli.

Figure 2 shows the response of atypical neuron recorded from area MST. In the case
of the first-order motion stimulus, the neuron showed a massive response to leftward
motion. During presentation of the theta stimulus, the neuron responded to rightward
motion. We made this observation in all 106 neurons recorded from areas MT and
MST. Obviously, the neuron responded to the movement of individual dots in the
display, not to the movement of the entire object. However, when we analyzed the
sharpness of the directional tuning of the responses to fourier and theta stimuli, we
found that the sharpness of the response to theta motion was reduced compared to
fourier motion. This finding parallels exactly our finding related to the pursuit
initiation elicited by the fourier and the theta stimuli.
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It is important to note that area MT and area MST are organized in a retinotopic
fashion. The motion information related to the object motion of the theta stimulusis
possibly provided by correlated activation of neighboring parts of these areas which
can be read out by a subsequent processing stage.

The other type of motion stimuli consisted of the apparent motion of visual, auditory
and multimodal stimuli. As mentioned above, our monkeys were able to report
correctly the direction of the stimuli. However, when we recorded the neuronal
responses during this task, we only observed responses to the visual and visual-
auditory moving stimulus as shown in Figure 3.
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Fig. 3. Response of a typical neuron recorded from area MST to visual, auditory and
visual/auditory motion shown as raster display and spike density function. Although there was
no response to the auditory stimulus, the monkey reported correctly the direction of al moving
stimuli.

Thirty-two of the 96 neurons examined in the multimodal motion task gave
significantly direction-selective responses to the apparent motion of the visual and the
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visual-auditory stimuli. We did not find a single neuron that gave a response to the
auditory movement. Despite this lack of neuronal activity, the monkeys reported
correctly the direction of the moving auditory stimulus.

Conclusions

The smooth pursuit eye movements of human subjects and rhesus monkeys follow in
their steady-state phase the direction of the perceived object motion. This indicates
that the visual motion processing underlying perception and sensorimotor integration
depends on a common mechanism. Furthermore, the similarity in initiation of smooth
pursuit eye movements and neuronal responses recorded from areas MT and MST
suggest that these areas are part of this mechanism. However, our results show that
rhesus monkeys can perform steady-state SPEM as well as motion perception tasks in
the absence of explicit coding of object motion in the activity of neurons recorded
fromareas MT and MST. So we conclude that the perception of a moving stimulus as
well as the generation of smooth pursuit eye movements reflects the achievement of a
motion area located higher than area MT and MST in the hierarchy of cortical visua
information processing.
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Abstract. This paper investigates whether a macroscopic analysis enables the
identification of universal properties of adaptive behaviour in situated agent (robot)
models. In contrast to microscopic analysis, macroscopic analysis focuses on averaged
properties of systems. For our purpose, a macroscopic analysis of adaptive systems is
performed. The adaptive systems studied are evolutionary optimised foraging agents.
The analysis reveals that the step lengths of the most successful agents are distributed
according to a Lévi-flight distribution. Such a distribution constitutes a universal
property of foraging behaviour that is encountered in many natural species. Hence, in
this domain macroscopic analysis clearly facilitates the discovery of universal
properties of adaptive behaviour. Generalising this conclusion, we believe that
macroscopic analysis is complementary to microscopic analysis in the study of
adaptive behaviour.

1 Introduction

In-depth analysis of simple agent models reveals many new insights into the processes
underlying adaptive behaviour and situated cognition [see, e.g., 2, 3, 4, 8]. So far,
analysis is only done at the microscopic level, in which the focus is on the successful
behaviour of single agents only. Although microscopic analysis can lead to explanatory
insights and testable predictions at an individual level, due to this specificity,
generalisation of results is difficult. In contrast, macroscopic analysis is more suitable
for identifying universal properties, i.e., properties characteristic of a class of systems.
Macroscopic analysis ignores individual differences by averaging over large quantities
of data. The application of macroscopic analysis in statistical physics led to successful
extraction of universal properties of, for instance, DNA sequences, heartbeat rates, and
weather variations [6,10]. A recent example of macroscopic analysis of natural
behaviour is the study by Beekman er al. [1], who analysed foraging behaviour of
Pharaoh ants. They revealed collective foraging behaviour to exhibit a phase transition
from disordered to ordered foraging when the size of the colony was increased.

The research question addressed in this paper reads: Can macroscopic analysis extract
universal properties of adaptive behaviour from situated agent (robot) models? To
answer this research question we optimise the foraging behaviour of neural-network
controlled agents using evolutionary-computation techniques. Next, we perform a
macroscopic analysis on the foraging behaviour of the optimised agents.

! An earlier version of this paper was published in the Proceedings of the Fourteenth Belgium-Netherlands
Artificial Intelligence Conference (BNAIC) 2002.
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The outline of the remainder of the paper is as follows. In section 2, the foraging
experiment is outlined. Section 3 presents the results of the macroscopic analysis. In
section 4, the results of the analysis are discussed and related to other findings. Finally,
the conclusion given in section 5 reads that macroscopic analysis facilitates the
identification of universal properties of adaptive behaviour in agent models.

2 The foraging experiment

The foraging experiment is outlined in terms of the environment (section 2.1), the agent
(section 2.2), and the evolutionary-computation algorithm (section 2.3).

2.1 The environment

The environment is defined as a L <L square with periodic boundary conditions (i.e., the
environment is defined on a torus) containing n food elements. Randomly distributed
dots over the environment represent the food elements. An agent collects food by
walking over the food elements. Whenever a food element is collected, it is removed
from the environment and replaced by a new one at a random location. In this way, the
number of food elements remains constant throughout the experiment. Figure 1 is an
illustration of the environment with randomly distributed food elements (dots) and the
agent (circle).
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Figure 1. Illustration of the experimental environment consisting of an agent (circle) and
randomly distributed food elements (dots). The values on the x- and y-axes are spatial coordinates
(0 £ xy <L =10000).

2.2 The agent

The agent performing the foraging task is controlled by a neural network and is defined
in terms of sensor and brain.

Sensor. The sensor of the agent detects the nearest food element within its circular field
of view with radius ». The sensor processes the nearest food element within the field of
view only and is orientation sensitive. Defining the orientation of the agent by o and the
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orientation of the nearest food element by B, the sensor activation / (i.e., the input) is
given by the normalized one-dimensional Von Mises basis function [7].

kcos(a—f)

[=5——+G(0.0,5d), ()
e

where k is a positive constant that is proportional to the width of the basis function.
The Von Mises basis function is the spherical analogue of the Gaussian basis function.
The normalisation constant e* ensures that the maximal value of the first right-hand side
term equals 1 when a = f. The second term is a Gaussian-noise term (zero mean,
standard deviation sd), modelling the intrinsic noise of neural systems. A food element
is collected when the distance between the food element and the agent equals 0.17.

Brain. The brain (or controller) of the agent is a recurrent neural network with a single
input 7, A hidden nodes, and two output nodes. The input is connected to the hidden and
to the output nodes. The hidden nodes have recurrent adaptive connections. Each
connection can be switched on or off during the evolutionary process, while retaining its
weight value (cf. [9]). Initially, all weights are assigned random values symmetrically
distributed around zero on the interval [-rw,rw], with rw > 0. The transfer function for
the hidden nodes is the sigmoid tanh function that maps onto the interval (-1,1). The two
output nodes control the agents’ relative orientation and step size, respectively. The
transfer functions for the output nodes are defined as follows. The output of the
orientation node is multiplied by w. A modulo operation restricts the orientation to the
interval (-m,m). The transfer function of the step-size output node is a semi-linear
function / = f{u) that maps negative values to zero and positive values u to the interval
{0, uL/2), with L the width/heigth of the square environment.

2.3 Evolutionary-computation algorithm

The weights of the neural network controlling the agent are optimised for foraging
efficiency using a standard evolutionary-computation algorithm. The fitness function F
is defined as follows.

1 T T
F:? Y et)-AD 1) |, )
t=1 t=1

where ¢ is an index for individual simulation steps (# € {1,2,...T}) with T denoting
the total number of steps, c(?) is a function that returns / if a food element is collected at
step ¢ and 0 otherwise, /(z)= f(u,?) is the step length of the agent at step ¢, and A is a
positive parameter. The first term between the brackets favours food collection. The
second term punishes long steps. The balance between the two terms is set by A. All
simulations are based on an evolution of 100 generations with a population size of 1000
agents. Evolution occurs using standard evolutionary optimisation techniques (see [9]).
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3 Experimental results and analysis

A large series of experiments was performed to optimise the foraging behaviour of the
agent. The simulations yielded various types of behaviour. Figure 2a and b show two
typical examples of behaviours associated with high fitness values. The figures show the
paths traced by the optimised agent. Although most optimised agents perform the
random-walk behaviour shown in figure 2a, some agents exhibit the qualitatively
different behaviour shown in figure 2b. A characteristic feature of these agents is that
their local random-walk behaviour is occasionally interrupted by large jumps. As a
result the area covered by these agents is much larger than the area covered by random-
walk agents. The sudden jumps are known as Lévi flights [5,11,12]; they will be
discussed below. Foragers adopting a Lévy-flight strategy outperform the agents using a
random-walk strategy. Apparently, the Lévy flights are more effective in terms of
foraging efficiency than the random walks.
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F i g u [Hugrati®dn.of (a) random-walk foraging behaviour and (b) Lévy-flight foraging
behaviour. Both paths consist of 10.000 steps. It should be noted that the area covered in figure (b)
is much larger than the area covered in figure (a). The values on the x- and y-axes are spatial
coordinates (0 <x,y < L = 10000).

Our macroscopic analysis focuses on the quantification of the difference between
random walks and Lévy flights in terms of a single parameter p. The parameter is
extracted from the probability density function (pdf) from which the lengths of the steps
taken during foraging are drawn [11]. Concentrating on the probability of large step
lengths, the tail of the pdf scales according to (cf. [12]):

P(l Z_#
=—, 3
() ~ 3)

with P(l) representing the probability of a step of length /, and Z a normalising
constant. The parameter | is proportional to the rate of decay of the pdf with length /.
For a Gaussian pdf that generates random-walk behaviour, the parameter | is larger than
3.0. Lévy-flight behaviour is associated with 1.0 < p < 3.0. These values of W yield
‘fatter’ tails, leading to infinite variance and an undefined average of the pdf. In our
agent, the pdf is generated from the step lengths produced by the output node. To
perform our macroscopic analysis we created step-length histograms by running series
of foraging simulations using optimised agents of both the random-walk and Lévy-flight
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types. Figure 3a shows an example of a histogram so obtained. Subsequently, we
analysed the (smoothed) tails of the histograms by fitting a linear regression line through
the data points. The slope of the line is an estimate of the value of | that underlies the
behaviour of the two types of agents. Figure 3b displays the regression line for an agent
that exhibits the Lévy-flight behaviour shown in figure 2b. The slope of the regression
line is approximately equal to —2 (i.e., L = 2). In terms of equation (3) this corresponds
to P(l)=1"/ Z.

log(P())
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Figure 3. (a) Histogram of step lengths. (b) Log-log plot of the tail (/ >> 0) of the histogram. The
slope of the regression line is = -2. (c) The fitness F as a function of the step-size distribution
parameter u for the 281 fittest foragers.

We performed a series of experiments with the parameter values: H=2,r=1,L =
10000, number of food elements = 100, rw = 0.5, k = 20, sd = 0.5, T = 10000, and A =
0.00001. The experiments yielded a population of 1000 optimised foragers. Of these
foragers, the 281 fittest ones performed a range of random-walk and Lévy-flight
behaviours. The remaining 719 foragers employed various sub-optimal strategies such
as foraging along straight lines. For each of the 281 fittest foragers a histogram (such as
shown in figure 3(a)) was created from several runs of T steps each. A log-log plot of
the tail of the histogram is shown in figure 3(b). Subsequently, the value of W was
determined for each histogram. The values of u ranged from p = 3.5 to u = 2.0. Figure
3(c) plots the fitness of the 281 fittest foragers as a function of L. Interestingly, the fittest
foragers are associated with values closer to i =~ 2.0. Evidently, optimal fitness values
are found near i = 2, which is associated with Lévy-flight foraging behaviour.

4 Discussion

The macroscopic analysis of our model of foraging behaviour led to the extraction of a
universal property of efficient foraging, i.e., Lévi flights as characterised by the
universal exponent . A range of animals exhibits efficient foraging behaviour that is
characterised by Lévi flights with u = 2: albatrosses, foraging bumblebees, deer, and
amoebas [11, 12].

Microscopic analyses of agent models of adaptive behaviour explain behaviour on an
individual level. For instance, such an analysis can reveal the dynamical processes
underlying catching and avoiding behaviour in individual agents (see [4]).
Generalisation to other types of agents and situations is difficult because of the
idiosyncrasy of the agent-environment interaction. Since macroscopic analysis averages
over many interactions, it obscures the details of the interaction, but uncovers generic
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properties. The value of the exponent 1 cannot be determined from the study of a single
agent, but instead requires the averaging over many interactions and environments.
However, once the macroscopic analysis revealed the value of | and related it to Lévy
flights, the characteristic foraging behaviour is readily recognised in the microscopic
behaviour of the individual agent (see, e.g., figure 2b). Macroscopic analysis is therefore
complementary to microscopic analysis. Agent models of adaptive behaviour have to be
analysed at both levels to gain a complete understanding of the behaviour.

5 Conclusion

Using macroscopic analysis we extracted a universal property of foraging behaviour in
artificially evolved agents, i.e., Lévy flights as characterised by u = 2. By doing so, we
have shown that macroscopic analyses of agent models can identify universal properties
of adaptive behaviour. Given this finding, and the successes of macroscopic analyses in
statistical physics and other disciplines, we expect macroscopic analyses to generate
novel insights into the universal properties of adaptive behaviour in artificial and natural
agents.
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Abstract. We presentnovel panoramiosiew basedobotlocalizationapproach
whichutilizestheMonte CarloLocalization(MCL) [1], aBayesiarfiltering tech-
niquebasedn a discretedensityrepresentatioby meansof particles.We shav
how omidirectionalimagingcanbe combinedwith the MCL-algorithmto glob-
ally localizeandtrack a mobile robot given a taughtgraph-basedepresentation
of the operationarea.To demonstratehe reliability of our approachwe present
promisingexperimentalresultsin the contet of a challengingroboticsapplica-
tion, the self-localizationof amobile servicerobotactingasshoppingassistanin
avery regularly structuredmaze-lile andcrovdedervironment,a homestore.

1 Introduction and motivation

Self-localizatioris thetaskof estimatinghe pose(positionandorientation)of amobile
robotgivenamapof theernvironmentanda history of sensoreadingsandexecutedac-
tions.Thisincludeshoththeability of globallylocalizingtherobotfrom scratchaswell
astrackingtherobot’s positiononceits locationis known. Thelocalizationproblemis
oneof the fundamentaproblemsin mobile robot navigation and mary solutionshave
beenpresentedh the pastincludingapproachesmplg/ing Kalmanfiltering, grid-based
Markov localization,or Monte CarloMethods[3]. The currentstate-of-the-arocaliza-
tion methodsoften uselaserrangefindersor sonar but thesesensomodalitiestend
to be easily confusedin environmentswith very regular topology e.g.a supermarkt
or a homestorewith a greatnumberof hallways of equalwidth, lengthand geomet-
rical structure Becausef this maze-like topology self-localizationmethodshasedon
laseror sonarcan producenumerousambiguitiescomplicatingor preventing a quick
self-localizationor re-localizationn caseof acompletdossof positioning.In contrast,
vision-basedystemslo notshow thesdimitations,but supplyamuchgreatemwealthof
informationaboutthe3D-structureof thehallwaysandracks.For example thefilling of
the goodsracksgivesthe hallwaysa characteristi@ppearancesspeciallywith respect
to color or texture. Becauseof this, we expectedto defusethe localization problem
drasticallyby developmentof an approachor view-basedocalizationthat combines
omnidirectionaimagingwith the probabilisticMonte Carlo Localization(MCL) [1].

2 Omnivision-based MCL

The Monte Carlo Localization(MCL) methodunderlyingour omnivision-basedocal-
ization approachis a versionof Markov localization[6], a family of probabilisticap-
proachedor approximatinga multi-modaldensitydistribution codingtherobot’s belief
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Figure 1. Generaldeaof ouromniiew-basedvionte CarloLocalization.Theapproachs based
on a graph-basedepresentationf the operationarea.The nodesof the grapharelabeledwith
bothview-basedvisualfeaturesandmetricinformationaboutthe poseof therobot (positionand
headingdirectionin aworld-centeredeferencdrame)at the momentof the nodeinsertion.

Bel(x,) for beingin statex, = (z,y, ¢); in its statespacex andy arethe robot's
positioncoordinatesn aworld-centeredCartesiarmeferencdrame,andy is therobot’s
headingdirection. The key ideaof MCL is to representhe belief Bel(x,) by a setS;
of N weightedsampleddistributed accordingto Bel(x,): S; = {;ﬁ“,w@}izlw.
Hereeachggl) is asampleandthe wtl) arenon-ngative numericalweightingfactors
calledimportancefactors.Becausehe samplesetconstitutesa discreteapproximation
of the continuousdensitydistribution, the MCL approactis computationallyefficient,
it placescomputatiorjust “whereneeded”.

Thegeneraldeaof ourview-basedvionte CarloLocalizationis illustratedin Fig. 1.
In our approachwe usea graph-basedepresentatiomf the operationareaby a set
of visualreferencevectorsr(z, y, ¢) extractedfrom the respectre panoramioviews at
positionse, y in headingdirectiony (Fig. 1, bottomright). Thegraphis constructedn-
the-fly whenmanuallyjoy-sticking the robotthroughthe hallwaysof the store.During
this training,omnidirectionaimagesarecapturedrom the ervironmentandassociated
with the correspondindocations.For this purpose,in additionto the featurevectors
extractedfrom the omnidirectionalimages,the nodesof the graphare labeledwith
metric information aboutthe posex = (z,y, ¢) of the robot at the momentof the
nodeinsertion.A new node(referencepoint) with importancefor the representation
is inserted eitherif the Euclidianpositiondistanceto otherreferencepointsin alocal
N-vicinity or if the Euclidianfeaturedistancebetweerthe currentfeaturevectorf;”*
andthefeaturevectorsr(,(x, y, ) of thesereferenceointsarelargerthangivenvalues.
However, thelabelingof thegraphnodeswith odometricdataabouttheposeof therobot
necessitatean efficient correctionof odometrybecauseof the increasingerror over
time, especiallyconcerningthe orientationangle.To attenuatehis effect, we utilize a
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Figure 2. Topologicalmapof theoperatiorareain thehomestore.Thesizeof theareais 50 x 45
metersthe graphconsistsof 2007 referencepoints(marked asdots)labeledwith visual feature
vectorsandodometricdataaboutthe pose(positionandorientation)of the robotat the moment
of nodeinsertion.Thetotal distanceravelledto learnthis mapwasabout1000meters.

specificfeatureof our market floor that shaws a very regular structurecausedy tiles
thatareuniquelyorientedacrosgshewhole market area.For detailsof our vision-based
odometrycorrectionsee[2]. We utilized this odometrycorrectionmethodfor learning
alarge-scalggraphrepresentationf theoperatiorareaasshowvn in Fig. 2 andachieved
avery smallabsolutepositionerrorof about60cm afteratotal distanceof 1000meters.

Featureextraction: Bothduringmap-huilding andself-localizationtheomnidirec-
tional imageis transformednto a panoramidmage(seeFig. 1, top). Eachpanoramic
imageis first partitionedinto a fixed numberof non-overlappingsectorgtyp. 10) each
coveringapartof thepanoramidield of view. Thefollowing criteriadeterminedhese-
lectionof appropriatfeaturego describehe presensceneil) To allow for anon-line
localization,the calculationof the featuresshouldbe aseasyandefficient aspossible.
2) Thefeatureshouldincludetheorientationof therobotasprerequisitao estimatehe
headingdirectionof therobot.3) Thefeaturedescriptionshouldallow for aneasygen-
erationof expectedobsenationsfor unknovn positionsandorientationof therobot.4)
Thefeaturesshouldbelargely insensitve againstpartial occlusionof the environment,
suchas causedby peoplein the vicinity of the robot. Consideringthesecriteria and
therequirement®sf otheromniision-basedocalizationapproachepublishedrecently
e.g.[4,5], we decidedto implementthe simplestfeatureextraction methodpossible.
Thereto,for eachsectorof the panoramicimage,the meanRGB-color value is de-
termined.This way, for eachnodein the grapha referencefeaturevectorr(x, y, ¢)
consistingof a smallnumberof meanRGB-valueshasto belearned.

Thelocalization algorithm: In analogyto theMCL algorithmpresentedh [1], our
omniiew-basedMCL proceedsn two phaseslin the Prediction phase (robot motion),
the samplesetcomputedin the previous iteration (or during randominitialization) is
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movedaccordingo thelastmovementof therobotw;_; (Fig. 1, left). Themotion model

p(zi|Ti—1,ur—1) describedrow the positionof the sampleshangessinginformation
ug—1 from odometry This way, MCL generatesV new sampleghatapproximatethe
expecteddensitydistribution of therobot's poseafterthemovementu; ;. To determine
the expectedobser\ationsﬁgl) of the moved samplespur approachrequiresinterpola-
tionsbothin stateandfeaturespacebecaus®f the coarsegraphrepresentatioandthe
chosenfeaturecoding. For eachsamples(¥), we first interpolatelinearly betweenthe
referencdeaturevectorsr(z, y, ¢) of thetwo referencenodesclosesto therespectie

samplepositionggi). After this, theresultingfeaturevectoris rotatedaccordingto the

expectednew orientationcpti) of the samples(?). Sincethe featurevectoronly hasa
discretenumberof componentsye utilize a linear interpolationbetweenthe features
of adjacensggments.This way, we obtaina setof N new featurevectorsﬁg” (z,y,¢)
describingthe expectedobsenationsof the moved samplesn the new stateggi) .

In the Update phase (new observation), theactualpanoramioview atthe new robot
positionhasto betakeninto accountin orderto correctthe samplesetS;. For this, the
importance‘actorwt("') of eachsamples( is computedIt describeshe probabilitythat
therobotis locatedin thestategii) of thesample We determinehe similarity Ef@ be-
tweenthe currentinput featurevectorf"”** extractedfrom the panoramicview at the
new robot positionandthe expectedfeaturevectorﬁf) of eachsamples® simply by
computingtheanglebetweerboth normalizedvectorsapplyinga simpleGaussian-like
observation model. Now wgi) =1- ocEf@ canbedeterminedyherex is anormaliza-

tion constanthatenforceszjy: 1 wt(]) = 1. Thefinal samplesetS; for thenext iteration
is obtainedby re-sampling from this weightedset. The re-samplingselectshosesam-
pleswith higherprobabilitythathave a high importance‘actorwt(”. Sampleswith low
importancdactorsareremovedandrandomlyplacedin the state-neighborhooof sam-
pleswith highfactors After that, bothphasesrerepeatedecursvely.

3 Experimental results

All experimentsverecarriedoutin the‘toom’ homestoreErfurt with our experimental
platformPERSESa standardB21 robotadditionallyequippedvith anomnidirectional
imagingsystemfor vision-basechavigation and human-robotnteraction.The experi-
mentswere performedas off-line cross-alidationtestson differentsequencesf im-
agesacquiredn thehomestore All imageswverelabeledwith thecorrespondingorrect
poseof therobot.Oneof the sequenceis usedastrainingdatato build the graphwhile
the other onesare usedas testdata (5000 pose-labeledmages)to determinethe lo-
calizationerror. Every localizationexperimenthasa typical lengthof 190 movements,
this correspondgo a pathlength of about130 meters.Perexperiment,the meanab-
solutelocalizationerror is determined Every experimentwas repeated?0 times, and
the localizationerrorswere averaged.lt is to note that, in all caseswe studiedthe
worst-casescenario:our robot hadno prior informationaboutits initial pose- this is
atypical globallocalizationproblem.All testscanbe judgedasbeingvery successful,
asour localizationsystemwas able to find and continually track the position of the
robot.Fig. 3illustratesthetypical courseof a view-basedself-localizatiorandposition
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Figure 3. Self-localizatiorandtrackingexperimeniexecutedn alargesection(50 x 45m?) of the
homestore.The sequencelepictsthe temporalcondensatiomlynamicsof about4.000samples
(initial distribution, after3 stepsand9 steps)In thebeginning,therobotis globally uncertainthe
particlesarespreaduniformly throughouthefree space Thevarianceof the 10%of thesamples
with the highestimportancefactorsis marked ascircle. Already after 9 movementgabout5,50
m), MCL hasdisambiguatetherobot’s position- themajority of sampless now centeredightly
aroundthe correctposition,thevariances drasticallyreduced.

trackingexperimentexecutedin a large sectionof the store(50 x 45m?). Despitethe
geometricaluniformity of the selectechallwaysandthe coarsegraph-structur€2007
nodes) our omniiew-basedvICL yieldsvery preciselocalizationresultsalreadyafter
afew robotmovementsFor example,after9 movementsandobsenations,which cor
responddo atravelled distanceof about5,50 metersthe differencebetweerestimated
andcorrectpositionof therobotwaslower than40 cm. The meanlocalizationerror of
ourtestsetis evensmallerthan25 cm. Thetime requiredfor computatiorof the MCL
algorithmdirectly depend®n the total numberof samplesWith the currenton-board
equipment(1500MHz AMD Athlon), our algorithmrequiresabout50 ms for 4.000
samplesThe time for imagetransformatiorandfeatureextractiontakes about25 ms
perimage.Therefore,our localizationsystemenablegeal-timelocalizationleaving a
goodamountof processindime for othernavigationmodules.

Dealing with occlusions: It is clearthat we have to copewith occlusionsin the
scene suchas,for example,peoplewalking by or objectsbeingmoved aroundin the
ervironment.However, dueto its wide visualfield, occlusionof the entire panoramic
view becomewery unlikely. For example,in Fig. 4 thetwo peoplestandingascloseas
possibleo therobotoccludeno morethan10%of thevisualfield. To testtherobustness
of the localizationalgorithm, the testimageswere occludedby artificial gray-colored
sgments.Theimpactof occlusioneffectswasgraduallycontrolledby the percentage
of image contentcoveredby the artificial image.Fig. 4 (bottom) depictsthe results
w.r.t. localizationaccurag and variousdegreesof occlusion.For 0% occlusion,the
meanpositionerroris 25 cm andcoversarangebetweenl5 and30 cm. The meanpo-
sition errorremaingrelatively low until 15%occlusion.Thereafterthe errorvigorously
increasesincetheimageis affectedby severeocclusionsHowever, dueto thegeome-
try of robotandvision systemijt is not possibleto placemorethanthreeor four people
directlyaroundtherobot. Thereforethemaximumocclusiornby peoplecannotbelarger
than15-20%.Moreover, the internalparticledynamicsof the MCL-algorithmrealizes
akind of temporalself-stabilizatiorof the estimationresult,therefore the influenceof
heary but shortocclusionscanbelargely negglected.
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Figure 4. (Top) Occlusionexample:two peoplearestandingascloseaspossibleto therobotand
occludeabout10% of thevisualfield. (Bottom) Resultof experimentsnvestigatingtheinfluence
of local occlusionsnthepositionerror (Ieft) andandthe orientationestimation(right).

4 Conclusions and futurework

In this paper we have shavn that particle filters in combinationwith a graph-based
representationf the operationareaby local panoramicviews canbe usedto perform
an omnview-basedself-localizationof a mobile robotin a challengingreal-world ap-
plication. Our localizationsystemusescolor omni-vision,worksin real-time,andcan
easilybetrainedin new operationareasy joy-sticking. Theresultsof the executedex-
perimentxonfirmtheaccurag androbustnes®f ouromniiew-basedself-localization
method.

Currently theoreticaland experimentalstudiesare carriedout to further improve
our omniiew-basedMCL-system.For example,we areinvestigating theimpactof the
motionandobsenationmodelsonthe poseestimatiorandarestudyingtheinfluenceof
anew mechanismadaptvely controlling the samplerate on-the-flyon the localization
accuray. Otherrunning experimentsare dealingwith the impactof appearanceari-
ationsat the referencepointsin the learnedgraph,e.g.asresultof a changedilling
of the goodsracksor modificationsin the market topology Moreover, our algorithm
hasto demonstratéts capabilitiesscalingup to the whole market areawith a size of
100 x 60m? over alongerperiodof operation.
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Abgtract. The presentcontributionstudies the rapid adaptation process of the
visuomotorsystem to optical transfarations (here: shifting the iage horizon-
tally via prism goggles). It is generallyelieved that this adaptation consists
primarily of recalibrating the transforation between visuandproprioceptive
perception. According to such a purgdgrceptual account aidaptationthe
exact path used to reach the object sthowlt be inportant. If, however, it is the
transfornation from perception to action that is being altered, then the adapta-
tion should depend on the motion trajectohy experiments with a varietgf
different motion trajectories we show thasuomotor adaptation is naterely
aperceptuatecalibration.The structure of the ration (garting pogtion, trajec-
tory, end pogion) plays a central role, and even the weight loaerss to be
important. These results has&rong implications forlamodels of visuomotor
adaptation.

1 Introduction

In order b pick up an objectits visuallocaion rmust be converd nto the approprate
motor commands. Intoducing an optcal transfornation (e.g., stiting the imagehori-
zontally via prismgoggles) initially inpairsthis ability. The visuonotor systenrap-
idly adapts tothe dscremrncy, however, returning perforrance to near norah

von Helmholtz (1867),who was anong te first to descrbe prem adapétion, re-
ported that if one hand was age durng adapition, the other handwould also show
an adapétion effect It has bynow ofen been demanstrated thaintermarual trarsfer
of adap#tion is either verysmall or non-exstent'. It is realy quite striking that both
hands have to adapt independently freathother. Consequently, prisadaptation
cannot befully explainedby “recalbrating” only visual percepiton so asd represent
the seendcaion of an objectorrecly in spite of the prsm goggkes. Howeverthis
does not rule out a purely perceptaakcountof adaptation: the recalibration could

1 Some studies (e.g. Choe and Ie¥e 1974) report intermanual transfer of adaptatiois bt
clear, however, in how far thisight be due teognitivestrategies. If participants are either
ignorant of the effect of the goggles or repeltéustructedto base their actions on their ac-
tual perception and not on cognitive strategiegenmanual transfer of adaptation is generally
abeent.
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affect the proprioceptive percign of spatial location, i.e. the felt position of the arm
The proprocepton of the acive imb would have adagt while the proprocepion of
the passie limb would show no adaption effecs.

This notion of “perceptial learnng” (e.g. Bedford, 1999) $ sedudtve. As bng ast
is only the perceptual input that is recaditedit is conceivable that spatial knowledge
is represered centally, in a kind of mester dah base, wih all sensorysystens pro-
viding calibratedspatial information. This data tase wald thenin turn sene to pro-
vide te notor scrpts with coordnate information of the objecs that areto be deat
with. The performance diference for he acive and he passie limb would be dueto
the different calibration status of he proproceptve inputto the cental spatal repre-
sertation from these linbs.

A cental represergtion of spaia knowledge agreesvell with the introspecively
felt unity of phenonenal experence. However,tihas been showrhdt phenonenal
experence $ not prerequsite for correctvisuonotor behavor. Statton (1897) has
shownthat wearng invering goggés (urning the image 180°) perfectisuonotor
coordnaion coutl be obained wihin a fev days. Phenosmally, however, the world
wasstill upside down. It is still a matter d debate wlether after a weelor two phe-
nomenal experience would also adapt; theportart point here is that there is ew
dence for a disocation betveen vsuonotor and phenoenaladapétion. Comparabk
resuts were repokd by Kohler (1951). On a siilar line of thoughtevidencefrom
blindsght casegPoppelet al., 1973) putinto queston the rekvance of phenoenal
experence for vsuonotor funcioning.

If visuonotor adapétion depends natnly on the (acive versus pasgs) imb but
also on he exactmotor trajecory, thena cental represerdtion of spatal knowledge
would be less tenabk. Instead, spatal knowledge woutl then be nore eadiy and
parsmoniously explained as ditributed knowkdge, cbsel related to a varety of
possille motor scripts. Same initial evidence fa swch a ceperdency canes fran Mar-
tin etal. (1996) who demnstated hat there wasno transferof adapétion from un-
derhand to overhand throwing. Here, we eamine ths effect withthe well-stwied
pointing task, as wdlas wth types of novenents that are more closey related than
underhand and overhanataowing.

2 Experiment 1: Reaching Below/Above a Bar

Insteadof measuring the adaptation effatitectly, it has becomconmmon practice to
measure the Negative Aftereffect (NAEpmparing notor perfornance before and
after adapétion  prism goggks. Itrepreserg an excdent measureof adapétion as
it compares twoalsdutely idertical situations (unaiered vision) so batall observabd
changesn motor performance can ol be due ¢ the adapdtion t the prism goggks
that occurred in the eantine.

In Experiment 1 we neasuredhe NAE for wo differenttypes oftrajecbries: Par-
ticipans (N=72) had ¢ touch a cross presextateye level on a buch screen 36m
in front of them Two different trajectoriewere possible:reaching to the cross from
below or (swihging the armbackwards) fromabove he horzontally extending bar
that served as chirest(Fig. 1). Locaton performancewithout feedbackwas detr-
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mined for bol trajecbries of boh hands before and aftadapétion ofasingle trajec-
tory of one hand to prismoggles (17° hdazontal displacemnt) Testing was done on
centrally located targets, v adaptation took place at hasiztally displaced targets.

black cotion sheet

a)

Fig. 1. a) Setup for Experiment 1. A thin blacktton sheet was hung in front of the touch
screen, and the roohight was shut off, witta dim slot lanp illuminating the hand while touch-
ing the screen. This procedure prevented amtthli visual cues whilst ndtamperingtouching
the screenor seeing the bright cross. b) The iaontally extending bar that served as chin rest
was reduced in size for Experiments 2 to 6asato support the chin withobamperingthe
more sweeping motions of those experiments.tdhéarwasusedin Experiment.

The NAE was comatible with zero forboth trajecbries of the unadaped hand.
This confirms the wel-known finding that there 5 no intermanual transfer. More
importartly, the NAE was sigificantly differert for the adapted trajectay (46mm,
8.7°) as corpared b the oher trajecbry of the sane hand (26rm, p<0.01).Thatis,
despte the fact that the sariing postions were denical and end potions verysimi-
lar, there was oly partial intramanual transfer. The fact thaherewas rtial trars-
fer, rather than the conplete absence ofransfer found vth overhand versus under-
hand browing, refect te greaer smilarity of the motions used here.

3 Experiment 2: Pointing from Different Starting Positions

While in Experiment 1 the sarting posiion was denical for boh types of tajecb-
ries, the end positions wereslightly differert. In order to exclude the possikility that
this causedhe weak mtramanualtransfer, Experment 2 wasrun using different start-
ing posiions anddenical end podions. Theseup differed fromthat of Experment
1 in that the chin restdid not extend horzontally, and here was a hazontal bar
mounted 90 cnabove the table, wittwo additional keys munted beneath that bar.
Paricipants (N=21) performed a btal of 45 sessins, saring the ponting movenent
either ata low (deskbp key) or ahigh postion (key mounted benedt top bar).Loca-
tion performance without feedback was deténed for both startingositionsbefore
andafter adapétion to a single sarting postion whie wearing prism gogges. — The
NAE was agai significanty different for the adaptd strting posfion (80 mm) as
compared b the oher sariing posiion (51 nm, p<0.01).



180 Kaernbach, C. et al.
4  Experiment 3: Interposing Inward/Outward Circles

In Experments 1 and 2, ¢er the sarting postionsor the end pogions dffered. In

Experiment 3, paricipants (N=14, perforning a ttal of 32 sessins) sarted the pont-

ing movenent atthe sane postion (atthe keyon te desk op), and ended with the

sane end podion. Insead of noving their hand diecly from the keyto the cross,
they had b interpose annward or ouvard crcular novement. Theywereinstructed

to circumscribe a regon “the ske of a lead”, like writing a kind of “O” in the air,
after releasng te key and beforeduching the screen. Locain perfornrance wihout

feedback was deteined forboth trajectories before and adt adapétion o a shgle

trajecbry while wearig prism goggkes.— Even wth idenical starting and end posi
tions, he NAE was ginificanty differentfor the adapted trajectory (59m as com

paredto the other tajecory (49 nm, p<0.01). The dference § however, sraller

than n Experiments 1 and 2:The NAE for he wo trajecories differed by 17%,

whereashe diference was around 40% the oher tvo expenments.

5 Experiment 4: Pointing with/without a Weighted Wristband

In Experiments 1 to 3, trajecbries differed. In Expetinent 4, ransfer of adaption
was studied foexactly the same trajectory, varying this time the load of the moving
arm by appling a weighted wrist band (440 g)ri sone of the tials. Paricipants
(N=11) performed a btal of 36 sessins. Agan, locaion perfornance wihout feed-
back was dermined for boh condtions before and adft adapétion o asingle condk
tion while wearing prism gogges.— Varying only the load of he moving arm the
NAE was again significantly fferent for the adapted condition (55nmhasconypared
to the oher condiion (44 nm, p<005). The NAEs dfered byabout22%.

6 Experiment 5: Generalization to Vertically Distributed Targets

In Experiments 1 to 4, we made use ofhe factthat adapétion generakes horzon-
tally: Participarnts acipted to targets that were tathe side of the certrally locatedtar-
gefs used n the pre-and posttests (seemethods of Expement 1). Generakation of
adapétion horizontally to other trges has been dewnstated before (Bdford,
1993). As prisngoggles displace the agehorizontally, this is notoo surprising. By
the sane tdken it is not necessarily clear #t achptation will gereralization vertically.
In Experiment 5, paricipant (N=14, perforning 20sessbns)adaped to a high target
postion, or to a low postion, or aternakly to both these pogions. Thei locaion
performance before and after adaptation viesded ata high, a nedium anda low
target postion. In order ¢ obtin a good separan (30 cm correspondig o 53°
visualangk) betveen hgh and bw targetpostions, he nonitor was roéted 90°.
Figure 2 showshe resuts. When adaphg o the high target postion, this condi
tion showed the largest NAE,with a gradual decrease of the NAE as the tested posi-
tion depad from the adaped one. The dferences beteen esting the high target



Visuomotor adaptation: dependency on motion trajectory 181

postion and he oher wo target postions s significant (p<0.05). The samtrend 5
present when adapting tbe lower target position, &lbugh this trend did not reach
significance. Wien adaphg aternakly to both high and éw target postions, no
signifi cantdifferences areotbe found.

) |
| testing
‘ M high
‘ O medium
‘ @ low
04

adaptation: high alternate low
Fig. 2. Results of Experiment 5. NAE as a ftioo of adapted and tested target position.

As can be seemiFig. 2, generatafion for vertcaly distributed rgetsis not per-
fect. The effect is, however, too alhto beevaluated well within the dstarces tfat
canbe realizedon a raatedtouch screen Fuure experiments will include target posi-
tions ouside he tuch screen area.

7 Experiment 6: Effect of Terminal/Full Feedback

In a final experirent we assessed the effeftfeedback and the speed of adaptation.
In the previous experiemts, adaptatiortook place under “full feedback”, i.e¢he
participarts could watchtheir hand as it nmoved towards the target. Urder full feed
back,paricipant usualy produceonly small locaton errors, correotg errors of tie
ballistic part of the nmotion while apgproaching the screenThese dta d not allow
anaysis of the dynamics of he adapdtion process. In Expearient 6, paricipants
(N=19, perforning 28 sessins) adapd ether alternaiely under ful feedback and
underno feedbackwith the no-feedbackritals yielding information on he sate of he
adaptation), or under “teiimal feedback”: Irthis condition, the lapwent off when
the participart releasedhe key, ard wert on agan when he screen wakuchedWe
reasonedhat under erminal feedback e paricipant would realze he tue nistake

of the ballistic novenent which would beobscured under full feedback due to the
possillity to correct the novement “on the fly”. We expectedthat terminal feedback
would inducea stonger adagtion effect — Figure 3 reveal that indeed érminal
feedback induces a stronger NAE tHah feedback (p<0.01)The initial adaptation
speedseens not to be affected, but the finadaptation level is greater after terinal
feedback.
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Fig. 3. Results of Experiment 6. Location error ithgr adaptation session as a function of trial
number and feedback condition.

Conclusion

Our dat denonstate tat, in a varety of cases, spatial adaptatismotor specific:
Knowing whereis knowing how to (see alsdhe reirterpretatian of the what andwhere
systens by Milner and Gooda| 1995). While spatal knowledge seerm o be dstrib-
uted, we nonetheless phenemdly experience it as unitary entity. Even if “left arm
knowledge” differs from*“right armknowledge” (due, e.g.,ctadapétion of onearm),

we do notperceve anyambiguity when geing an object. The cause of this dissocia-
tion might be elicidated byconsdering te purposeservedby the experencedunity

of spatal knowledge. Phenoenalexperence § a late productof evolution, enabing
the individual to plan coherentsequence®f actions (and anticipate their conse-
guences)ashase.g. been deonstated wih rats (Tolman, 1948). For such a purpose
it would probaby be cunbersone to be aware ofhe fragmentation of spatal knowl-
edge, mncluding possble inconsistercies. Sinple aimdirectedreactons b visualinput
(as n pointing or graspig) have develped eaikr and are appardgtimplemenied
independety ata level closel related to motor performance.

References

Bedford, F. (1993). Perceptual Learning. Trhe psychology of learning and motivation, Vol.
30. D. Medin (Ed.). Academieress, San Diego, CA, pp. 1-60

Choe, S. C., and ¥th, R. B. (1974). Variableaffecting the interranual transfer and decay
prismadaptationJournal of Experimental Psychology, 102, 1076-1084.

von Helmholtz, H. (1867 andbuch der physiologischen Optik. Leipzig: Voss.

Kohler, 1. (1951). Uber Aufbau und Wandlungeder WahrnehmungswelOsterreichische
Akademie der Wissenschaften. Sitzungsbegicphilosophisch-historische Klasse, 227, 1-
118.

Martin, T.A., Keating,J.G.,Goodkin, H.P., Bastian, A.Jand Thach, W.T. (1996). Throwing
while looking through prisrs. Il. Specificity and storage of aitiple gaze-throw calibra-
tions.Brain, 119, 1199-1211.

Milner, D. and Goodale, M., (19950he Visual Brain in Action, Oxford UniversityPress.

Péppel, E. , Held, R. and Frost, D. (197Bgsidual function after brain wounisrolving the
central visial pathway in man. Nature, 243, 295-96.

Stratton, G. (1897).Vision withoutversion of the retinalimage. Psychological Review, 4,
361-360.

Tolman, E.C. (1948). Cognitive aps in rats and en. Psychological Review, 55, 189-208.



Detection of Communication Partners
from a M obile Robot

S. Lang, M. Kleinehagenbrock, J. Fritsch, G. A. Fink, and G. Sagerer

Bielefeld University, Faculty of Technology, 33594 Bielefeld, Germany
slang@techfak.uni-bielefeld.de

Abstract. An important prerequisite for the natural interaction of humans with
a mobile robot is the robot’s capability to detect potential communication part-
ners. In this paper we present an approach which uses a combination of person
recognition and tracking with sound source localization realized in a multi-modal
anchoring framework. As in open environments several potential communication
partners can be present simultaneously we developed a rule-based method for
selecting one specific person as the current communication partner.

1 Introduction

A prerequisite for the widespread use of mobile service robots in home and office en-
vironments is the development of systems with natural human-robot-interaction. While
much research focuses on the communication process itself, it is also necessary to ex-
plore how robots can automatically recognize when and how long a user’s attention is
directed towards the robot for communication.

For this purpose some fundamental abilities of the robot are required. It must be able
to detect persons in its vicinity and to track their movements over time. Additionally,
as speech is the most important means of communication for humans, the detection and
localization of sound sources is of great importance.

This paper is organized as follows: At first we discuss approaches that are related
to the detection of communication partners in section 2. Then, in section 3 multi-modal
anchoring is described. This is the basis of our approach for the detection of communi-
cation partners explained in section 4. The paper concludes with a short summary.

2 Redated Work

As long as artificial systems interact with humans in static setups the detection of com-
munication partners (CPs) can be achieved rather easily. For the interaction with an
information kiosk the potential user has to enter a well defined space in front of the
device (cf. e.g. [1]). In intelligent rooms usually the configuration of the sensors allows
to monitor all persons involved in a meeting simultaneously (cf. e.g. [2]).

* This work has been supported by the German Research Foundation within the Collaborative
Research Center ’Situated Artificial Communicators’ and the Graduate Programs *Task Ori-
ented Communication’ and ’Strategies and Optimization of Behavior’.
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In contrast to these scenarios a mobile robot does not act in a closed or even con-
trolled environment. A prototypical application of such a system is its use as a tour
guide in scientific laboratories or museums (cf. e.g. [3]). All humans approaching or
passing the robot have to be considered to be potential CPs. In order to circumvent the
problem of detecting humans in an unstructured and potentially changing environment
in [3] a button on the robot itself has to be pushed to start the interaction.

The humanoid robots S G [4] and ROBITA [5] currently demonstrate their capa-
bilities in research labs. Both use a combination of visual face recognition and sound
source localization for the detection of potential CPs. S G’s focus of attention is di-
rected towards the person currently speaking that is either approaching the robot or
standing close to it. In addition to the detection of talking people ROBITA is also able to
determine the addressee of spoken utterances. Thus it can distinguish speech directed
towards itself from utterances spoken to another person. Both robots, S G and ROBITA,
can give feedback which person is currently considered to be the CP. S G always turns
its complete body towards the CP. ROBITA can use several combinations of body ori-
entation, head orientation, and eye gaze to express different states of communication.

3 Anchoring

Person tracking with a mobile robot is a highly dynamic task. Due to motions of the
tracked persons and of the robot itself the sensory perception of the persons is constantly
changing. In order to control the robots behavior, connections between processes that
work on the level of abstract representations of objects in the world (symbolic level)
and processes that are responsible for the physical observation of these objects (sensory
level) need to be established. These connections, called anchors, must be dynamic, since
the same symbol must be connected to new percepts every time a new observation of
the corresponding object is acquired.

We follow the definition of anchoring proposed in [6]: At every time step ¢, the
anchor contains three elements: a symbol, which is used to denote an object, a percept
of the same object, generated in the perceptual system, and a signature, meant to provide
the estimate of the values of the observable properties of the object. If the anchor is
grounded at time ¢, it contains the percept perceived at £ as well as the updated signature.
If the object is not observable at ¢ and therefore the anchor is ungrounded, then no
percept is stored in the anchor but the signature still contains the best available estimate.

3.1 Multi-Modal Anchoring

Anchoring as defined in [6] only considers the special case of connecting one symbol
to the percepts acquired from one sensor. However, complex objects cannot be captured
completely by a single sensor system alone. If more than one sensor is used, the sym-
bolic description of an object has to be linked to different types of percepts, originating
from different perceptual systems.

For this purpose we propose an approach for multi-modal anchoring [7]. It allows
distributed anchoring of individual percepts from multiple modalities and copes with
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different spatio-temporal properties of the individual percepts. Every part of the com-
plex object which is captured by one sensor is anchored by a single component anchor-
ing process. The composition of all component anchors is realized by a composite an-
choring process which establishes the connection between the symbolic description of
the complex object and the percepts from the individual sensors. In addition to standard
anchoring, the composite anchoring module requires a composition model, a motion
model, and a fusion model:

— The composition model defines the spatial relationships of the components with
respect to the composite object. It is used in the component anchoring processes to
anchor only those percepts that satisfy the composition model.

— The motion model describes the type of motion of the complex object, and there-
fore allows to predict its position. Using the spatial relationships of the composition
model, the position of percepts can be predicted, too. This information is used by
the component anchoring processes in two ways: 1. If multiple percepts were gen-
erated from one perceptual system the component anchoring process selects the
percept which is closest to the predicted position. 2. If the corresponding percep-
tual system receives its data from a movable sensor with a limited field of view (e.g.
pan-tilt camera), it turns the sensor into the direction of the predicted position.

— The fusion model defines how the perceptual data from the component anchors
has to be combined. It is important to note, that the processing time of the differ-
ent perceptual systems may differ significantly. In this case the perceptual data is
not received by the composition anchoring process in chronological order. For this
purpose the composite anchor provides a chronologically sorted list of the fused
perceptual data. New data from the component anchors is inserted in the list, and
all subsequent entries are updated.

Anchoring of composite object
Symbols Anchor Percepts

Signature| name, height, ‘,’ (©) \
Person) - list position, etct0 tq - /—'_‘ﬂQﬂp:
Person models__ § I

[Composition] \Mqtion\ [Fusion|

Faceregion

Anchoring of component objects

Sound source
Fig. 1. Multi-modal anchoring of persons.

The detection of CPs from a mobile robot requires to track all persons in the vicinity
of the robot. For this purpose we apply multi-modal anchoring. Our mobile robot is
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equipped with a laser range finder, a pan-tilt camera, and stereo microphones. Every
sensor forms the basis for one perceptual system:

— The laser range finder covers a 180° field of view at a height of approximately
30cm. In range readings human pairs of legs result in a characteristic pattern that
can be easily detected [7]. From a legs-percept distance and angle of the person
relative to the robot are extracted.

— The camera is mounted on top of the robot at a height of 140cm. We developed a
face detection method which copes with changing lighting conditions [8]. From a
face-percept the distance, angle, height and identity of the person are extracted.

— Stereo microphones are applied to locate speakers using a method based on cross-
powerspectrum phase analysis [9]. From a voice-percept the angle relative to the
robot can be extracted.

The anchoring of a person is illustrated in Fig. 1. It is based on anchoring the three
components legs, face, and voice.

3.2 Anchoring Multiple Persons

For the detection of CPs from a mobile robot usually more than one person has to be
tracked at the same time. Then, several anchoring processes have to be run in parallel.
In this case, multi-modal anchoring as described in the previous section may lead to the
following conflicts between the individual composite anchoring processes:

1. A percept is selected by more than one anchoring process.
2. The anchoring processes try to control the pan-tilt unit of the camera in a contra-
dictory way.

To resolve these problems a supervising moduleis required, which controls the selection
of percepts and the access to the pan-tilt camera.

To handle the first problem, the supervising module restricts the access to the pan-
tilt unit of the camera to only one composite anchoring process at a time. How access is
granted to the processes depends on the intended application. An example is given for
the detection of CPs in the following section.

In order to avoid the second problem, the selection of percepts is implemented as
follows. Instead of selecting a specific percept deterministically every component an-
choring process assigns scores to all percepts rating the proximity to the predicted po-
sition. Subsequently, the supervising module computes the optimal non-contradictory
assignment of percepts to component anchors. Percepts that are not assigned to any of
the existing anchoring processes are used to establish new anchors. Additionally, an an-
chor that was not updated for a certain period of time will be removed by the supervising
module.

4 Detection of Communication Partners

For the detection of CPs from a mobile system we apply multi-modal anchoring of
persons, as described in the previous sections. Every person in the vicinity of the robot
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is anchored by one anchoring process. From the anchoring processes the following
attributes can be extracted: standing: The last positions of a person are known; it can
therefore be decided, whether a person is walking or standing still. speaking: From
the microphones it is known, whether a person is speaking or is silent. facing: The face
anchoring process provides information, whether a person is facing the robot or looking
in a different direction.

Note, that due to the limited field of view of the camera the attribute facing can not
be computed for all persons simultaneously. The control of the access to the pan-tilt unit
of the camera by the supervising module has an important relevance for this application.

For CP detection we propose the following set of heuristic rules, that are based on
the three above mentioned attributes standing, speaking, and facing:

— A person that is not standing but walking is considered as a passer-by, and is there-
fore definitely no CP (rule 1).
— Whether a person standing still that is also speaking is classified as CP depends on
the orientation of the head:
e A person facing the robot is classified as CP (rule 2).
e A person not facing the robot is assumed to be talking to someone else than the
robot (e.g. another person) and therefore is definitely no CP (rule 3).
e If no information from the camera is available, no classification is possible, so
the person is a potential CP (rule 4).

The remaining three configurations of attributes (standing, not speaking, and any state
of facing) leave the person’s state unchanged (rule 5). This means that a person which
was previously recognized as CP will be still considered as CP.

The rules for the detection of CPs are now used to define the behavior of the robot.
On the one hand, the robot should direct its attention towards the person which was
recognized as CP. This is done by turning the front of the robot into the direction of
the CP, standing face-to-face. The anchoring process corresponding to that person gets
access to the pan-tilt camera and keeps the person in the center of the field of view. On
the other hand, the robot must be able to recognize a new CP, when the current CP is
not speaking (rule 5). Only a person that is speaking can take over the role of the CP.
If a person speaking is in the field of view of the camera one of the rules 2 or 3 can be
applied and a decision is possible. If a person speaking is not in the field of the camera
it is considered as a potential CP (rule 4). Then, the corresponding anchoring process
gets access to the pan-tilt camera in order to focus the potential CP. Now a decision can
be made according to rules 2 and 3. If the person is facing the robot it becomes the new
CP, otherwise the anchoring process of the old CP again gets back access to the pan-tilt
camera. Note, that while the camera is used to check the state of other persons the front
of the robot is still directed towards the current CP, thus signaling that this person is the
current CP. A sample behavior of the robot is depicted in Fig. 2.

5 Summary

We presented an approach for the detection of communication partners (CPs) from a
mobile robot. The detection requires to simultaneously track persons in the vicinity of
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Fig. 2. Sample behavior with two persons standing near the robot R. In (1) person A is the CP,
thus the robot directs its attention towards A. Then A stops speaking but remains the CP (2). In
(3) person B begins to speak. Unless B’s head is not in the camera’s field of view, B is a potential
CP. Therefore the robot turns the camera into the direction of B, still showing A its attention (4).
Since person B is facing the robot, B becomes the new CP, and the robot turns towards B in (5).

the robot. This is achieved by multi-modal anchoring based on three types of sensors:
pan-tilt camera, laser range finder, and stereo microphones. The anchoring processes
provide three person attributes: standing, speaking, facing. We developed a set of heuris-
tic rules which define if a person is considered as a CP. In addition, the competing access
of the anchoring processes to the pan-tilt unit of the camera is described.
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Abstract In dynamic environments, such as RoboCup [4], vision sys-
tems play a crucial role. In general, systems requiring real-time vision
are either implemented in hardware, or as software systems that take
advantage of the domain specific knowledge to attain the necessary effi-
ciency. The goal of this paper is to describe a vision system that is able
to reliably detect objects in real time and that is robust under different
lighting conditions, this in contrast to most models used in robot soccer.
The resulting objects serve as input for intelligent prediction of robot
behavior [1].

1 Introduction

Fast sensing is advantageous for both biological and artificial systems. Humans
can evaluate a visual scene in a fraction of a second. During this period a consid-
erable amount of data is retrieved and processed. Humans very rapidly reduce
visual data (the eyes receive most data per time unit) to relevant information,
by using knowledge and adaptation. This paper describes a system where visual
data is rapidly reduced by using knowledge about the environment. The system
is able to recognize objects in real time, and is applied to soccer playing robots.
The system is robust to (non-uniform and changing) lighting conditions and dif-
ferences in color definition. This in contrast to virtually all vision solutions in
RoboCup?, which need tedious tuning for every game.

In most of the color vision systems the first step in data processing are
extracting features, assigning pixels to classes, or a combination of both. In
general, software solutions for object recognition are not even close to real time.
For example, a well known fast method of feature (corners and edges) detection
is SUSAN [5]. The newest generation of processing technology might be able
to perform this method in real time. Nevertheless, the largest computational
effort is needed to map the detected key-points into recognized objects. Hence,

1 RoboCup is the robot soccer competition.
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knowledge possibly in combination with selective attention is essential for real
time vision applications, for general tasks in a real world environment.

Assigning pixels to classes has been proven to be successful in RoboCup.
The most widely used approach in RoboCup is assigning pixels to color classes.
Bruce et al. [2] constructed a thresholding method that is able to classify up to
32 different color classes in few operations. This method is attractive because of
its efficient memory usage. We propose a simpler method that assigns a pixel to
a class in a single operation by a lookup table.

Colored objects can be recognized as blobs under the assumption that objects
are uniform. Bruce et al. [2] accomplished blob detection by color segmentation
using run length encoding. The advantage of this method is that it is indepen-
dent of any knowledge about the environment. The drawbacks of this method
however include, poor recognition of partly occluded objects and the relatively
high computational cost.

A more attractive approach is proposed by Jamzad et al. [3]. They make use
of the perspective view, and state that 1200 single points are sufficient for object
detection in RoboCup. In the future, robots are supposed to play against humans
by the FIFA rules. The replacement of the boarding by white lines, last year,
is a step in that direction. To meet the new requirements, there is a stronger
need for detecting small objects, hence so-called scanlines are more suitable than
single points.

The paper is organized as follows: Section 2 elaborates on color space reduc-
tion, spatial reduction, and cluster extraction to obtain real time object detection
in a robot soccer playing environment. The paper concludes with a discussion
and future research.

2 Object Recognition in a RoboCup Environment

Detection of objects for a soccer playing robot comprises of four stages: Color
space reduction; in a RoboCup setting only few colors are relevant, therefore a
natural image is reduced to these relevant colors in a single operation by using
a preprocessed table. Spatial reduction. A perspective grid with a resolution of
10 cm reduces the spatial data to less than 20 percent, which is sufficient to
recognize all objects. Segmentation is performed by clustering areas of identical
color on the grid. Object extraction; the objects contain at most 3 different color
clusters and are evaluated by size.

2.1 Color Space Reduction

The colors of all objects in RoboCup are defined. These colors are orange for
the ball, yellow and blue for goals and corner poles, green for the field, white
for the lines, black for the robots, and cyan and magenta to visually distinguish
between teams. We omit cyan, because we are able to distinguish our robots
from the others by team communication. We define these seven colors as color
classes because they cover more than a single (r, g, b) color value.
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a) b)

Figure 1. a) Input image. b) Results of color reduction by attaching every pixel to one
of the seven color classes. Note that the image is displayed by a normalized index, to
clearly differentiate between the seven classes.

Color space reduction is accomplished by assigning every pixel in an image
to a single color class.? This reduction is achieved in a single operation by a
preprocessed table of Ny x Ny x N3 elements, where N denotes the number of
colors in channel k € {1,2,3}.

A color triple ¢ = (r, g,b) in the conversion table ¢ is assigned to exactly one
color class:

white if (max—min) < U) A (avg > T')
t(c) = < black if (max—min) < U) A (avg <T) (1)
i if (max—min) >U)A (| —i| < | —j| Vjel)

where U is a uniformity measure, T is a threshold, avg = |c| is the average, min =
ming(c) is the minimum, max = maxs(c¢) is the maximum element value in ¢. The
normalized color ¢ = (Ny(r—min)/maz, No(g—min)/maz, N3(b—min)/max),
C = {orange,blue, yellow, green, magenta} as the set of “real” color classes,
and |z| denotes the Euclidian (or L) distance. The following settings are used
throughout the paper: U = 50, T' = 100, and Ny = 255 for every k; the color
centers of a class are used in its exact definition (blue = (0,0, 255), orange =
(255,165,0), etc.). These settings turn out to be very robust, but can of course
be set to the the most desired settings in a particular RoboCup environment.
Figure 1 illustrates the results of this algorithm.

2.2 Processing Data in a Perspective View

The robots are equipped with a Sony DFW VL500 CCD camera and have at-
tached a Sony wide angle lens (x0.6 VCL-0637H). The camera is connected to a

2 The Kmeans algorithm can be used for finding the most appropriate colors in en-
vironments where time constraints are less critical and where color settings are not
a-priori known.
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Figure 2. a) Constructed two-dimensional grid. b) Calibration pattern. Equidistant
blobs, with centers at 10 cm distance frome each other, are used up to two meters. At
a larger distance a 10x25 cm grating pattern is used.

notebook by the IEEE1394 firewire bus. The maximum capacity throughput of
the camera is used, which results in 640x480 color (YUV422) images at a 30 Hz
framerate.

In RoboCup soccer this setup is sufficient to detect a ball at a 10 meter
distance. The image data can be strongly reduced if the sizes of all objects and
their positions on the soccer field are taken into account. The smallest static
object of interest in a soccer field is the white line (12 c¢cm width) the next
smallest object is the ball that has a diameter of about 24 cm.

A perspective grid (Figure 2a) is constructed by using a calibration pattern
that contains equidistant blobs that are at 10 cm distance (Figure 2b). Such a
grid highly reduces the data, and is still sufficient to recognize all objects in a
RoboCup environment. The depthlines (7.08 percent) are completely scanned.
Depending on the content of the depthlines, part of the 42 horizontal scanlines
(8.75 percent) is scanned. In addition the grid gives the world coordinates from
robot perspective (angle and depth to an object) which serve as input for the
motion control as well as behavior prediction[1].

2.3 Object Extraction

The objects in a RoboCup setting are all uniform in color. However, in practice,
differences in definition of color, reflecting surfaces, illumination of different light
sources, as well as, light from outside can have a strong influence on the unifor-
mity and appearance of a color. Actually, this is the major problem in RoboCup
vision. The choice of assigning every pixel to an a-priori known small number of
color classes (Section 2.1) is robust to these differences in appearance.

A grid (Figure 2a) is placed over the image with assigned color classes. All
depthlines of the grid are used to scan for objects. On a single depthline all se-
quences of pixels that belong to the same color class and exceed a fixed minimum
length are evaluated. The minimum and maximum y-coordinate of a sequence
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Figure 3. Extracted color clusters of Figure 1a are marked by a rectangle with a cross.
Five different color clusters (orange, blue, yellow, black, and magenta) are evaluated.
Unfortunately they can not be displayed properly in a grey scale image.

are taken and denote the vertical size of a cluster. Next, all intersections of the
sequence with the horizontal scanlines are marked and followed in left and right
direction, until another color class is encountered. The maximum and minimum
x-coordinates of the followed horizontal scanlines determine the horizontal size
of the cluster. If this cluster intersects with an existing cluster it is merged, oth-
erwise a new cluster is added to the set of clusters in a single (time) frame. An
illustration of all marked clusters of Figure 1a is given in Figure 3.

When all depthlines are followed in a single frame, the set of segments is
complete and object recognition is performed. An object is described by a set of
connected clusters and by its size. For example, a corner pole is a blue-yellow-
blue object, with a diameter of about 20 cm and a height of about one meter; a
ball consists of a single color cluster of about 24 times 24 cm.

2.4 Results

The proposed real time object recognition system is bound by the capacities of
the video camera. The load on a 80 MHz P3 notebook is around 90 percent
and that of a 2.2 GHz P4 desktop PC is around 35 percent. The initialization
needed for the construction of color mapping table, grid, depth map, and map
for size estimation are all fully preprocessed, which requires between 10 to 20
seconds, depending on the used machine.

Grabbing and mapping the data into a color segmented image, which can
be considered as data retrieval, is most time consuming (240 ms wall clock
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time for 30 frames on the P4 desktop). Object recognition itself is far less time
consuming (102 £ 5 ms). These measurements are obtained from data taken
from two different RoboCup environments. In all cases the number of extracted
color clusters are between 20 and 80 in a single frame.

3 Discussion and Future Research

In this paper a real time object recognition model in a RoboCup environment
that is robust under varying illumination conditions and differences in color defi-
nition is presented. The model includes color and spatial reduction, by assigning
pixels to color classes and by using a grid, respectively.

The method provides simple incorporation of additional color classes and
allows segments to have more than one color class. For example, between the
yellow and orange class a few intermediate color classes can be defined to give a
more accurate distinction between a yellow goal and an orange ball. The green
color is currently ignored, but segments very well from all other color classes and
can be used to determine the field boundaries.

The current setup contains a vision system with a wide angle lens. Omnidi-
rectional vision which is commonly used in RoboCup suffices in resolution. The
360 degree field of view results in simpler hardware and better self localization,
and will be used on a robot that is under development. In the model only the
grid needs to be recalibrated.

In autonomous systems where vision is included there are three major cate-
gorized data streams: color, form, and motion. These three streams are essential
for any basic vision system. In real world applications that are not predefined like
RoboCup, will require visual attention, knowledge, and learning methodologies
to quickly extract relevant information from a huge amount of data.

Both authors are strongly in favor of incorporating biological models of vision
and learning into the field of (semi) autonomous robotics.
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Abstract. The interpretation of image patterns is preceded by the de-
tection and localization of local image features, such as line elements,
intersections of line elements, and image motion. Noise in the image
formation and processing, however, causes a serious problem for the esti-
mation of features; in particular, it causes bias. As a result the location of
features often is estimated erroneously. The amount of bias depends on
the texture, for certain patterns it is strongly pronounced. This provides
an explanation for many well-known geometrical optical illusions, such
as the café wall, the Zollner, the Poggendorff illusion and other recently
discovered illusions of movement.

1 Introduction

We have found a general principle in the statistics of visual processes. Visual
computations are formulated as estimation processes. Because of noise — which
always is present, but very difficult to estimate accurately since visual processes
involve many unknowns — these estimation processes are biased, and thus the
parameters to be estimated are obtained with errors. Here we address low level
estimation processes, that is edge detection, feature extraction and optical flow
estimation. We argue that the bias in these low level processes is a major cause
for most geometrical optical illusions.

In the past, a number of authors have discussed uncertainty in image mea-
surements. In early studies eye movements have been advanced as a causative
factor [8] in illusions. Our theory also proposes that eye movements do play a
major role because they are a relevant source of noise. More recently [1,3-5]
optical or neural blur has been discussed as a cause of illusions and models of
band-pass filtering or smoothing have been proposed to account for a small set of
illusions [6]. In intuitive terms these studies invoked the concept explained here.
Band-pass filtering constitutes a model of edge detection in noisy gray-level im-
ages. The theme of this paper is that smoothing is a special case of a more
general principle — namely, uncertainty or noise causes bias in the estimation of
image features — and this principle accounts for a large number of illusions that
previously have been considered unrelated.
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2 Errors in intensity values

Consider viewing a static scene such as the pattern in Figure 2. Let the irradiance
signal coming from the scene parameterized by image position (x,y) be I(z,y).
The image received on the retina can be thought of as a noisy version of the ideal
signal. Consider noise in the spatial location which has a Gaussian probability
distribution. The expected value of the image then is obtained by smoothing,
that is convolving the ideal signal with a Gaussian kernel g(z,y, o) with o, the
standard deviation of the positional noise, that is the intensity at an image point
amounts to I(z,y) * g(z,y,0p) .

Edge detection mathematically amounts to localizing the extrema of the first-
order derivatives or the zero crossings of second-order derivatives (the Laplacian)
of the image intensity function. The change of location of straight edges under
smoothing is illustrated in Figure 1. There are three cases to be considered:
Edges between a dark and a bright region do not change location under scale
space smoothing (Figure la). The two edges at the boundaries of a bright line,
or bar, in a dark region (or, equivalently, a dark line in a bright region) drift
apart (Figure 1b). Finally, the two edges of a line of medium brightness next to
a bright and a dark region move toward each other.

11
L

Fig. 1. A schematic description of the behavior of edge movement when smoothing:
(a) no movement, (b) drifting apart, (c) getting closer.

These observations suffice to explain a number of illusions, for example the
one in Figure 2a. In this pattern next to the white squares in the corners of
the black squares short bars are created. The edges of these bars drift apart
under smoothing and the other edges—between the black and white tiles of the
checkerboard—stay in place. The result is that the edges near the locations of
the white squares are bumped outward toward the white checkerboard tiles as
is illustrated in Figure 2b.

3 Errors in line elements

The perceptual effect at intersecting lines is illustrated in Figure 3a. To un-
derstand the behavior in more detail, consider the input to be edge elements.
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Fig. 2. (a) Hlusory pattern: “waves.” (b) The result of smoothing and edge detection
on a part of the pattern. (c) The instantaneous velocity of edge points in the smoothed

image — the so called drift velocity.

(a) (b)

Fig. 3. (a)From [8]. The fine line as
shown in A appears to be bent in the
vicinity of the broader black line, as in-
dicated in exaggeration in B. (b) The
data in the model are edgels parameter-
ized by their center (zo,,yo,) and their
direction (the unitized image gradient)

(a) (b)

Fig. 4. (a) Zollner pattern. (b) Estima-
tion of edges in Zollner pattern. The line
elements are found by connecting two
consecutive intersection points, result-
ing from the intersection of edges of two
consecutive bars with the edge of the
vertical bar (one in an obtuse and one
in an acute angle).




200 Fermiiller, C. et al.

A straight line is represented by a large number of edge elements (Figure 3b).
These are noisy; of importance is noise in the direction. The intersection point
is found by intersecting all the straight lines passing through the edge elements.

Consider additive, independently identically distributed (i.i.d.) zero-mean
noise in the parameters. Let unprimed letters denote estimates and primed letters
denote actual values. Each measurement i provides one equation

Iwix + Iy'iy = Iwzxoi + 1. 1 Y0; (1)

and from n measurements we obtain a system of equations which are represented
in matrix form as, I;x = C, where I is the n-by-2 matrix which incorporates
the data in the I, and I,, and C' is the n-dimensional vector with components
I, %0, + I, y0,- The vector  denotes the intersection point whose components
are ¢ and y. The solution to the intersection point using standard least square
(LS) estimation is given by

x = (II,)'I.C (2)

It is well known [2] that the LS solution to a linear system with errors in the
measurement matrix is biased. The expected value of x is found by developing
(2) into a second-order Taylor expansion at zero noise. It converges in probability
to

o =a' +nM (& — )0 (3)

where M’ = I,/'I,' , &' is the actual intersection point, & is the mean of the x,,
and o2 is the variance of the noise in the spatial derivatives of I. This expression
allows for an interpretation of the bias and it allows to predict parametric influ-
ences on the strength of illusions. Some important characteristic features of the
intersection of two straight lines in an acute angle are: as shown before in Figure
3 the estimated intersection is between the lines, the size of the bias decreases as
the angle increases and the component of the bias in the direction perpendicular
to a line decreases as the number of edgels along the line increases.

Figure 4a shows a version of the Zollner illusion. The vertical bands are all
parallel, but they look convergent or divergent. The biases in the intersection
points of the edges of the bands with the edges of the short line segments cause
the edge elements along the long edges between intersection points to be tilted,
as illustrated in Figure 4b. A full account of the perception of tilted lines re-
quires also an explanation of the linking of the local elements into longer lines.
Our hypothesis is that this integration is computationally an approximation of
the longer lines using as input the positions and orientations of the short line
elements; this will give rise to tilted lines.

The model also predicts the findings of parametric studies that the illusory
effect decreases with an increase in the acute angle between the main line and the
obliques and that the illusion is stronger when rotated by 45 degrees, because it
has been found that there is more response from the cortex to lines in horizontal
and vertical than oblique orientations —translated to our model, more response
means more edgels.
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4 Errors in Motion

The basic image representation of movement is the optical flow which is derived
in a two-stage process. First, from local spatio-temporal measurements at a point
the velocity component at a point perpendicular to linear features (the normal
flow) is computed. Second, normal flow measurements from features in different
directions within a small neighborhood are combined to estimate the optical
flow, but this estimate is biased.

We consider a gradient-based approach to deriving the normal flow. Denoting
the derivatives of the image gray level I(z,y,t) by I, I,, I;, and the optical
flow of an image point in the z- and y-directions by w = (u,v), the following
constraint is obtained:

ILyu+Lv+1;=0 (4)

We assume the optical flow to be constant within a region and thus obtain
an over-determined system of equations whose least-squares solution amounts to

w=—(I'I,)"'I'I,. (5)

The expected value of the flow converges to
u=u —no?M . (6)

Equation (6) shows the bias depends on the gradient distribution (that is,
the texture) in the region with the flow always underestimated in length.

Figure 4a shows a variant of a pattern created by the graphics artist Ouchi.
It consists of two rectangular checkerboard patterns oriented in orthogonal di-
rections — a background orientation surrounding an inner ring. Small retinal
motions, or slight movements of the paper, cause a segmentation of the inset
pattern, and motion of the inset relative to the surround.

The tiles used to make up the pattern are longer than they are wide leading
to a gradient distribution in a small region with many more normal flow mea-
surements in one direction than the other. Since the tiles in the two regions of
the figure have different orientations, the estimated regional optical flow vectors
are different. The difference between the bias in the inset and the bias in the
surrounding is interpreted as motion of the ring.

Another impressive illusory pattern is shown in Figure 6 (from [7]). If fixating
on the center and moving the page back and forth along the line of sight the
inner circle appears to rotate. This can be accounted for by different biases in
the inner and outer ring; the difference in the motion vectors is tangential to the
circles giving rise to the perception of a rotational motion.

5 Concluding remarks

In this paper we have discussed a major hurdle that vision systems have to deal
with. Noise in the image data—that is, the image gray level and its derivatives—
causes a serious problem for early visual processes and unavoidably leads to bias.
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Fig. 5. A slight jiggling of
duces two motions.

Fig. 6. Fixation at the center and move-
the paper pro- ment of the figure along the line of sight
causes the inner circle to rotate.

An artifact of the bias is illusory perceptions involving patterns where the bias
is highly pronounced. Noise is present in any visual data. It is due to the sens-
ing process, and in particular the spatial and temporal integration of data that
moving systems are confronted with, and due to the operations involved in com-

puting derivatives, or in

estimating and locating certain frequency components

of the signal. The problem is that the noise parameters usually cannot be esti-
mated well, as they change with the lighting and viewing conditions, often too
rapidly to allow enough data to be collected.
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Abstract. Many theoretical, psychophysical, and physiological studies have
addressed the question of how the optic flowfields that are generated on the
retina of a moving observer can be used to control behaviour. However, most of
these studies were restricted to controlled laboratory conditions, and little is
known about the flowfield structure under the natural conditions, organisms
operate in. We investigated the information content of natural optic flowfields,
by moving a panoramic imaging device outdoors on accurately defined paths
and by simulating a biologically inspired motion detector network to analyse
the distribution of motion signals. We demonstrate here that the motion signals
obtained under natural conditions are sparsely distributed in space and that the
information on the direction of local flow vectors can be ambiguous and noisy.
Spatial or temporal integration is needed to retrieve reliable information on the
local motion vectors. Variations of the motion detector parameters have no
major effect on the overall structure of the motion signal maps. Our approach
may help to assess the environmental and computational constraints in optic
flow processing.

1 Introduction

A moving observer generates a large-scale pattern of image motion on the retina that
contains information on both observer movement — egomotion - and the three-
dimensional structure of the environment. Gibson [1] recognised the significance of
such optic flowfields, which he illustrated by arrays of homogenously distributed
velocity vectors, and thus sparked the development of flowfield theory, which deals
with algorithms to extract egomotion parameters from optic flow [e.g., 2, 3]. Most
algorithms assume implicitly that local motion signals are veridical, homogenously
distributed, and carry true velocity information. However, the actual structure of two-
dimensional motion signal distributions is determined (i) by the pattern of
locomotion, (ii) by the specific three-dimensional layout of the local environment, and
(iii) by the motion detection mechanism employed. Similarly, motion sensitive, optic
flow processing neurones in invertebrates and vertebrates [e.g., 4, 5] are usually
investigated with coherently structured motion stimuli that densely cover large parts
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of the visual field. In simulations, Dahmen et al. [6] have recently shown that
surprisingly few and low fidelity flow measurements are needed to estimate
egomotion parameters, as long as these local measurements are widely distributed
throughout the visual field. To appreciate the design of neural mechanisms underlying
flowfield processing and to assess the robustness of optic low algorithms, we thus
need to know in more detail, what kind of motion signal distributions visual systems
are confronted with in a normal ecological and behavioural context.

To address this issue, we studied the role of environmental and computational
constraints in natural optic flow processing by moving a panoramic imaging device
along precisely defined three-dimensional paths in a variety of natural outdoor
locations. The recorded image sequences then served as input to a biologically
inspired, two-dimensional motion detector network (2DMD), consisting of an array of
correlation-type detector pairs for horizontal and vertical motion components [7]. This
procedure generates panoramic motion signal maps which allow us to study the
structure and dynamics of natural motion signal distributions, as they would be
experienced ‘in the cockpit’ of a low-flying observer, like an insect.

2  Methods

A panoramic imaging device, mounted on a computer-controlled robotic gantry, was
moved by means of DC servo-motors along accurately defined 3D-trajectories within
a space of about 1 m® with a positioning accuracy of 0.1 mm?. The imaging device
consisted of a black and white video camera (Samsung BW-410CA) looking down
onto a parabolic mirror which was optimised for constant spatial resolution [8].
Images were digitised (8 bit, Matrox Meteor framegrabber) and stored on a computer
for off-line analysis. The raw images, in which azimuth ¢ and elevation O are
represented in polar coordinates (see figure 1A), were converted into Cartesian
coordinates (unwarping software by courtesy of Javaan Chahl), leading to images 450
pixels wide and 185 pixels high (corresponding to a visual field size of ¢ = 360° and 0
= 136°, figure 1B). In the default configuration, image sequences of 64 consecutive
frames were taken at 25 frames/s during gantry speeds of 5 cm/s and 10 cm/s.

Image sequences were analysed with a two-dimensional motion detector model
(2DMD) which has previously been used to simulate a variety of behavioural and
psychophysical phenomena [e.g., 7, 9, 10]. The basic building blocks of the 2DMD
model are elementary motion detectors (EMDs) of the correlation type which have
been shown to be good candidates for biologically implemented motion detectors [for
review, see 11] and are representative of a variety of luminance based motion
detection algorithms [e.g., 12]. In a simple implementation (figure 1C), each EMD
receives input from two points of the spatially filtered stimulus patterns. To remove
DC components from the input, difference of Gaussians (DOGs) with balanced
excitatory centre and inhibitory surround are used as bandpass filters in the input
lines. The fundamental spatial model parameter was the sampling distance A@
between the two inputs (2 pixels, approximately 1.6°, as default). To prevent aliasing,
the diameter of the receptive field was set to about twice the value of the sampling
distance. The signal from one input line is multiplied with the temporally filtered
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signal from the other line, and the outputs of two antisymmetric units of this kind are
subtracted from each other with equal weights, leading to a fully opponent, and thus
highly directionally selective EMD. The fundamental temporal model parameter was
the time constant t of the first-order lowpass filter (2 frame intervals, 80 ms, as
default). An increased temporal resolution was used in the simulations (the frame
interval corresponding to 8 digital simulation steps) to improve the accuracy in
calculating the dynamic responses of the temporal filters.

Figure 1: A method to study natural optic flowfields. A video camera is used to capture
panoramic images in polar coordinates (A) which are converted into Cartesian coordinates (B;
azimuth @, elevation 0). Image sequences are recorded while moving the camera through a
natural scene and then used as input to a large array of motion detector pairs (one element
sketched in C), to generate motion signal maps (D).

Movie sequences were processed by two arrays of such EMDs, which were oriented
along the horizontal and vertical Cartesian image axis, respectively (sketched in fig.
1C) The 2DMD model thus consists of two sets of 450 x 185 correlators, one pair
centred at each image pixel. The output of the model is a two-dimensional motion
signal distribution, which we call a motion signal map, with a horizontal and vertical
signal component for each image point (see fig. 1D). In some cases this raw 2DMD
output was temporally averaged (over 8 to 64 frames) before further analysis. We use
a two-dimensional colour code to represent the direction and the magnitude of local
motion detector responses in these motion signal maps in terms of hue and saturation
[10].
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3  Results and Discussion

The 2DMD response for a simple forward translation is compared in figure 2 for a
single displacement step (A) to the average of 16 consecutive steps (B) and for a
variety of EMD parameter settings (C-F). The motion signal maps are characterised
by a systematic pattern of colour change (i.e. a change in the direction of local image
motion) around the centre of each panel, reflecting the local motion vectors radiating
from the flowfield pole. Local image motion directions are inverted in the image
regions corresponding to the rear field of view, close to the left and right borders of
the panoramic image. This distribution of local motion signals is typical for a forward
translation of the camera which produces an expanding and contracting flowfield pole
in the frontal and the rear field of view, respectively. Corresponding patterns of local
motion signals, with different locations of the flowfield pole in the images, are found
for translations in other directions (data not shown).

Figure 2: Motion signal maps derived as 2DMD output (A: single frame B-F: average of 16
consecutive frames) for a variety of EMD model parameters. A-B: Ap = 2 pixel, T = 2 frames;
CAp=1,1=2;D: Ap=4,t1=2; E: Ap =2, 1= 1; F: Ap =2, © = 4. Each panel shows the
output of a set of 450 x 185 EMD pairs (360° azimuth, 136° elevation) in 2D-colour code
representing direction and strength of the local motion signal (green-right, yellow-up, red-left,
blue-down).

Although the overall structure of the flowfield can be recognised in the individual
2DMD output frame, it is striking how noisy and sparse the distribution of local
motion signals is in such cluttered natural scenes (fig. 2A). Most importantly, the
image regions around the flowfield poles do not contain clear motion signals, which
can be explained by considering the fact that image speed is minimal there, thus
attenuating the local EMD response which depends on the contrast and speed of
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moving contours. The directional noise apparent in these motion signal maps be
attributed to fluctuations inherent to the EMD output [13] and to variations of local
contour orientations which affect the detected direction of motion [14]. The flowfield
structure in motion signal maps can be improved by spatial or temporal averaging
(compare fig. 2A and B), reducing some of the noise in local motion signals, and their
sparseness, at the cost of resolution. We find in addition that the density of the maps
is affected by the gain and the non-linearity of amplifying the EMD output (data not
shown). Since spatial and temporal EMD parameters are known to determine the
tuning of the detector to spatial frquency and image velocity [e.g., 15], we
investigated how variations of the time constant t and the sampling distance A¢ affect
the structure of the motion signal maps. The examples shown in figure 2 C-F
demonstrate that A@ has some (obvious) influence on the spatial grain and noise load
of the motion signal maps (cf. fig. 2C and D), but very little effect on the overall
structure. The effects of changing t are negligible (cf. fig. 2E and F). This resistance
against variations in model parameter can be related to the inherently broadband
properties of objects and surfaces in natural scenes [16].

Natural motion signal maps have two additional properties which are relevant
for otpic flow processing. Firstly, contours on the ground generate comparatively
large image motion components compared with more distant objects above the
horizon. The ‘ventral’ regions of the motion signal maps are thus occupied by denser
and stronger motion signals than the ‘dorsal’ regions. Secondly, when several 2DMD
response frames are averaged (fig. 2B-E), the motion signals are aligned along
‘motion streaks’, which reflect the trajectories of image contrast elements during the
averaging interval. These oriented streaks contain independent information on the
structure of optic flow - the radial patterns in the front and the rear image regions
provide a clear indication of the flowfield poles. Recent psychophysical experiments
suggest that humans are actually able to use the orientation of temporally blurred
moving objects for motion processing [17].

4 Conclusions

The three-dimensional layout of the environment, as defined by the size, the texture,
the contrast, the density, and the distance of objects, has profound effects on the local
motion signals in the visual field of a moving observer [6]. Mechanisms to extract
relevant information from natural optic flow fields are likely to be adapted to the
lifestyle, and in particular to the locomotion patterns of animals, as well as to the
statistical properties of the world they inhabit [18]. Our results indicate that in natural
scenes the motion signals generated by translational movements are sparse and noisy,
but that egomotion parameters can be estimated at a coarse spatial or temporal scale
from the radiating pattern of local motion directions. Interestingly, the overall
structure of the motion signal distribution is rather robust against variations of the
basic EMD model parameters. Future work has to show how well these results
generalise to other environments and more complex types of locomotion. In the
context of both biological and machine vision, our approach to generate dynamic
motion signal maps under realistic operating conditions can critically extend earlier
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attempts [e.g., 19] to test the reliability and robustness of techniques, algorithms and
computational models of optic flow processing.
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Abstract. We searched for neural mechanisms allowing for distance in-
variant object processing in visual cortex. Such mechanisms may require
modulation of response properties in visual cortlical neurons with view-
ing distance, including response sensitivity, size of the classical receptive
field (CRF), and preference for spatial frequency (SF). In order to test
these hypotheses we recorded multiple unit activity (MUA) in primary
and secondary visual cortex (V1, V2) of an awake macaque monkey with
an array of 16 microelectrodes while changing randomly the viewing dis-
tance by moving the stimulus monitor. We confirmed previous work re-
porling strong sensitivily modulation with changes in viewing distance of
near-, intermediate-, and fartype [1,2]. In contrast, we found CRF-size
and SF-preference on average being independent of viewing distance.
This suggests that distance invariant object coding is supported by a
subset of V1 and V2 neurons, probably selected by facilitation via neu-
ronal input representing a distance estimate. Our data further suggests
that neurons with overlapping CRFs and different preferred SFs mutu-
ally couple their aclivilies in order Lo code [or the spatial proliles of local
luminance contrast at object contours. We found shortest response de-
lays to low and medium SF's while those to high SF's were significantly
longer.

1 Introduction

We are interested in the neural mechanisms of visual size invariance. Under
natural viewing conditions size invariance requires a mechanism allowing for
distance-invariant recognition of objects. The term distance-invariance refers to
toleration of changes in retinal image size that are due to varying viewing dis-
tance as opposed to varying real-world object size (see related model in this
Volume [3]). The required invariance transformation is probably learned during
everyday experience. Basis for this is our knowledge of objects keeping their
identity and physical size with viewing distance. Psychophysical work demon-
strated that humans can estimate the size of objects rather precisely up to 30 m
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distance and that this capability is correlated with the precise estimate of dis-
tance [4-6]. Thus, a neural mechanisin estimating absolute object distance may
tune the invariance-mechanism with this single parameter like a photographer
tunes the setting of his tele-objective in order to compensate for object distance.
Such tuning can be achieved by different neural mechanisms. One is proposed
by Kupper & Eckhorn [3], introducing distance complex cells that receive in-
put from scts of lower-level feature detectors, modulated in their sensitivity by
distance. Such distance-dependent modulations of neurons have recently been
reported for visual cortical areas V1, V2 and V4 of awake monkeys [1,2]. As
visual objects appear under increasingly smaller viewing angle with increasing
viewing distance, neurons involved in distance invariance operations might mod-
ulate the size of their classical receptive fields (CRF's) and/or their preferred
spatial frequency (SF): tuning their CRFs to smaller size and higher spatial
frequencies when fixated objects appear far, and modulating the CRFs to large
size and lower SF for near viewing distance.

2 Methods

In order to test these hypotheses we recorded multiple unit activity (MUA) at
parafoveal representations in the upper layers of striate (V1) and extrastriate
(V2) visual cortex of a macaque monkey with an array of 16 microelectrodes
in each session. In all tasks the monkey was rewarded for steadily fixating a
small luminance spot with a maximal error of 40.5° visual angle. Eye posi-
tions were controlled and recorded by an infrared camera system (resolutions:
0.05°, 225Hz). For the investigation of distance dependent effects visual lumi-
nance stimuli were presented pseudo-randomly at three different distances (0.45,
0.9, 1.8m, and 0.45, 0.78, 1.35m, respectively) via a computer screen (TFT)
quickly movable along the axis of straight sight under computer control (up
to 1 m/s). For each recording site we determined at each stimulus distance (1)
the positions, sizes, and sensitivities of CRF's, probed by a randomly jumping
spot (RI-cinematogram method: [7]), size-scaled to the different distances; (2)
the orientation- and SF-tuning, probed at random order with Gabor-patches of
different orientations and SFs; (3) the signal interactions among SF-channels
having their CRFs at the contour of a luminance-defined object that was radial
symmetric with respect to the fixation point and was presented size-scaled at the
three distances. All measures were analyzed with respect to their dependency
on viewing distance.

3 Results

Distance characteristics. The response strength at most recording sites in V1 and
V2 was modulated by viewing distance. Depending on the distance where the
response maximum appears we classified far-, intermediate-, and near-distance
characteristics, based on the three stimulation distances used (Fig. 1A). The
others were classified non-modulated. Most recording locations displayed the near
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Fig. 1. A: Schematic tuning characteristics for viewing distance: near, iniermediate,
far. B: Percentage of recording locations for the four distance characteristics, examplary
for the V2 recordings.

characteristic (56%; Fig. 1B). We found neurons of any SF-preference within each
class of distance modulation.

SF-preference and CRF-size. SF-preferences cover a broad range of more
than 1 to 8 (> 3 octaves; SD = 3.04cyc/® (V1), 3.40cyc/° (V2)) already within
each of the small visual field representations measured by us in V1 (0.5-3° horiz.;
1-2° vert.) and V2 (0-1.5° horiz.; 1.7-4° vert.), respectively (Fig. 2A). However,
within the same recording chamber CRF-sizes span only a range of about 1 to 2
(1 octave; SD = 0.07° (V1), 0.15° (V2)). Our data show no corrclation among
SF-preference and CRF-size, as might be expected (CC = —0.28 (V1), —0.13
(V2)). In addition, neither average SF-preference (Fig. 2C) nor average CRF-
size (Fig. 2B) depended on viewing distance. However, the individual CRF-sizes
ol many recording positions showed some change with stimulus distance (21%
standard deviation of the mean CRF-size).

Response latency in V1 and V2 to stimulus onset of a Gabor patch de-
pends in our data on its SF (Fig. 3): on average stimuli at low and medium
SFs caused shorter response latencies (about 70ms; 0.5-4cyc/°) compared to
high SFs (about 92ms; 10-13cyc/°). Note that this dependency characterizes
the average delay at a given recording location to Gabor stimuli with different
SF's.

Signal coupling at object contour. With activations by a luminance contour,
neurons with overlapping CRF's and with orientation preference matching that of
the contour, mutually couple their signals in the frequency ranges 10-25 Hz and
40-50Hz, shortly after the transient broad-band response (Fig. 4A). These beta-
and gamma-range couplings are present independently of the SF-preferences at
the recording locations, including recording pairs with similar and different SF-
preferences. In contrast, recording pairs with orientation preferences orthogonal
to the contour lack this type of coupling (Fig. 4B). More subtle analysis of
the orthogonal class indicates decreased correlation after the transient response.
Additional properties of signal couplings among neurons of defined SF-preference
have not been analyzed by us yet.
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4 Discussion and Conclusions

Distinct types of distance tuning. Confirming recent experimental work, and in
line with the suggestion of a model of distance invariance [3], we found three dis-
tinct classes of distance selectivity: near-, intermediate-, and far-tuned (Fig. 1A).
These modulations are due to neural input changing with absolute viewing dis-
tance and may be based on a broad variety of distance cues, including ocular
vergence and perspective. Vergence angle can provide an absolute cue for fixa-
tion distance (at least up to about 5 meters). We varied it systematically with
stimulus distance because the monkey was always required to fixate the screen.
From the same reason ocular disparity was kept constant with different distances
and therefore can probably play no role in distance dependent modulations.
Only small changes in CRF-size and SF-tuning with viewing distance. Visual
objects appear under increasingly smaller viewing angle with increasing viewing
distance. We might therefore expect that neurons involved in distance invari-
ance operations decrease their average CRFSs’ sizes with distance in order to
cope with the higher resolution required for the far-appearing object. Our data
do not support this expectation: average CRF size does not vary with distance.
Another finding is unexpected and shows that linear filter theory is probably not
appropriate for applications to cortical SF-tuning: preferred SFs within a small
cortical range of recording locations and hence, within a small range of visual
field representation, vary over a broad range (more than eight-fold) while the
CRF-diameters at these same locations vary only by a factor of about two. Hence,
SF-preference does not scale with CRF-diameter (Fig. 2A). In addition, average
SF-preference at the recording locations does not change with distance. For dis-
tance invariant object coding, modulations of SF-preference and CRF-size with
distance may not be required for a given location of visual excentricity (where
we performed our recordings) because the contour of a fixated object changes
its representation in the visual system automatically from lower to higher reso-
lution when the object size shrinks with distance and the contour activates the
high-resolution central neurons. Our results on CRF-size and SF-tuning on dis-
tance are with high probability not an effect of MUA- (instead of single-unit-)
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recording, because in striate cortex CRF-sizes and SF-tuning are only slightly
smaller with single-unit- compared to MUA-recordings.

Response latency was on average shorter for stimuli at low and medium SFs
(about 70 ms; 1-4 cyc/°) and was significantly longer at high SFs (about 95 ms;
10-13cyc/°). We assumme that the strongest effect on latency is due to retinal
processing. At a given retinal excentricity the CRF-sizes and SF-preferences are
rather constant. Magnoccllular ncurons have larger CRFs, prefer lower SFs, and
transmit signals faster than parvocellular neurons. Thus, stimulation with vary-
ing SFs will activate different proportions of magno- and parvo-cells. Another
effect on latency by SF is introduced by both magno- and parvo-cells: strong
stimuli and hence, stimulation at their preferred SF, will cause large responses
at short delays. In contrast, the used high SF stimuli probably have activated
the neurons less strongly and therefore led to higher latencies.

Contour coding by SF-channels. We found the luminance step of a contour
coded by neurons synchronizing at high frequency and having overlapping CRFs
such that the profile of a current contour may be represented by the superposition
of their CRF's. We have additional predictions but did not yet analyze our data
in sufficient detail: (1) At positions of the object’s surface, we expect facilitatory
coupling among neurons with offset (non-overlapping) CRFs preferring low SF's.
(2) At object surface representations we expect inhibition of neurons preferring
high SF's by those preferring low SF with CRFs at the same position.
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Abstract. A novel single-scale neural architecture is proposed which
both reproduces brightness illusions and successfully deals with natu-
ral images. Our architecture builds upon the premise that early vision
should facilitate object recognition. Specifically, the visual input is segre-
gated into three categories, namely texture (small-scale even symmetric
features), surfaces (small-scale odd symmetric features) and gradients
(large-scale even and odd symmetric features). The model also proposes
a solution to anchoring brightness by means of a novel multiplexed reti-
nal code. In this way a single-scale architecture is sufficient to recover
absolute luminance levels.

1 Introduction

Our proposed architecture for brightness processing aims to unify two seemingly
diverging goals, that is image processing and brightness perception. A successful
unification has not been achieved so far, since models which predict brightness
phenomena only rarely produce meaningful results when processing real-world
images (although some results have been demonstrated, e.g. [1]). On the other
hand, models for image processing tasks (typically coding or denoising), which
often claim to provide some account to early vision, fail to predict phenomena
associated with brightness perception. Usually, both model classes compute their
output by superimposing processed filter outputs over various scales and orienta-
tions, whereby filter outputs are processed in order to fulfill a certain pre-defined
goal (coding, denoising, predicting psychophysical results, etc.). None of these
models has achieved any segregation of the visual input in way compatible with
object recognition; rather, these models create only an internal (or cortical) rep-
resentation of the visual input, thus deferring segregation to higher level cortical
processing.

Furthermore, there is no model available for processing two-dimensional lumi-
nance patterns which comes up with a neurophysiological plausible solution to
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Fig. 1. Sketch of the proposed architecture. Dotted lines denote stages which were
not implemented yet. Specifically, suitable interactions between the three subsystems
may be defined to improve the segregation process.

the anchoring problem (although a one-dimensional solution was suggested by
[2]). This problem is commonly solved by employing an additional “luminance
channel” in the form of a low-passed filtered (or large-scale band-passed, e.g. [1])
version of the visual input, e.g. [3-7]. Yet, evidence supporting the existence of
such a channel is still lacking.

Here we present a novel architecture for foveal brightness perception in agree-
ment with known neurophysiological data (see figure 1). We propose that cortical
simple cells of different symmetries (even, odd) and scales extract different as-
pects from the visual input, which are (i) texture (here defined as small-scale
even symmetric features, such as lines and points), (i) surfaces (corresponding
to small-scale odd symmetric features for building cortical surface representa-
tions), and (%4) luminance gradients (corresponding to large-scale even and odd
symmetric features, for example out-of-focus lines or edges). Simulations show
how this segregation process renders cortical representations of object surfaces
invariant to noise and illumination gradients.

Also, we suggest a neurophysiologically plausible solution to the anchoring prob-
lem by proposing a “multiplexed” retinal code which at the same time represents
information about contrast and brightness (ON-cell) and contrast and darkness
(OFF-cell) of a visual input.

2 A new model for brightness perception

Our architecture builds upon filling-in theory [8]. It consists of a retinal stage,
and three cortical stages. Each cortical stage consists of two layers, where activity
in one layer is thought to correspond to brightness, and activity in the other
layer is thought to correspond to darkness. The perceptual activity (or perceived
luminance) is essentially computed by subtracting darkness from, and adding
brightness to, an Eigengrau value [9,10]. A brief description of the individual
model stages is given below.

Retinal Processing. [11,12] found evidence that in addition to the cen-
ter/surround receptive field of retinal ganglion cells there exists a disin-
hibitory region or outer surround. This region corresponds to an annulus
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Fig. 2. Results for the surface system. Left: Simulation results for brightness
illusions. Right: The filled-in result of a real-world image is juxtaposed with gated
multiplexed activity which corresponds to the initial state of the brightness map (de-
noted by brighter colors) and the darkness map (darker colors).

around a ganglion cell’s center/surround receptive field. In our model we
employ an outer surround as a measure of local luminance, which is used to
modulate response amplitudes of retinal ganglion cells such that an ON-cell
(OFF-cell) contains both information about contrast and local brightness
(darkness). In this way a multiplexed retinal code is created. Notice that in
this way we are able to convey information about absolute luminance levels
with one single scale (in fact, we model only foveal vision, that is we use
the smallest possible receptive fields), whereas usually large filter scales are
employed for this purpose (the center corresponds to the visual input, the
surround to its four nearest neighbors, and the outer surround to a Gaussian
with a spatial constant o = 4 pixels). The multiplexed retinal code provides
a solution to the anchoring problem.

Surface system. Odd-symmetric contrast configurations in the visual input
(typically edges) trigger the gating of multiplexed retinal activity into sur-
face layers. Surface representations are built by means of a novel diffu-
sion paradigm which fills-in the gated multiplexed activity in corresponding
filling-in domains. Filling-in domains are defined by odd symmetric con-
trast borders, which eventually correspond to surface representations. In-
stead of heat diffusion as filling-in mechanism [8], we propose a novel dif-
fusion paradigm which converges in shorter time to homogeneously filled-in
surface representations, and which discounts large scale activity gradients.
The new diffusion equations for brightness activity s and darkness activity
sy are given by

dS% (t) . o o o ~ @
P YUy (Bin — 85) + Koo s + (L — to)my;
dsl.J (t) o ° ° ° ~ O
—ar = ’waij(Em - Sij) + ,Ce,oosij +6(t - to)mij (1)

where 7,, is a constant synaptic weight, wf, and uf;, are two sets of odd

symmetric boundaries, F;, is a inhibitory reversal potential (i.e. boundaries
hyperpolarize the membrane potential of surface cells), K°., and K° are

7m b
nonlinear diffusion operators (which include mutual inhibition of brightness
D

and darkness activity), d(¢t — ¢g) is Dirac’s delta function, and finally m;
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and mg are multiplexed retinal activities (filling-in of multiplexed retinal
activities instantaneously recovers absolute luminance values).

Many brightness illusions (such as White’s effect, grating induction, Benary
cross, simultaneous brightness contrast) are reproduced by the surface sys-
tem (figure 2). Specifically, the surface system provides a new account to
White’s effect and the Benary cross; these illusions occur as a consequence

of the multiplexed retinal code and the novel diffusion paradigm.
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Fig. 3. Results for the gradient system. Snapshots at different time steps (see
numbers) show the evolution of the perceptual activity in the gradient maps. The
input (“luminance”) is shown in the left image of each row. The first row shows the
generation of a luminance gradient with linear slope, where Mach-like bands were
generated in the output. In the second row it is shown that with a nonlinear luminance
gradient (here a sine wave grating), no explicit generation of a gradient is observed,
since the state of the gradient system remains approximately stationary. The example
in the last row illustrates that surfaces are suppressed, but gradients are represented
in the gradient system.

Gradient system. Gradients may contain valuable information about 3-D

surface structure (structure from shading, e.g. [13]) and therefore provide
additional information for object recognition. Gradients are defined as large-
scale even and odd symmetric features. Since our model only employs a single
scale, we have to recover large-scale gradients by means of clamped diffusion
(see figure 3). This process works in a way that in the brightness layer ON-
activity serves as tonic (or “clamped”) source, and the OFF-activity as tonic
sink (vice versa for the gradient darkness layer).

The gradient system successfully accounts for the inverted-U behavior of
the perceived strength of Mach bands vs. the slope (or spatial frequency) of
the luminance ramp (i.e. there exists a ramp slope where Mach bands are
perceived with maximum strength) [14].
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Fig. 4. Results for the texture system. Left: speckled noise was added to a lumi-
nance pyramid, where each pixel received noise with probability p = 0.1 (“luminance”).
The output of the texture system shows a successful segregation of even-symmetric fea-
tures from surfaces (“texture”). Right: output of the texture system (“texture”) to a
real-world texture image (“luminance”). The last examples show that both lines and
points are represented in the texture system.

Texture system. Texture is defined here as small-scale even symmetric con-

trast configurations. We distinguish two further subtypes: lines and points.
Both subtypes are usually superimposed on surfaces (figure 4). Often, points
are generated by noise. Therefore, by suitable interactions between the tex-
ture system and the surface system, noise may be discounted from object
surface representations. The strength of this interaction may be modulated
by an attentional system, since occasionally it may happen that points actu-
ally correspond to structure information. Nevertheless, no additional filtering
(like a median filter) is required to achieve denoising, which is of particular
interest for image processing. Above, we have briefly described the subsys-
tems of our computational model. For image processing tasks, we now need
to combine the output of all three subsystems. To do so, the output of the
texture system is “printed” on the combined surface/gradient output. How-
ever, if we are interested in denoising tasks, we could eliminate the points,
since the latter typically correspond to noise.
In order to combine the output of the surface system with the gradient sys-
tem, preliminary simulations suggest that gradients should be built upon
filled-in surface representations. These computational mechanisms, however,
are subject of ongoing investigation.

3 Summary and Conclusions

Our model provides a novel view on early vision, since it emphasizes that the
visual input should be interpreted by three subsystems accomplishing a segrega-
tion into surface, texture and gradient maps. In particular, with this segregation
process we propose a new interpretation regarding the role of cortical simple
cells in early vision, and their contribution to generate distributed representa-
tions of surface layout [15, 16]. We believe that this segregation facilitates object
recognition, since it leads to separate intrinsic feature representations that are
precursory to the generation of object surface representations. The gradient and
texture system may provide additional information to higher visual areas. Un-
like a simple coding approach that decomposes the visual input (e.g. [17]), we
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propose a more richer representation that allows to semantically relate specific
image content to underlying surface properties. Mechanisms which underly such
a surface related processing necessitate more complex interactions in order to
disambiguate and combine information from several maps.
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Multi-Modal Statistics of Edges in Natural Image
Sequences
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Abstract

In this work we investigate the multi-modal statistics of natural im-
age sequences looking at the modalities orientation, color, optic flow and
contrast transition. It turns out the statistical interdependencies corre-
sponding to the Gestalt law collinearity increase significantly when we
look not at orientation only

1 Introduction

A large amount of research has been focused on the usage of Gestalt laws in com-
puter vision systems (overviews are given in [14, 13]). The most often applied
and also the most dominant Gestalt principle in natural images is collinearity
[3, 9]. Collinearity can be exploited to achieve more robust feature extraction in
different domains, such as, edge detection (see, e.g., [7, 8]) or stereo estimation
[2, 13]. In most applications in artificial visual systems, the relation between fea-
tures, i.e., the applied Gestalt principle, has been defined heuristically based on
semantic characteristics such as orientation or curvature. Mostly, explicit mod-
els of feature interaction have been applied, connected with the introduction
of parameters to be estimated beforehand, a problem recognized as extremely
awkward in computer vision. Recently, Geisler et al [6] introduced the idea to
overcome heuristic and explicit models by relating feature interaction to the
statistics of natural images. The feasibility of this approach becomes strong
support from the measurable interdependencies of features in visual scenes that
turn out to correspond to Gestalt laws [9, 3, 6].

In the human visual system beside local orientation also other modalities
such as color and optic flow are computed (see, e.g. [5]). Gestalt principles are
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Figure 1: Grouping of entities becomes intensified (left triple) or weakened (right
triple) by using additional modalities.
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affected by multiple modalities. For example, figure 1 shows how collinearity
can be intensified by the different modalities contrast transition, optic flow and
color. This paper addresses statistics of natural images in these modalities. As
a main result we found that statistical interdependencies corresponding to the
Gestalt law ”collinearity” in visual scenes become significantly stronger when
multiple modalities are taken into account (see section 2).

2 Multi-Modal Statistics in Image Sequences

In the work presented here we address the multi-modal statistics of natural
images. We start from a feature space (see also figure 1) containing the sub-
modalities:

Orientation: We compute local orientation o (and local phase p) by the specific
isotropic linear filter [4].

Contrast Transition: The contrast transition of the signal is coded in the
phase p of the same filter.

Color: Color is processed by integrating over image patches in coincidence with
their edge structure (i.e., integrating over the left and right side of the edge
separately). Hence, we represent color by the two tuples (c’r,c’g,cé), (cr,Cyych)
representing the color in RGB space on the left and right side of the edge.
Optic Flow: Local displacements (f1, f2) are computed by a well known optical
flow technique ([11]).

2.1 Measuring Statistical Interdependencies:

We measure statistical interdependencies by the so called ‘Gestalt coefficient’
(see also [9]). The Gestalt coefficient is defined by the ratio of the likelihood of
an event e! given another event e? and the likelihood of the event e':

1,2 P (el|€2)
G(e ;€ ) - P(el). (1)
For the modeling of feature interaction a high Gestalt coefficient is helpful since
it indicates the modification of likelihood of the event e! depending on other
events. A Gestalt coefficient of one says, that the event e? does not influence the
likelihood of the occurrence of the event e!. A value smaller than one indicates
a negative dependency: the occurrence of the event e? reduces the likelihood
that e! occurs. A value larger than one indicates a positive dependency: the
occurrence of the event e? increases the likelihood that e occurs. The Gestalt
coefficient is illustrated in figure 2. Further details can be found in [10].

2.2 Second Order Relations Statistics of Natural Images

A large amount of work has addressed the question of efficient coding of visual
information and its relation to the statistics of images. Excellent overviews are
given in [16, 15]. While many publications were concerned with the statistics
on the pixel level and the derivation of filters from natural images by coding
principles (see, e.g. [12, 1]), recently statistical investigation for local edge
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d

Figure 2: Left: Images of the data set (top) and 2 images of a sequence (bottom).
Right: Explanation of the Gestalt coefficient G(e'|e?): We define ¢ as the occur-
rence of a line segment with a certain orientation (anywhere in the image). Let the
second order event ' be: “occurrence of collinear line segments two units away from
an existing line segment e?”. Left diagram: Computation of P(e!|e?). All possible oc-
currences of events e! in the image are shown. Bold arcs represent real occurrences of
the specific second order relations e* whereas arcs in general represent possible occur-
rences of e'. In this image we have 17 possible occurrences of collinear line segments
two units away from an existing line segment e and 11 real occurrences. Therefore
we have P(e'le®) = 11/17 = 0.64. Right diagram: Approximation of the probability
P(e') by a Monte Carlo method. Entities e” (bold) are placed randomly in the image
and the presence of the event ’occurrence of collinear line segments two units apart
of €2’ is evaluated. (In our simulations we used more than a 500000 samples for the
estimation of P(e')). Only in 1 of 11 possible cases this event takes place (bold arc).
Therefore we have P(e') = 1/11 = 0.09 and the Gestalt coefficient for the second
order relation is G(e'le®) = 0.64/0.09 = 7.1.

structures have been performed (see, e.g., [9, 3, 6]) and have addressed the
representation of Gestalt principles.

Here we go one step further by investigating the second order relations not
only in the modality orientation but in our multi-modal feature space

€= ((iEl,IL‘Q),O,p, ((clr:cfg:cg))a (C:,C;,Cg)), (f17f2))'

In our simulations we collect second order events in bins defined by small
patches in the (z1,z2)-space and by regions in the modality—spaces defined by
the metrics defined for each modality (for details see [10]). Figure 3 shows the
Gestalt coefficient for equidistantly separated bins (one bin corresponds to a
square of 10 x 10 pixels and an angle of § rad). As already been shown in [9, 6]
collinearity can be detected as significant second order relation as a ridge in the
surface plot for Ao = 0 in figure 3e. Also parallelism is detectable as an offset of
this surface. A Gestalt coefficient significantly above one can also be detected
for small orientation differences (figure 3d,f, i.e., Ao = —% and Ao = %).

The general shape of surfaces is similar in all following measurements con-
cerned with additional modalities: we find a ridge corresponding to collinearity
and an offset corresponding to parallelism and a Gestalt coefficient close to one
for all larger orientation differences. Therefore, in the following we will only
look at the surface plots for equal orientation Ao = 0. These result shows that
Gestalt laws are reflected in the statistics of natural images: Collinearity and
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0
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-50 -50 -50 -50
g) orientation (Ao=174) h) orientation (A0=3178)

Figure 3: The Gestalt coefficient for differences in position from -50 to 50 pixel
in x— and y— direction when orientation only is regarded. Note that the Gestalt
coefficient for position (0,0) and Ao = 0 is set to the maximum of the surface for
better display. The Gestalt coefficient is not interesting at this position, since
e! and e? are identical

parallelism correspond to significant second order events of visual low level filters
(see also [9]).

2.3 Pronounced Interdependencies by using additional Mo-
dalities

Now we can look at the Gestalt coefficient when we also take into account the
modalities contrast transition, optic flow and color.

One additional modality: Figure 4b shows the Gestalt coeflicient for the
events ’similar orientation and similar contrast transition’ (the metrics for the
different modalities are defined precisely in [10]). In figure 5 the Gestalt coef-
ficient along the x-axes in the surface plot of figure 4 is shown. The Gestalt
coefficient on the x-axes correspond to the ’collinearity’ ridge. The first col-
umn represents the Gestalt coefficient when we look at similar orientation only,
while the second columns represent the Gestalt coefficient when we look at sim-
ilar orientation and similar phase. We see a significant increase of the Gestalt
coefficient compared to the case when we look at orientation only corresponding
to the Gestalt law collinearity. Analogously, we define that two events have
'similar color structure’ or ’similar optic flow’. The corresponding surface plot
is shown in figure 4c and 4d. The slice corresponding to the collinearity ridge
is shown in the third and fourth column in figure 5. An even more pronounced
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e) ori. (A0=0) + phase + flow f) ori. (A0o=0) + phase + color

400

g) ori. (Ao=0) + flow + color h) ori. (A0=0) + phase + flow + color

Figure 4: The Gestalt coefficient for Ao = 0 and all possible combination of
modalities.

increase of inferential power for collinearity can be detected.

Multiple additional Modalities: Figure 4 shows the surface for similar ori-
entation, phase and optic flow (figure 4e); similar orientation, phase and color
(figure 4f) and similar orientation, optic flow and color (figure 4g). The slices
corresponding to collinearity are shown in the fifth to seventh columns in figure
5. We can see that the the Gestalt coefficient for collinear line segments again
increases significantly. Most distinctly for the combination optic flow and color
(seventh column). Finally we can look at the Gestalt coefficient when we take
all three modalities into account. Figure 4h and the eighth column in figure 5
shows the results. Again an increase of the Gestalt coefficient compared to the
case when we look at only two additional modalities can be achieved.

Conclusion: In this paper we have addressed the statistics of local oriented
line segments derived from natural scenes by adding information to the line
segment concerning the modalities contrast transition, color, and optic flow. We
could show that statistical interdependencies in the orientation—position domain
correspond to the Gestalt laws collinearity and parallelism and that they become
significantly stronger when multiple modalities are taken into account.

The results presented here provide further evidence for the assumption that
despite the vagueness of low level processes stability can be achieved by inte-
gration of information across modalities. In addition, the attempt to model
the application of Gestalt laws based on statistical measurements, as suggested
recently by some researchers (see, [6, 3, 9]) gets further support. Most impor-
tantly, the results derived in this paper suggest to formulate the application of
Gestalt principles in a multi-modal way.
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Collinearity

300 - I ori+phase
Bl ori+flow
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Figure 5: The Gestalt coeflicient for collinear feature vectors for all combinations
of modalities. The x-axis represents the distance of the collinear line segments
in pixel and corresponds to the collinearity ridge in figure 3 and 4. For (0,0)
the Gestalt coefficient is not shown, since e! and e? would be identical.
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Abstract. We present the extension of the perceptual grouping tech-
nique known as Tensor voting to the application to grey-level images.
The image data is encoded by a tensorial representation of the local ori-
entation which is computed from a set of Gabor filters. The resulting
dense tensor maps are refined by means of newly introduced inhibitory
voting fields. Subsequent grouping with excitatory voting fields yields
saliency maps for contours and junctions.

1 Overview

We present a perceptual grouping approach applicable to images with the aim
to facilitate a transition from local low-level features to more global high-level
information. The method allows the inference of salient contours and junctions
from images based on the principles of good continuation and proximity, which
according to psychological studies [4,5] play a special role among the set of
Gestalt laws.

By the computation of local orientation tensors from a set of Gabor filters,
our approach extends the tensor voting (TV) technique developed by [9] to the
application to grey-level images. Using second order tensors as input and output
tokens, we simultaneously encode information about orientation and orientation
uncertainty — in contrast to other vector-based grouping methods which can only
represent direction (e.g. [1,3,10-14]). Other advantages of the method are the
exclusive use of local operations and its linearity. Moreover, due to the similarity
to a convolution operation, computation does not involve iterative processing as
required in other optimization-like approaches.

While inputs formerly consisted of binary images or sparse edgel maps, our
extension yields oriented input tokens and the locations of junctions as input to
the perceptual grouping. In order to handle dense input maps, the tensor voting
framework is extended by the introduction of grouping fields with inhibitory
regions.

* We gratefully acknowledge partial funding of this work by the Deutsche Forschungs-
gemeinschaft under grant Mel1289/7-1 “KomForm”.
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2 Tensor Voting

For a brief review of the TV framework, we restrict our explanations to the
2D-case where a second order symmetric tensor over R? can be denoted by a
symmetric 2 X 2 matrix T = )\;LelelT + )\gege; with two perpendicular eigen-
vectors ej,es and two corresponding real eigenvalues A\; > Ao. Basically, the
tensor represents the second order moments of the local orientation for each
image location and can be visualized by an ellipse.
The definition of saliency measures is deducted from the decomposition of a
tensor into
T= ()\1 — )\2)6161T + )\2(616ir -+ 626T) . (1)

In (1), the weighting factor (A; —A2) represents an orientation certainty in the
direction of the eigenvector e; and thus will be called curve- or stick-saliency.
The second weight A\ is applied to a circle, thus we call it junction- or ball-
saliency because it indicates a high orientation uncertainty which is equivalent
to the confidence in the presence of a junction.

Figure 1la illustrates that the tensor addition of similarly oriented tensors
yields an increased stick-saliency whereas differently oriented tensors yield a
high ball-saliency.

+

|

\

N\

4 SR

/ Ccce/ /]
(a)

Fig. 1. (a) Tensor addition: The tensors are depicted by A\ie1 L Azez. (b) Excitatory
stick-voting field for a horizontally oriented input token P at the center. (c¢) Inhibitory
stick-voting field.

Grouping is achieved by the interaction of input tokens according to their
stick-saliency or ball-saliency, respectively. In the case of oriented input tokens,
stick-voting is applied: For each token the stick-voting-field (Fig. 1b) is aligned
to its eigenvector e; and weighted with A\; — Ao and all fields are combined in a
convolution-like manner by tensor addition. The layout of this field encodes the
connection of neighboring tokens which fulfill the minimal curvature constraint.
Hence, it allows to strengthen locally collinear or co-circular structures, including
virtual contours across gaps in the image data.
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3 From Local Orientation to Tensor Tokens

In order to apply the TV technique to grey-level images, we transform the image
data into a tensor description. This is achieved by the computation of the local
orientation and orientation certainty from a set of quadrature filters. We use
two-dimensional Gabor filters for their known optimality with regards to the
time-bandwidth product:

o) = K exp (50— ko) DUk~ ko)) ©)

where k denotes the frequency, K a normalization constant and D a 2 x 2
covariance matrix. The kernel consists of a two-dimensional Gaussian centered
around ko with variances o2, 03 as the eigenvalues of D. A similar approach, but
with different filter kernels, has been used by [2].

The response g;(x) of Gabor filter 4, with the center frequency ko ; at image
position x, is a measure for orientation certainty in the direction of that filter.
Therefore, we introduce the orientation tensor T; = eie;r, which represents an
ideal orientation in the direction of the unit vector e; perpendicular to kg ;.
Then, the weighted tensor sum

T(z) = Y (@) O

over all filter orientations i gives an estimate for the local orientation and orien-
tation uncertainty at image position x. Figure 2 shows the tensors which result
from applying this procedure to the image of a circle. Note that the locations
along the contour with higher orientation uncertainty correspond to alias effects.
They are caused by the discretization of the image and detected in dependence
of the parametrization of the Gabor filters.

In order to facilitate the inference of image features larger than the Gabor
kernel size, the voting field size o, is a function of the Gabor kernel size o4: The
relation o, /04 = 6 is derived from results of psychophysical experiments [1].

4 Inhibitory Voting Fields

Initially, TV has been designed to group sparse input maps by means of a densi-
fication in order to identify m-D structures in n-D input space with m < n (i.e.
lines and points in 2-D space). However, due to the localization uncertainty of
Gabor filters, the Gabor transform yields for 0-D or 1-D image structures input
tensors which extend over regions. In order to compensate for this blurring effect
and to fit the input tokens better to the model of the voting field design, we have
proposed to apply a non-maximum suppression method to the local orientation
tensors prior to the grouping process. This thinning step has been embedded
into the TV framework by the introduction of inhibitory voting fields, please
refer to [7] for additional details of the algorithm.
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(b) (d)

Fig. 2. From local orientation to tensors. (a) Input image. (b)-(d) Filter responses
go(x), g1(x), ..., ga(x). (¢) Tensor map T'(x). (f) Upper right quarter of (e) zoomed by
a factor of 4.

The inhibitory voting field is designed to operate on areas complementary to
the excitatory voting field: The excitatory stick-voting field proposed by [9] (Fig-
ure 1b) only covers the region I, and leaves out the region F_ with 7 < 6 < %ﬂ'.
The region F_ is excluded from excitatory grouping because the assumed circular
connection with an oriented input token at P does not fulfill the minimal total
curvature constraint (an elliptic connection would yield lower total curvature).

The inhibitory voting field (Fig. 1c) covers exactly these complementary po-
sitions F_, which have previously been excluded from the grouping process. This
newly defined field achieves edge thinning by suppressing orientations which are
approximately parallel to an oriented input token P and have lower saliencies
sal(Q) < sal(P). Because non-maxima locations are assumed to lie perpendicu-
lar to the orientation of P, inhibition should be strongest at angles ¢ ~ 5 where
Q || P and decrease to zero towards the two extremal cases along the circle 6 ~ 7
and 0 ~ %7‘(‘ where @ L P.

The strength of the inhibition is defined as

r2

152 _1s2 L
F_(r, 9) _ sal(P)- (e 207 _ e 2”2> .0058(9) if 1= |0| < %TF (4)

which is an adaptation of the formula by [3] overlaid with a difference of Gaus-
sians (with o1 > o3 to model an off-surround behavior, while the on-center part
consists of the excitatory field). The orientations e(r,8) of the field tokens are
defined by the normalized tangent vectors of the circles cotangent to P and

encoded as stick-tensors 7' = F_(r,0) - ee'.
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5 Results

Figure 3 gives an example of an image where the application of Gabor filters
is not sufficient to extract salient structures. In order to bridge gaps and to
compensate for considerably high noise, grouping is needed to infer structures
beyond the size of a Gabor kernel.

Salient contours (Figure 3e) are extracted from saliency maps by the applica-
tion of an adapted marching squares algorithm which traces the contours along
maximal saliencies and yields a subpixel-accurate vectorial representation of the
curve. By means of this method, it becomes possible to compute the positional
precision of contours and junctions which is subject to ongoing research.

In contrast to [6], our approach infers salient structures based on local oper-
ations compared to global connections between all image features. Grouping is
based on the principles of good continuation and proximity and does not require
further assumptions about the objects’ geometry. Moreover, the computation of
local orientation tensors doesn’t hypothesize step-edges, which isn’t valid at cor-
ners, but rather represents them as locations with high orientation uncertainty.
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Fig. 3. Results on an natural scene: (a) Input image from [6]. (b) Stick-saliency of Ga-
bor responses. (c) Stick-saliency with excitatory voting only, as in [8]. (d) Stick-saliency
from combination of inhibitory and excitatory voting. (e) Salient curves extracted from
(d) by application of a marching squares algorithm.
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Abstract. The classical linear filtering properties of early vision can be
explained as an information-theoretically optimized adaptation to the statistical
dependencies in natural scenes. Here we investigate whether a fundamental non-
linear property of visual perception, Weber’s law, can also be explained in such a
statistical framework. We measure the joint statistics of neighbouring pixels of
natural images under varying illumination conditions, and demonstrate that a
linear decorrelating transform by DOG filters would leave significant statistical
dependencies between the responses. We then show that the removal of these
statistical dependencies requires a nonlinear gain control mechanism which can
be implemented as ROG (ratio of Gaussian) filter. Weber’s law is a direct conse-
quence of this nonlinear operation. A single principle, the reduction of statistical
dependencies between sensory messages, is thus sufficient to derive all essential
processing properties of early vision.

1 Introduction

Recent investigations of the statistics of natural scenes and of their neural representa-
tions have indicated that the decomposition by size- and orientation-selective filters
can be explained as an information-theoretically optimized adaptation to the statistical
redundancies of the natural environment (for review see, e.g., [1]). More recent devel-
opments indicate that this approach can also be extended to more complicated cortical
processing properties, as in complex cells or in the extra-classical receptive field sur-
round [2][3][4]. According to the information-theoretic approach the neural operations
represent a transformation of the state space coordinates which matches the representa-
tion to the structure of the multivariate probability distribution. One major criterion for
a good match (though not the only one) is the reduction of the statistical dependencies
(ideally: statistical independence). Often this can be achieved by linear transforms, as
in independent component analysis (ICA), but some statistical dependencies require
nonlinear operations. Here we investigate whether the nonlinear operation underlying
Weber’s law can be seen as an efficient first step towards the goal of statistical inde-
pendence.
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2 Natural Scene Statistics and Linear Filter Decompositions

For this, we first measured the joint statistical distribution of the responses of neigh-
bouring retinal receptors to natural scenes with varying lightning conditions (Fig. 1).

e log p(ey.€2)

Fig. 1. Joint two-dimensional probability density function (pdf) of neighboring pixels in scenes
with spatially and/or temporally varying illumination. 12 images were randomly taken from the
van Hateren database of natural images [5] under exclusion of non-natural objects or portions of
sky. Before the statistics were computed, the images were converted to an absolute intensity
scale by a mapping which takes into account the aperture and the exposure time used in record-
ing each image. The resulting pdf exhibits a typical shape: a high correlation between the pixel
values and a systematic outward widening of the distribution towards the higher intensity values

A linear decorrelating transformation, like a multi-scale bandpass filtering by a differ-
ence of gaussian pyramid (DOG pyramid) [6], can exploit the statistical second-order
dependencies of these joint statistics. To obtain a simple measure of the joint statistics
of the DOG responses we can decompose the DOG pyramid for resolution level i as

i = (& - ir1) + (8is1 - i) + (8is2 - iw3) + - + (8n-1 - &) + (8n)-
Nl M)
d; Zdiyy

Here d; denotes a DOG channel with resolution i, and 2d;,  (in slight abuse of notation)
denotes the sum of the lower frequency DOG channels, which is equivalent to the local
mean (i.e., 2d;, ;=g;,1)- The decorrelation by a DOG representation can then be seen as
“rotation” of the coordinate system (Fig. 2).

lo eqre 1 d:;,>d;
e, g pley.e2) linear d. og p(d;.2d;, 1)
decorrelating
transform
I ' Zdiy

€1

Fig. 2. Decorrelation of the joint statistics by a set of linear DOG-filters
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However, this linear transformation cannot provide a separation of the higher-order
dependencies which are reflected in the systematical dependence of the variance o2 of
the DOG-response d; on Xd;,; (i.e., on the set of DOG channels with lower frequen-
cies, which is represented by the local mean g;, ). The true structure of the multivari-
ate pdf of natural images is thus not separable in linear Cartesian coordinates (e.g., by
PCA or ICA), but requires a nonlinear transformation.

This deficit of linear decorrelation is not surprising given the fact that the retinal
input E(x) results from a nonlinear, multiplicative combination of an illumination com-
ponent I(x) and an reflectance component R(x), i.e. E(X)=I(x)R(x). If various different
illumination functions I;(x) occur across space and time, this will cause that one and
the same reflectance function R(x) is transformed into different luminance functions
E(x). The corresponding statistical contributions py(E,(x)) are scaled versions of each
other, and constitute together the pdf p(E(x)). This effect is illustrated in Fig. 3.

p(e,€)

pee) | e, A

Fig. 3. The left image shows a typical configuration with spatially varying illumination. The
grain in the sack is illuminated partially by direct bright light, and partially by indirect dim light.
This gives rise to two contributions to the pdf, which are scaled versions of one another. Their
combination constitutes the total joint pdf of neighbouring pixels in the grain region (center).
The principle is schematically illustrated in the right figure

The combination of various scaled subpopulations in the final pdf is the reason for the
statistical dependency of the DOG response d; on the mean that has been revealed in
Fig. 2. Let us hence take a closer look at this insufficiency of linear decorrelation
schemes. The crucial point is that a linear decomposition cannot separate the nonlinear
interaction of the reflectance component and the illumination component (Fig. 4).

Fig. 4. Illumination dependence of a linear DOG operator. The response (right image) is propor-
tional to the linear local differences in the image. The response to the grain texture is hence
smaller in the dimly lit region than in the bright region, i.e. it is dependent on the illumination
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3 Nonlinear Removal of Statistical Dependencies

Ilumination changing often gradually across space, it is commonly assumed that a
mere suppression of the low frequencies by a linear band-pass filter is already suffi-
cient for the provision of illumination invariance. This is not the case, since a linear fil-
ter response will still be contaminated by the influence of the illumination. For one and
the same reflectance structure, it will take greater values in the directly illuminated
areas then in the dimly lit areas. This raises the question whether it is possible to find a
suitable nonlinear transformation to get rid of these dependencies.The crucial factor
that causes the statistical dependencies is the proportionality of the filter response to
the local mean. A suitable nonlinear transform has thus to get rid of this proportional-
ity, i.e. it has to reduce the gain of the system in proportion to the local mean. This can
be achieved by an adaptive gain control mechanism. A straightforward realization of
such a mechanism is a divisive interaction by a “ratio of Gaussians” (ROG) operator
[71[81[9][10]. (A logarithmic transducer function would have a similar effect but
would be much less suited for the processing of a wide dynamic range). The effect of
this adaptive nonlinear operation is illustrated in Fig. 5.

Due to this nonlinear separation capabilities, such a ROG operator can in fact avoid
the statistical dependency of the operator response on the local mean that has been
observed for the linear DOG operator. The neural representation thus comes substan-
tially closer to the desired statistical independence (Fig. 6).

Fig. 5. Processing of illumination effects by a nonlinear ROG operator. The operator can sepa-
rate the influence of the illumination by responding only to the reflectance (which is a homoge-
neous texture of grain in this example). As a consequence, the response will be statistically
independent of the illumination (cf. Fig. 4)

log p(ey.e5) . log p(r;,ITr;, 1)
€ nonlinear @
Ratio-of-Gaussian
transform
—_— M,
€1

Fig. 6. The joint statistics of the response r; of a ROG operator and of the set of remaining chan-
nels Ilr;, ; are much closer to statistical independence (cf. Fig. 2) (note that in analogy to eq. (1)
Ir;, =%d,, =g;4 » i.€ it is also equivalent to the local mean)
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The nonlinear transformation that is required for the removal of the statistical depen-
dencies yields Weber’s law as a direct consequence. It produces an input-output rela-
tion in which a fixed output increment is caused by all those inputs for which the input
increment Al is proportional to the local mean 1. This is just Weber” s law Al/Ij=const.
(Fig. 7).

R(x) I(x) Ex)=R()I(x)
( ) 2 l l 1 1
a
1 A /
00 50 100 00 50 100 00 50 100
INPUT DOG RESPONSE  ROG RESPONSE
0.1 1.2
;
(b1) 0 1
OO 50 100 0 50 100 0'90 50 100
4 0.4
1.1
3
(b2) 2 0 1
;
0.9
0 50 100 04 50 100 0 50 100

Fig. 7. ROG response and Weber’s law. (a) The input E(x) results from a nonlinear, multiplica-
tive combination of the reflectance R(x) and the illumination I(x). (b1) A linear DOG operator
cannot separate these components since it responds in proportion to the linear signal differences.
The ROG transform causes constant response increments for input ratios Al/[y=const., i.e.,
yields Webers law. By this, it can separate the reflectance component from the illumination com-
ponent. (b2) A second example with step inputs

4 Conclusion

Weber’s law describes a fundamental nonlinearity of the visual system. It is often used
in a purely descriptive manner, without explicit reference to an underlying functional
basis. If a function is considered, then it is associated to the perceptual invariance of
lightness constancy. For this it is assumed that during the course of evolution the visual
system has somehow acquired a sort of knowledge about the physical laws of image
formation, and that this knowledge has been incorporated into the neural processing to
obtain an illumination-invariant characterization of physical objects. The present
investigation suggests a much simpler way of development: Substantial statistical
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redundancies are a typical characteristic of sensory messages, and the exploitation of
such redundancies seems to be a universal strategy for an efficient representation of
sensory information. Our statistical analysis has shown that there exist significant sta-
tistical dependencies between early sensory signals which, contrary to common
assumptions, cannot be exploited by classical linear decorrelation schemes. The non-
linear transformation that is required to eliminate these dependencies yields illumina-
tion invariance and Weber’s law. Like other basic visual functions, Weber’s law can
thus be seen as a consequence of one single principle: the visual system seeks to
exploit the statistical redundancies of natural scenes.
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Abstract. The operations in early vision can be seen as result of an optimal
adaptation to the statistical redundancies of natural scenes. This hypothesis is
mainly supported by the analysis and simulation of the statistical properties of
single neurons, whereas the evidence is less clear on the behavioral level. Here
we show that basic visual functions, like the discrimination of two images, do
only work properly for natural images, whereas theyesud complete break-
down for non-natural images (i.e., for images that lack any of the characteristic
statistical redundancies of the natural ones, like random images or images with
artificial redundancies). Since it can be formally proven that almost all possible
images belong to this latter group, this implies that the visual system is special-
ized for the processing of a tiny fraction of the possible images, whereas it is
functionally “blind” to almost all possible images.

1 Introduction

The hypothesis of an optimal adaptation of the early visual processing stages to the
statistical redundancies of natural scenes has recently received increasing attention (for
review see, e.g., [1]). Mostg@rments in support of this hypothesis have been derived
from an analysis of the processing properties of individual neurons in the retina or in
the visual cortex. Regarding behavioral properties, the situation is more complicated.
Here the straight-forward prediction from the adaptation hypothesis would be that
visual perception should work best within the class of natural images, whereas perfor-
mance should be substantially reduced for the class of non-natural images (Fig. 1).

natural
images
all

images 008% } non-natural
8:>Q images

Fig. 1. Schematic illustration of the predicted visual discrimination capabilities (the “granular-
ity” of the just noticeable diérences). Fine discriminations should only be possible for natural
images, whereas non-natural images should only allow for coarse discriminations




Recent investigations of this prediction employed manipulations of the statistical sec-
ond-order properties. The analysis became complicated because for the class of natural
images there is both evidence for a maximum sensithvitlyalso for a greater robust-

ness against changes (i.e. for a reduced sensitivity), depending on the experimental
technique [2][3]. This prompted us to search for a simple and straightforward behav-
ioral test of the adaptation hypothesis. Surprisirtigre exists a very simple test, that

can provide considerable insight, but has not yet received the attention it deserves.

2 Perception of Random I mages

In comparing the perceptual performance for natural vs. non-natural images, it seems
not immediately obvious how the non-natural images should be designed. Haavever
prototypical design results from the basic property that characterizes natural images in
terms of information theory: their high degree of structural regulavitystatistical
redundancyThe prototypical non-natural images are tharglom images, since these

lack any of the statistical regularities of the natural ones. The behavioral test then
becomes a simple issue (F&).

The observable complete break-down of visual discrimination (and thereby of any
higher visual function, such as pattern recognition or classification) within the class of
random images is a massive and well knowacef but for some reason it is usually
not considered very relevant. This is a mistake, howagewill be shown in the fol-
lowing. The underestimation of the theoretical importance of fleetaé presumably
a direct consequence of our perceptual properties.h&ve the strong subjective
impression of a high similarity and homogeneity of the random images, as opposed to
the complexity and wide diversity of natural images, and we tend hence to believe that
there must exist many more faifent natural images than f@ifent random images.
However in both cases we are fooled by our perceptual system. The phydieal dif
ence of two random images is typically just agdaas the diérence between two
arbitrary natural images. In fact, the state space vectors of two sample random images
are in almost all cases close to orthogonal (BigEven more dramatic is our percep-
tual misguidance with respect to theg@mumber of images that we expect to find in
the natural set, as opposed to those in the random set.

To understand this, we have to take a look at the theoretical approaches to random-
ness. From a probabilistic perspective, a sequence can be declared random if it is a

Fig. 2. Natural images can be easily distinguished, random images not
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Fig. 3. Random images are adeliént from one another as are natural images. The dissimilarity
of the images, as measured in terms of Euclidean distance, is indicated by the vectors diagrams

“typical” outcome and passes all conceivable tests of randomness. For example, it has
to be Borel normal, i.e. all letters and blocks of letters should appear with approxi-
mately equal frequencyhis can be formalized as universal Martin-Lof test [4].

How many of all the possible @#rent sequences are then random? Surprisingly
many because, simply speaking, the number of typical sequences, i.e. of possible com-
binations with approximately equidistributed letters, increases rapidly with increasing
size of the sequences (F). Formally the set of random infinite sequences has uni-
form measure one [4].

That almost all possible sequences are random can also be deduced froferthe dif
ent perspective of algorithmic complexity [5][6], which defines randomness as incom-
pressibility: the shortest program that can describe a random string is not allowed to be
significantly shorter than the string itself. Consider a simple counting analysis for
binary strings: There aré' 2lifferent strings of length n. A string is declared random if
its shortest description has length greater m, with m only by a negligible fraction
smaller than n. There exisf'2lifferent descriptions of length m™2 of length m-1,

..., 2 descriptions of length 1. Hence there exist in tdtal-2 different descriptions

with length no longer than m, and therefore at most a fractiod"6t2)/2"~ 1/2-m-1

of all strings of size n can be not random. Let us declare a binary image of size
n=512x512 as random if its shortest description is longer than OrO9g8s implies

that 99.99999% of all images of this size are random.

In conclusion, whatever perspective on randomness we take, it can be proven that
almost all images of the entire set of possible imagesrangdom. Natural images,
being clearly non-random, can thus only constitute a subset of vanishing siZ8.(Fig.

0.1]

50 200 125000 250000

Fig. 4. The typical binary sequences can be defined by a constraint on the admissible deviation
of the empirical distribution of 8’and 13 from equidistribution. The plots show the distribution

of the number of diérent sequences in dependence of the numbes difidy contain. Sequence
length is 50, 200, and 250.000 (the number of pixels in a typical image). The vertical lines illus-
trate a possible criterion for typicality (here about 50%+/-5%). It is obvious that for long
sequences the criterion can be made arbitrarily tight, and almost all sequences will be typical
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Fig. 5. Almost all possible images are random images

The observed breakdown of perceptual discriminatory performance for random images
has thus the clear implication thae ae "functionally blind" for almost all possible
images.Stated this waythe seemingly unimportant perceptual equivalence of all ran-
dom images should rather be seen as strong evidence for the adaptation hypothesis.
Obviously our visual system is not at all suited for an equally good processing of all
kinds of images, but is rather highly specialized for tlfieieft processing of a very

tiny subset: the subset that contains the natural images. This is certainly strong evi-
dence in favor of the adaptation hypothesis.

However there exists an interesting generalization of the adaptation hypothesis
which could also be consistent with the above observations. The crucial factor might
not be seen in thepecificregularities of the natural environment but rather in the mere
fact that thereare substantial statistical redundancies in the natural environment. The
visual system may thus be specialized for specific images, but in a more general sense:
it may work as ainiversal structue detection system

How can we test this generic variant of the adaptation hypothesis? If the system
would really be a universal structure detection system, then it should be able to distin-
guish between two images from any set which contains the same amlesstof sta-
tistical regularities as the set of natural images, butferdifttype of regularities. W
hence considered €&frent possibilities of constructing such quantitatively equivalent
random processes. Furthermore, we constructed an artificial test set that is so simple
that any reasonable universal structure detection system should be able to process it.
Examples for these tests are shown in Figure 6. In all cases we get the same basic
result: the images in these artificial test sets are almost impossible to distinguish.

Actually, a further related test is provided by what we usually employ as “random”
numbers. In comparison to the typical size of an image any random number generator
does only represent a very short description. Thus the “random” images it produces are
certainly not really random. Nevertheless, they all appear visually as random, and can-
not be distinguished. (By the wape “random” images of Fig. 1 are simply two dif-
ferent subsequences of digitstof The generic version of the adaptation hypothesis,
which assumes that the visual system could be a universal structure detection system,
is therefore definitely falsified.

A last point to mention concerns the obviously limited complexity of all realistic
information processing systems, which includes the visual system. It migtgumsiar
that, by definition, all those systems cannot adequately deal with signals of nearly
unlimited complexity like random images, and that the inability to discriminate such
images is hence a trivial result. This conception is misleading, howaverder to



discriminate two random images it is not necessary to capture their full information
content, but it is entirely sfiient to have a crude, low-complexity representation (as
long as this representation isfdilent for the two images). This is the case for a multi -

(@) (b) (©

Fig. 6. Test of the hypothesis that the visual system is a universal structure detection system. In
terms of the multivariate pdb (X) a simple equivalent class to the class of natural images is
given byp(y) = p(AX) , where A can be any orthonormal transform. Since such transforms
represent mere rotations and reflections in state space, they leahepihef the pdf, i.e., the
amount of structure, and basic associated measures, like the information content (entropy),
intact (H (y) =H (X)) . (Of course, most k-order statistics measured with respect to the coor-
dinate system will change). (a) A simple example are permutations. Ceeadjp(x,,X3.X;) is

in the above sense equivalentp(®y,x,,X3). We can hence construct an artificial test set by a
pseudo-random permutation (a low-complexity deterministic transform) of the state-space coor-
dinates (i.e., the pixel positions) of natural images. Shown are the permuted versions of the two
natural images of Fig. 1. (Since stationarity is destroyed, a strictly fair test would require to
show several realizations to the system, but the other realizations look basically like the two
shown). (b) If we consider stationarity crucial (the visual system may be a universal structure
detection system only for stationary signals) we can first use a Fourier transform (an orthonor-
mal transform), apply a permutation in the frequency domain, and perform then the inverse Fou-
rier transform. Altogethemwe obtain again an orthonormal transform, and the resulting signals
should be stationarye show again two examples from this artificial test set. (Note that the
spectrum here is not white. The spectral permutation was pseudo-random, but with a constraint
which avoids the occurrence of isolated high-amplitude peaks at low spatial frequencies.)
(c) Finally, a critical test can be obtained by the provision of artificial images with extreme regu-
larity (high redundancy). Each image of this set consists of 1024 patterns of size 16x16, ran-
domly selected from an alphabet of 16 “basis” patterns. The information content is thus 512
Byte/image. The simple statistical structure can be easily detected by standard algorithms like
KLT or Lempel-Ziv (each pattern is repeated about 64 times in each image). Of course, any uni-
versal structure detection system should be able to recognize the structure of such simple signals



channel, wavelet-like filter decomposition, the standard model of the visual system,
and closely related to current image coding schemes (note that these have their quanti-
zation rules adapted to the statistics of typical images). Put random images into JPEG,
and the probability that the coded images do nétrdiénds to zero.

3 Conclusion

Recent investigations indicate that the visual system is adapted to the statistical regu-
larities of natural images. Here we examined whether this results in a behavioral dif-
ference in the perception of natural vs. non-natural images. First, we reconsidered the
well known fact that human observers cannot distinguish random images, whereas
they can easily distinguish natural image® tén asked how many images from the
state space of possible images are random, and how many are natural. The answer
from both a probabilistic perspective and from algorithmic complexity theory is that
almost all images are random. Discrimination being a basic prerequisite for-higher
level visual functions, the clear implication is that the visual system is functionally
"blind" to almost all possible images. Howevieworks obviously quite well for the
vanishingly small subset of natural images. This specialization cannot be attributed to
a universal structure detection stratefgyt seems to be crucially dependent on the
"naturalness" of the structural constraints, since discrimination fails also for several
non-random test images with non-natural statistical redundancies, even for very simple
ones. Likewise, the discrimination failure cannot be attributed to a general complexity-
constraint, since basic coding systems, like wavelet coders, yield clefeheuifrep-
resentations for diérent random images.ogethey these results can be regarded as
strong behavioral evidence for the hypothesis that the processing structures of early
vision are the result of an optimized adaptation to the specific statistical redundancies
of natural images.
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Abstract. In this paper we explore the independent component decom-
position for face detection. The minimization of the Kullback - Leibler
divergence and the maximization of the entropy are two methods em-
ployed to decompose an original image into its independent components.
We built nearest neighbor classifiers based on their resulting independent
components and compare their ability to detect faces to that of support
vector machines.

1 Introduction

There are many applications in which human face detection plays a very impor-
tant role. For example, it can be used in content-based image database index-
ing/searching, surveillance systems, and human-centered computer interfaces. It
also constitutes the first step in a fully automatic face recognition system. A
comprehensive survey on face detection methods is given in [1]. A face detection
technique based on independent component decomposition is developed in this
paper. The principal components matrix of the original face and non-face pat-
terns is assumed to represent a mixture of independent image sources which are
retrieved by using independent component analysis (ICA) through an unmix-
ing matrix. We can reconstruct the original images by combining linearly these
sources. The matrix which contains the coefficients of those combinations is fur-
ther use as the first input of the two nearest neighbor classifiers employed in the
paper. The second input is a combination of the test image with principal com-
ponents matrix and the unmixing matrix. The classification is then performed
according to the nearest neighbor rule. Testing this approach against support
vector machines (SVMs), we found the latter is outperformed by the proposed
method in the face detection task.

2 Spatial independent component analysis

The goal of is to decompose a set of observations into a basis whose components
are statistically independent or, at least, are as independent as possible. ICA

* This work was supported by the European Union Research Training Network “Multi-
modal Human-Computer Interaction (HPRN-CT-2000-00111).
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originally applied to blind source separation [2]. Two ICA representations of
facial patterns have been proposed in [3] for face recognition. The discriminating
ability of ICA alone or when combined with other discriminant criteria, such as
Bayesian framework or Fisher’s linear discriminant, was analyzed in [4].

In our analysis we follow the model proposed in [3]. Consider a matrix X
whose rows contain vectors formed by scanning lexicographically face and non-
face patterns (i.e., image regions). We assume that X contains a mixture of the
original independent sources U. The matrix is decomposed into a family of Y
independent sources passing it through an unmixing matrix D in the attempt to
recover U. Each source (row of Y) is an image whose pixel values are independent
of those in every other image. Accordingly, these images are said to be spatially
independent. We refer to this model as the spatial ICA. Having a number of n
face and non-face images, the number of independent components will be n as
well. In order to have a control on the number of independent components, we
choose m linear combinations of face and non-face patterns, namely the principal
component vectors of the image set. Let P! denote the matrix that is formed
by the m principal components in its rows. The objective of ICA applied onto
PT is to find the matrix Y whose rows are the statistically independent sources
by appropriately determining the unmixing matrix D. The relationship between
the three aforementioned matrices is given by [3]:

Y = DPL. (1)

Frequently, a whitening process applied to PY is necessary to decorrelate and
normalize the data. If the row means are substracted from P and the resulting
matrix is passed through a zero-phase whitening filter which is twice the inverse
square root, the whitening transformation is written as W = 2(PTP,,)~2.
Therefore, the zero - mean input matrix can be computed as the product of the
unmixing matrix and the whitening matrix D,, = DW. Eq. (1) is rewritten as
follows:

Y =D,P., = P! =D_'Y. (2)

m

The reconstructed image by ICA is:
XrecICA = (XPmej,l)Y = CtrainY- (3)

The matrix Ci,q;n contains the coefficients of the linear combination of spatial
independent sources Y. Each row of Y comprises the independent component
representation of the face images. Once we have finished training and obtained
Y, a test image can be presented as:

Ctest = D;lpmxtest- (4)

2.1 Entropy maximization

Given PL | the component in (1) which is responsible for obtaining the inde-
pendent sources is the unmixing matrix D that must be updated in order to
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obtain sources that are as independent as possible. Different approaches exist
for this purpose. One way is the so called maximum entropy method which has
been developed in [5]. The matrix Y is transformed into a matrix Z by passing
it through a component-wise nonlinearity denoted by G[-]. As ICA is applied
on the columns of PL | a realization p; is a combination of the original sources
u; via a mixing matrix A, p; = Au;. Therefore, the sources can be restored
through the unmixing matrix D as y; = Dp; ~ u;. For simplicity we omit the
index j from now on. Passing the sources y through G yields:

z = G(y) = G(Dp) = G(DAu). (5)
Therefore:
u=A"'"D'G(z) = ¥(z). (6)
The entropy is given by:
h(a) = ~Elon(2(2))] = - | tog (2 | )

where fz(z) and fy(u) are the probability density functions of Z and the sources
U, and J is the Jacobian matrix J = 9z/dy. Using the chain rule, the determi-
nant of J can be evaluated as:

| det(J(u)) |= ‘ det (Z;) ’ = |det(DA)|Z gz (8)

1

Maximizing the entropy h(z) requires to maximize the expectation of the de-
nominator term log | det(J(u))| with respect to the matrix D:

210 | det(3(w))) = D] + > st (52): ©)

If z; = g(y;)) = 1/(1 + e7¥) is a component-wise nonlinearity applied to all
elements of matrix Y, and taking into account that:

(921‘
aSi = Zl(l — Zi), (10)
and y = G71(z), (9) becomes:
9 (log | det(3(s))]) = [D1]7 + (1 — 22)p". (1)

oD

Using the gradient ascent algorithm, the change of the unmixing matrix D is [5]:
AD = (DT 4 (1 — 22)pT). (12)

It is more convenient to use the natural gradient instead of the actual one to
avoid inverting D at each step, therefore, the formula for unmixing matrix change
becomes:

Dyy1 = I+ (1 —22)y"|Dy. (13)
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2.2 Minimization of the Kullback-Leibler divergence

Another way to obtain independent sources is equivalent with minimizing the
Kullback-Leibler divergence between the probability density function fs(s;D)
parameterized by D and the corresponding factorial distribution defined by [6]:

Fy(y:D) =[] Ax(y:: D). (14)

i=1

The Kullback-Leibler divergence is given by:

Dyy7(D) = ~h(y) + D _hlyi). (15)

m
i=1
where h(y) is the entropy of the random vector y at the output of the unmixer
and h(y;) is the marginal entropy of the ith element of y. The minimization

can be implemented using the method of gradient descent. Following [6], the
unmiximg matrix will be updated at each iteration k as follows:

Dyt1 =Dy + [l - 0(ye)yi Dy 7, (16)

where I is the identity matrix and the analytical form of the activation function
O(y) is also given by [6].

3 ICA performance evaluation

The ability of ICA for face detection was evaluated using face patterns derived
from the AT&T face database. A description of the data is given in [7]. A number
of 294 non-face patterns was collected and added to 306 face patterns, achieving
a total data base of 600 patterns. 80 of them were used to form the training
set. Each row of the training matrix contains a 238 - dimensional vector. This
matrix was updated according to (13) and (16) for the first and second method
respectively, for 1000 iterations. The learning rate n was set to 1076, The evalu-
ation of the ICA performance was assessed by means of two classifiers. The first
one is based on the nearest neighbor rule and measures the angle between a test
vector and a training one. Let us denote the class of face feature vectors by £
and those of the non-face feature vectors by £_; . Let c¢4; be a row vector of
Cirain matrix that corresponds to the nearest face pattern. Let us denote the
nearest non-face neighbor of c¢ies¢ by ¢_1. Then we compute the quantities:

T
CiestC—1

df Cz;stc-i-l
lletestlllle—1]’

= et and dyy =

— 17
Terese el (a7)

where dy and d, s are the cosines of the angle between a test feature vector and
the nearest training one. We assign c¢cst to L1 if d¢ > dy, 5, otherwise cresr € L_1.
Notice that the labels for the training set are preserved, therefore we know the
labels corresponding to Ciqin-
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The second classifier is the a minimum Euclidean distance classifier. The
Euclidean distance from c¢est to cg, where k € {1} is expressed as

”ctest - ck:||2 = _Q[Czctest -

2
- _2hk (Ctest) + Cz;stctesta (18)

T T
Ck Ck] + CiestCtest

where hy(cCtest) is a linear discriminant function of cies¢. A test pattern is classi-
fied by this classifier (also known as ”"maximum correlation classifier”) by com-
puting two linear discriminant function hii(Ctest) and h_j(Ctest) and assigning
Ctest t0 the class corresponding to the maximum discriminant function.

We have investigated the performance of the two previously mentioned clas-
sifiers (17) and (18) by varying the number of principal components extracted
from the training set. The results are depicted in Figure 1. A minimum error of
5.2% was achieved using 20 principal components in the case of the second clas-
sifier. However, the performance of this classifier seems to be almost insensitive
to the number of the principal components used. On the contrary, for the nearest
neighbor rule, the classification error decreases as the number of principal com-
ponents involved increases. A minimum 3.9% classification error is achieved by
keeping 70 linear combinations of 80 training vectors. For comparison, support
vector machines (SVMs) with different kernels [8] were applied to discriminate
between the face and the non-face patterns. The error rates for different SVMs
are included the Table 1, in the same experiment for comparison purposes.

= = Angle between vectors
= Maximum correlation classifier
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Fig. 1. Classification error (false acceptance rate plus false rejection rate) versus the
number of principal components for both classifiers.
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Table 1. Number of errors (%) for several classifiers.

Face detection methods Errors (%)
ICA-based classifier 1 3.9
ICA-based classifier 2 5.2
linear SVM 6.1

polynomial SVM with degree equals 2 6.3
polynomial SVM with degree equals 3 11.1

radial basis function SVM 5.5
exponential radial basis function SVM 6.1
Conclusions

We have exploited the ability of ICA to provide useful features in order to
conduct a face detection task. The combination of ICA with nearest neighbor
classifiers seems to provide a reliable face detector that can outperform SVMs.
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Abstract. We generalize a one-dimensional model of Haussler and von
der Malsburg which describes the generation of retinotopic projections
between two cell sheets. Our generalized model is independent of the
special geometry of the cell array and describes the temporal evolution of
the connection strengths between cells on different manifolds. Linearizing
the equations of evolution around the stationary homogeneous state and
using of the methods of synergetics leads to order parameter equations
near the instability which contain only the unstable modes. We show
that our general model contains as a special case the description of cell
sheets of Haussler and von der Malsburg, and that it allows a detailed
treatment of cell arrays distributed on spherical shells.

1 Introduction

In the course of ontogenesis of vertebrate animals well-ordered neural connec-
tions are established between retina and tectum, a part of the brain which plays
an important role in processing optical information. As a result of this selforga-
nization process neighbouring retinal cells project onto neighbouring cells of the
tectum. Such a projection is called retinotopic. This conservation of neighbour-
hood relations is realized in many neural connections between different sheets of
cells.

A detailed analytical treatment of development of ordered projections be-
tween different sheets of nerve cells was already presented by Héaussler and
von der Malsburg [1]. In that paper retina and tectum were treated as one-
dimensional discrete arrays of cells. The case of continuously distributed cells on
a spherical shell was discussed partially in [2].

2 Owur Model

Here we generalize the approach by developing a model which is independent
of the special geometry of the problem. To that end retina and tectum are
represented by general manifolds M; and M,., respectively. We define a measure
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for the magnitudes of the manifolds by

=Y =Y (1)

t T

)

stands for a summation over all elements of M;, M,, if the manifolds are dis-
crete, and for an integration if the manifolds are continuous. As we restrict our
investigations to manifolds of identical topology, we have

The symbol

|Me| = |My| := M. (2)

Every ordered pair (t,r) with t € My, r € M, is connected by a connection
strength w(t,r). The equations of evolution of these connections are assumed to
be given by a generalization of the Hdussler equations [1]:

w(t,r) = a+ w(t, r)iz cr(t, teg(r, v w(t' 1)

i {a + w(t, r)ii cr(t', t")eg(r, v )w(t”, r’)}
—|—i {a + w(t, r’)ii er(t,t)egp(r’, o w(t, r")}] : (3)

Here a denotes the homogeneous growth-rate of new synapses onto the tectum,
and the positive coefficients cr(t,t’), cr(r,r’) represent measures for coopera-
tivity within each manifold, which are larger when the points t, t’ and r, r’ are
closer to each other, and fulfill the normalization condition

icT(t,t/) ~1, Z“CR(r,r’) ~1. (4)

r

~w(t,r)
2M

3 Orthonormal System

Furthermore we assume spatial homogeneity and isotropy of the manifolds, i.e.,
no point is preferred to another, and no direction is preferred to another. As
mentioned above the strength of cooperation depends on the distance between
two points of the manifold. This requires a measure of distance, i.e. a metric,
which turns out to be the stationary Robertson—Walker metric of general rela-
tivity [3]. With the help of the metric we define the Laplace—Beltrami operators
Ay, , Apg, on the manifolds and use their eigenvalue problems

An, 3! (8) = Aryyir(t) (5)
An, 3 (1) = Aryy 7 (r) (6)
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to define a complete orthonormal system with the eigenfunctions ¢\'" (t) and
Y37 (r). By construction, they fulfill the orthonormality relations

iw SOV (6) = Grpa G ”)
iwmﬁ YU (£) = x oy Doy - (8)

and the completeness relations

gﬁ;ﬁ«ﬁ YO (t) = 3(t — t), (9)
gﬁiw B () (1) = 6 — 1) (10)

Here the indices mp, mg denote the degeneracy of the eigenspaces belonging to
the eigenvalues A1, Ar. The cooperativity coefficients can be expanded in terms
of these functions according to

2(6,8) ¥¥¥ EY g (6 (1), (11)
(r.1) zgfgi FRsrie g (o) (o) (12)

where we assume for the sake of simplicity

F;\Y;’I;\ZLT — fﬁTéATA/T(Sme%’ (13)
F;::)’\T’:R f)\R 6)\Rk 6mRm ) (14)

with expansion coefficients f\"", f\"*. The forms (13), (14) are essential assump-
tions, and thus ingredients, of our description. We then have

i%ff;’;w YT (), (15)
ca(r,r') iif;’;w Y (). (16)

Note that the normalization of the cooperation coefficients (4) fixes

g = =1, (1)
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4 Linear Stability Analysis

Using the methods of synergetics [4,5] the system is investigated around the
stationary homogeneous solution w(t,r) = 1. A linearization of the generalized
Hé&ussler equations (3) with respect to the deviation

v(t,r) =w(t,r)—1 (18)
leads to the eigenvalue problem
L(t,r,v(t,r)) = Av(t,r) (19)
with a linear operator L. The eigenfunctions v(t,r) turn out to be
vo(t,r) = P37 (E)YN (r), (20)

with the eigenvalues A given by

—a—1 /\T == )\R =0
APTE = $ —a 4 ([T = 1) Ar =0, Ar # 0;Ar =0,Ar #0  (21)
—a+ fUT 0 otherwise .

5 Nonlinear Analysis

By changing the control parameter « in the generalized Haussler equations (3)
in a suitable way the real parts of some eigenvalues become positive, therefore
the system can be driven to the neighbourhood of an instability point. If we
assume that the expansion coefficients f;”TT, ;’;R are monotonous with respect
to )\T, )\R,

L= [ = i 2 57 =20

iy )

l=ft = fi"" = " =20, (23)

then the maximum eigenvalue is given by A7;7"®.The linear stability analysis
reveals in (21) that the neighbourhood of the instability point is characterized
by

R(AT™7) ~ 0, (24)
%(ATTT;ZR) < 07 ()‘Tv )‘R) # (17 1) . (25)

Thus the amounts of the real parts of the unstable modes (Ar, Ag) = (1,1) are
much smaller than those of the stable modes (Ar, Ar) # (1,1):

IRATTO < RAXEEDL (ArAr) # (1,1). (26)
This result motivates decomposing the connection strength according to

w(t,r,t) =1+ U(t,r,t)+ S(t,r,t), (27)
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where

Ut,rt)= Y UR™™ (09" ()¢ (r) (28)

mrmeg

denotes the contribution of the unstable modes and

’

S(t,r ) = I S SR (g (64 (x) (20)

AT AR mrmRpR

denotes the contribution of the stable modes. The symbol

P
AT AR

means the summation/integration over all eigenvalues Ay and Ar except for
(Ar, Ar) = (1,1).

Relation (26) leads to the time-scale hierarchy, i.e. the stable modes evolve
on a faster time-scale than the unstable modes,

Tu = RG] > = [RATHDIT (30)

Due to this time-scale hierarchy the dynamics of the stable modes quasi-instan-
taneously follow the dynamics of the unstable modes:

S(t,r,t) = h(U(t,r,1)). (31)

This is the well-known slaving principle of synergetics: the stable modes are
enslaved by the unstable modes. The center manifold h(U(t,r,t)) is calculated
by eliminating the stable modes. Thus it is possible to reduce the original high-
dimensional system to a low-dimensional one which only contains the unstable
amplitudes. The general form of these order parameter equations is independent
of the geometry of the problem and reads

mrmimy

UmeR() ATUTTRTMTIR (1) 2: 2: mRmRmRUmeR“ﬂﬂMm%()

m MmpMmpm m m m m m " m
PN B U TR (U R (U (), (32)
meR meR mT m
where the coefficients AmR:::};, B:Z:::Z;?:nn,’ﬁ can be expressed in terms of the
eigenfunctions 1\'" (t), ¥\'7*(r) and the expansio/n” coefficients f\"", f{"" [6]. Asis
usual in synergetics, the coefficients B::RmRmf?mﬁ in general consist of two parts,
TmeTm
one stemming from the order parameters themselves and the other representing
the influence of the center manifold. Equations (32) are a central new result of
this paper, and serve as a starting point of the analysis of selforganization in cell

arrays of different geometries.
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6 Examples

Specifying the geometry means inserting the corresponding eigenfunctions of the
Laplacian into the order parameter equations (32). For the linear chain these
eigenfunctions are given by periodic exponential functions, and we regain the
results presented in [1]. For the case of spherical shells the eigenfunctions are
given by spherical harmonics:

Yim (9, ), 1=0,1,2,...; m=—-l,—1+1,...,1—1,1. (33)

The calculation of the order parameter equations (32) for the spherical shell
shows that the quadratic term vanishes, by analogy with the linear chain. The
cubic part contains only terms which fulfill the conditions

myp +mp +myp =myp, (34)
my +mp+my =mpg. (35)

It turns out that the dynamics of the order parameters for the spherical shell
can be described by a potential V', which was also the case for the linear chain
[1]. Because the coeflicients of (32) are quite complicated expressions we have to
refer the reader to [6] for a detailed presentation of the order parameter equations
and the potential V.

7 Outlook

The Robertson—-Walker metric describes manifolds with constant curvature. In
[6] we revisit the linear chain, which represents a Euclidean manifold with cur-
vature 0, and we treat the spherical shell, which represents a curved manifold
with curvature +1. There remains the interesting task of investigating the case
of a non-Fuclidean manifold with negative curvature, namely the pseudosphere
(curvature —1) [3].
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Abstract. The extension of dynamic link matching by introducing local
linear maps (LLMs) has been proposed to render the matching adaptable
to larger deformations. However, investigations in the literature so far
have been restricted to local rotations, i.e. the Jacobian J of the map is
a simple 2-d rotation matrix. Here we will describe the generalization of
this approach. We make use of the theorem that every Jacobian in two
dimensions can be decomposed into a rotation by some angle 71, followed
by stretchings A1, A2 in both directions, and another rotation by an angle
~2. While in the previous model only one parameter for the rotation was
needed, the general LLM has to include the full set of parameters 71, 72,
A1, A2. The decomposition allows for a natural classification of LLMs in
generic subclasses. As an example of a generic two-parameter map we
discuss conformal local linear maps.

1 Introduction

Dynamic Link Matching (DLM) (e.g. [1]) is a well-known pattern matching
model tolerant of small deformations. Local features are extracted from the
data pattern and are matched to similar counterparts in a template pattern.
The matching process fails when due to strong deformations extracted features
of corresponding points are no longer similar. To increase the model’s tolerance
to deformations the introduction of Local Linear Maps (LLMs) was suggested
[2]. LLMs approximate the local deformation of the data pattern. By this, ex-
tracted features become invariant under all deformations within the range of the
LLM applied. The LLM modifies the filters used for feature extraction in the
same manner as the data pattern is distorted. Thus appropriately transformed
Gabor type filters can extract features in the data pattern similar to those in
the template pattern. Moreover, LLMs of neighbouring data points are required
to have smoothly varying characteristics, which enforces topological constraints.
(In a different context, LLMs were used in combination with error minimization
to describe cascade neural network architectures [3]).

An essential ingredient of the method is the differential D f of the continuous
nonlinear map f linking the patterns. So far, only models with LLMs limited to
rotations, i.e. det Df = 1, have been examined in the literature. Here we extend
the model’s scope to arbitrary deformations by making use of the most general
form the differential can assume. In the following, we describe this generalization
and discuss, as a first specific extension, the case of conformal local maps (local
rotations and stretchings).
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2 Local Linear Maps and Matching of Data Patterns

Following Aonishi and Kurata [2] we define deformations of data patterns as
transformations produced by continuous nonlinear maps: Given an original pat-
tern I1(z), © € Dy C R", it is assumed that there exists a function f :
Dy — Dy C R"™ such that the deformed image I>(y), y € Da, is obtained
by Ir(f(x)) = Ii(x).

The key idea of local linear maps (LLMs) is to replace the global map f
in (overlapping) neigbourhoods U; of points x; with its linear approximation,
f(@ —x;) = (Df)|s, (' — x;), and thus to describe the manifold defined by
f by the piecewise continuous composition of its tangential hyperplanes at the
points x;.

The comparison of the original and the image pattern involves checking the
similarity of mutual feature vectors extracted by folding the patterns with suit-
able kernels ¢(x), e.g. Gabor filters. Let Ji(x) = fw’eDl L(xYY(x — &) d "z’
quantify a feature with the help of 1 in the original pattern in the neighourhood
of . It is easy to show, using the linear approximation for f, that the feature
associated with the neigbourhood of its image point y = f(x),

B = [ by -y)ay. (1)

is related to the original data pattern through the modified kernel ¢ ((D f)| (x—
') det((Df)|ar), viz.

J2(y) = /,ED L&) P((Df)le (@ — ') det((Df)|ar) d"a’ . (2)

In other words, the filter has to be transformed according to the local linear map
Df taken at the original point & whose image is y.

Given some pattern I5(y), we can compute feature vectors J5(y;) from (1)
using filters 1. The problem of deciding whether or not I, is the deformed image
of an original pattern I(x) then amounts to the problem of finding a map f,
with its local linear maps D f, such that J5(y;) can equivalently be computed,
for every k and i, from the original pattern I; using the filters transformed
according to (2).

3 Theory

3.1 Diagonalisation of the Jacobian in 2-d

From now on we shall restrict ourselves to two-dimensional data patterns. In
components and cartesian coordinates, f = (f1(x,y), f2(z, y))T, the differential
Df is represented by the Jacobian matrix

— flm(x7y) fly((b,y)
7= (f2w(%y) f2y(w,y)) ’ (3)
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where, as usual, the index denotes the partial derivative with respect to the
coordinate x or y. A novel aspect in our approach is that we make use of the
fact that at every point the Jacobian in two dimensions can be brought into
diagonal form,

R TR = 4= (3 1)), 0

with two appropriate rotations by angles v; and 2, and two stretchings by
factors A\; and As. All four parameters are of course functions of position.

To prove this, consider orthonormal basis vectors 1, ¥ defining a cartesian
coordinate system at a given point P(x,y), rotated by an angle v; with respect
to the (x,y) coordinate system. The Jacobian maps 1,®; on two, in general,
non-orthonormal vectors us, vo located at the image of P; however, for a special
choice of v, these two vectors can be made orthogonal, with the corresponding
coordinate axes rotated with respect to the image (x,y) system by ~s.

Then evidently @; = R(71) é,, and uy = A\; R(72) &,, with A\; = |Jua]|. Since
uy = Jip, we have \;R(y2) é, = J@; = JR(y1) é,, hence R™(v2) J R(71) éx
= \1&,. Similarly, R7'(y2) J R(71) &, = X2&,, with Ay = ||vs||. Thus é, and
é, are eigenvectors of R71(y2) J R(71), with eigenvalues A;, A9, which proves
(4). The values of 71, 72, A1, A2 can be determined in a straightforward way by
setting up R(7y1), R(72) as 2-d rotation matrices and requiring the off-diagonal
matrix elements of R~!(v2) J R(71) to be zero.

3.2 Most General Form of Local Linear Maps

The most general form of a local linear map can now be gained by solving (4)
for the Jacobian, J = R(y2) A R(—~1), and decomposing A in the form

() S(2).

with A = vV ide, k= v/A1/A2. We can then write for the Jacobian

1=r6a) (5, 0) ARG ©)
A C

From this we see that in two dimensions J is the product of a conformal, i.e. angle
preserving, map C (rotational stretching: each infinitesimal shape is uniformly
blown up by A and rotated by —v;, and an area preserving map A (rotational
squashing: each infinitesimal shape is squashed by x, with its area maintained,
and rotated by 72). The decomposition (6) suggests in a natural way the following
classification of local linear maps.

3.3 Generic Local Linear Maps

Four-Parameter Maps This comprises the most general case discussed above
of two rotations and two anisotropic stretchings, or, alternatively, a conformal
followed by an area preserving map.
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Three-Parameter Maps This is the combination of one rotation (e.g. y2 = 0)
plus anisotropic stretchings, which can also be considered as a conformal map
followed by an area preserving squashing.

Two-Parameter Maps

a) Conformal Maps: kK =1, A# 1 (i.e. \y = g = \), J = AR(v2—71) = AR(0)
(angle preserving rotation and isotropic scaling). The components f; and fo

must satisfy fiz = fay, fiy = —f2z (Cauchy-Riemann equations). We note
that every analytic function in the complex plane induces a mapping of this
type.

b) Area-Preserving Maps: v; = 0, A = 1 (i.e. Ay = 1/)\1), and x = )\; (rota-
tion plus area preserving squashing). For fi and fo we have the constraints

flmfly + f21f2y =0and detJ = fla:f?y - flnym =1
¢) Anisotropic Stretchings: y1 = 72 = 0, and A1 # Aa.

One-Parameter Maps

a) Rotations: These can be regarded as conformal mappings without stretch-
ings, A1 = A2 = 1; at every point J has the form of a rotation matrix, that
is f1, fo fulfill the Cauchy-Riemann equations and det J = 1.

b) Isotropic Stretchings: This is the simple case of no rotations, 73 = 72 = 0,
and A1 = Ay at every point.

4 Method of Solution

Only the case of rotations has been discussed in the literature so far (Aonishi and
Kurata [2]). An analysis of dynamic link matching in the context of local linear
maps for all other generic cases is still lacking. However, the general procedure
for determining the map f by matching local feature vectors Jp(z,y) in the
original and Jy(2/,y’) in the deformed data pattern can be adopted from [2]:

1) Consider estimator functions [4] f(z,y) = (fi(z,y), f2(z,y))T.

2) Choose the type of generic local linear map which is to represent the differ-
ential Df; in the most general case it will depend on four parameters (6),

(Df)(,y) = A(v2(2,y), 5(z, ) Cn(x,y), M, ).

3) To produce a topographic transformation between two data patterns Iy, I,
formulate an appropriate cost function Ciotal[f, Df, VY1, V2, VK, VAL

4) Find the global minimum of the cost function by solving the time evolution

eguations dfl (Q?, y)/dta de (Q?, y)/dta d71 (.’E, y)/dtv d’YQ(:Ea y)/dtv dli(‘ra y)/dta
d\(x,y)/dt that result from a steepest gradient descent of the cost function.
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Fig. 1. Distortion of data patterns described by local linear maps. Example: conformal
local linear maps (rotations and isotropic stretchings). The figure shows the effect of
a conformal local linear map on an amorphous (left) and a well-structured (right)
data pattern. Top: original data pattern (e = 0 in (7)), middle: e = 0.0001, bottom:
€ = 0.005. Note the smooth variation of the local rotation angles and stretching factors.
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The choice of the cost function is crucial to finding the “best” global map f
and, with it, the “best” local linear maps. The cost function terms given in [2]
can serve as a useful guide for the other generic cases. Obviously, the detailed
discussion is beyond the scope of this presentation.

5 Example: Local Linear Maps as Conformal Maps

We will now consider the application of two-parameter maps, viz. conformal
maps. To obtain the best local conformal map linking a given pair of data
patterns, the cost function has to be minimized including the constraint that
accounts for the Cauchy-Riemann equations. The implementation of this pro-
cedure is in progress, and detailed results will be published elsewhere. Here we
will restrict ourselves to the illustration of the effects of conformal maps on the
deformation of given data patterns. As an example, we show in Figure 1 the
effects of the conformal mapping

fl(%y)) (w) (waQ)

= + € 7
(fz (z,y) y 2zy @)
on two data patterns. The smoothly varying local rotation angles and stretching
factors can clearly be recognized from the deformation of the rectangular grid.
In actual implementations, the best conformal local map must be determined

from the original and the deformed data pattern using the procedure described
in Section 4.

Acknowledgements. We thank G. Hornig for pointing out the diagonalization of
the Jacobian.
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Abstract. We present a two-stage face-finding system as a combination
of labeled graph matching and statistical learning. The data format for
both stages consists of vectors of the responses of Gabor wavelet filters.
Graph matching is used to detect possible locations of faces that we call
hypotheses. These typically contain many false positives. The graphs at
the found locations are then reinterpreted as vectors, which can be used
as input for different statistical learning methods. The methods used
here are K-Nearest-Neighbour and the Support Vector Machine with the
latter being more efficient.

1 Introduction

Face recognition systems based on elastic graph matching with Gabor wavelet
preprocessing have shown outstanding competitive performance (see [PMRRO00])
but are less suitable for detecting faces in complex scenes in the first place. Sta-
tistical investigations of patterns of faces and face-like objects are needed to
overcome such limitations. Examples of successful systems following this ap-
proach include a trained multi layer perceptron performing face detection with
feature vectors directly derived from grey-level images[RBK98]. Since Gabor
Wavelet preprocessing and Support Vector Machines show outstanding perfor-
mance in computer vision and statistical learning, it makes sense to combine
both approaches in designing algorithms for face validation.

The system we propose here, is based on the system developed by Loos
and Wieghardt [WLO01], which we call face-finder in the following. It detects a
chosen number of faces from any given image by using a simplified version of
bunch graph matching (see [WFKvdM97] for details) and matching with a skin-
color template. It delivers so called hypotheses of face-positions. The main idea
of the new system is to combine the old version with an additional validation
stage based on statistical learning to check the output of the face-finder and to
improve the results.
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The statistical learning methods used in this work are K-Nearest-Neighbour
and linear and non-linear Support Vector Machines for classification. A detailed
description of the hypothesis generation and the underlying bunch graph match-
ing algorithm is available at [WL01]. The images used for this work are from
varying sources (see [LJLIS], [SH94], [TP91], [RBK98] and [BHK97] for details).
Thanks to the colleagues for allowing us to use them for scientific purposes.

2 Classification of the Hypotheses

2.1 Preparation for the Classification

When the hypotheses are found, a graph is laid on every found region and the
Gabor responses at the nodes are stored. The graph has the same structure as
the bunch graph but just one jet stored at every node.

The samples used in statistical classifiers are vectors. Therefore, the graph
structure of a hypothesis is flattened to a 640-dimensional vector. (There are 40
values in each jet and 16 nodes in one graph.) The vectors are normalized in three
different ways to test the influence of the normalization on the classification. In
the first dataset the vectors are normalized as a whole, in the second the single
jets are first normalized and then written to a vector and in the third the vectors
remain unnormalized. Normalization aims at making the representation invariant
against contrast changes.

Now the hypotheses are labeled manually. The classes of faces, non-faces and
unsure elements are established. The unsure-class contains faces which are poorly
located by the face-finder due to, e.g., depth rotations not covered by the purely
frontal bunch graph. Depending on the experiment, this unsure-class is treated
as face or non-face or left out completely to study the influence of these hard-to-
learn examples. Thus, the classification task remains a two-class-classification.
In the last step of the preparation, the dataset is reordered randomly and every
other value is part of the training- or test-set, respectively. Altogether a set of
3115 hypotheses was used, which was build by 855 faces, 392 unsure cases and
1868 non-faces.

2.2 Classification methods

The classification methods used in this work are K-Nearest-Neighbour, linear
and non-linear Support Vector Machines for classification. As a relatively simple
method, KNN does not offer optimal performance for classification, but can give
an impression of the quality of the dataset and the possible performance of better
classification-methods. In this work KNN has been applied with the Leave-One-
Out-method, i.e., all data except one is used as training-set and the one vector
is classified.

The concept of the Support Vector Machine was first introduced by Vapnik
in [Vap95] and has been used in many applications with remarkable success. The
method can be used for classification and regression of data but in this work, just
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k no Unsure Unsure as Non-faces|Unsure as Faces
Normalized |Normalized no
Jets Vectors|Normalization
1 12.67 14.22 15.70 12.45 13.55
3 12.52 13.07 15.83 11.60 12.74
5 11.86 12.04 15.47 11.53 12.41
7 11.90 12.26 14.80 11.16 12.12
9 11.75 11.72 14.96 11.64 12.38
11 12.05 12.17 15.12 11.75 12.56
21 12.63 11.88 16.08 12.93 14.03
31 13.04 11.65 16.78 14.36 15.24
51 13.37 11.69 17.56 15.39 16.45
101 14.73 12.10 18.39 16.82 18.69

Table 1. Error-rates of the tests with the KNN-Method.

classification is used. In [Sch97] a good introduction to the theory of Support
Vector Machines is given. There are several algorithms and implementations
of the SVM-method available. In this work the implementation SVM-Light by
Joachims (see [Joa99] for details) is used.

3 Results

In this paper, only few of the computed results can be presented. For a detailed
view on the results, please have a look at [Hei01] (in German).

3.1 Tests with KNN

Table 1 shows the error-rate for classification with varying values of &, the num-
ber of neighbours considered. The variation of the normalization type is shown
without the unsure-cases being used. One can see that for small values of & the
type of normalization makes just a small difference. With a bigger k the error-
rate increases for all normalization types. This effect was the same for all three
methods of treatment of the unsure class, but smallest without the unsure-class.
Tests were done with even bigger values of k. But as the size of the dataset has
the same magnitude as k, these results depend on the chosen dataset.

Table 1 also shows the error-rates for classification with the unsure-class
treated in the three different ways. Notable is the difference between the error-
rate Unsure as faces and the other error-rates. Looking closer on the results,
one can see that especially the classification of the negative examples is worse
in this case. A reason could be that for the correct classification of non-faces
more data is required than for the classification of faces. Most of the faces are
in a relatively small area of the feature space while the non-faces are scattered
around everywhere.
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Fig. 1. Error rate vs. degree of polynomial (left) and factor ~ (right)

3.2 Tests with SVM

The following results from the experiments are just a small fraction of all results
and are chosen for several reasons. They all are created with the unsure elements
counted as faces and normalized jets. The normalization of jets is chosen because
the tests with KNN showed that this preprocessing is more stable than the other
two versions. The unsure elements are counted to the faces-class, because this fits
better to human perception (see figure 2 for examples). As mentioned before, the
unsure elements tend to be faces, which are not found exactly. Human observers
would have no problem in classifying them as faces and so the system should
learn to classify them in this way, too.

In general the performance of SVM is better than KNN regardless of the
chosen parameters and kernel function. On the left, figure 1 shows the error-rate
for the polynomial SVM and the linear SVM. The exact value of the error-
rate for the linear SVM is 11.6%. The use of the polynomial kernel is justified,
because the error-rate can be decreased to 9.0%. The best value of the degree
of the polynomial is 11, which shows, that a relatively complex separation plane
divides the data better. Especially the error-rate of the non-faces decreases up to
this value. When the degree gets still higher, the performance decreases because
of over-fitting of the separating hyper-plane.

Figure 1 also shows the classification performance for the use of a Gaussian
kernel on the right. The parameter 7, which is varied here, controls the complex-
ity of the separating plane — a high value of y leads to a more complex plane and
more support vectors. With decreasing v the performance gets better especially
for the negative examples. The performance for the faces stays the same or gets
even worse. The faces lie in a relatively small area of the space and can be classi-
fied properly with few support vectors. The scattered non-faces can be classified
better with more support vectors. But if the number of non-face support vectors
increases, the probability of a positive example to be misclassified rises as well.

The use of a polynomial function delivers the best performance for this prob-
lem. Additional tests have shown that the performance of the system with Gaus-
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Non-faces

Fig. 2. Examples of hypotheses, which became support vectors with the linear SVM.

sian kernel is far more dependent on the normalization of the vectors. It is diffi-
cult to adjust the parameter v to get a good performance for the unnormalized
vectors, since these are far more scattered in the space.

4 Discussion

The classification of the hypotheses of the face-finder into faces and non-faces
with the Support Vector Machine delivers satisfactory results. The delivered
negative hypotheses are very similar to faces in the Gabor responses and so the
shown performance is remarkably good.

Certainly the shown method can be developed further in different ways. On
one hand, the performance of the hypothesis-finder might be increased by several
steps. The concept of the bunch graphs might be developed further to make
learning possible, while the system is working. At the current state a lot of
human knowledge has to be put into the system to make it work and it is
desirable to let the system start with little knowledge delivered by a human and
learn independently how to increase the performance.

The performance of the SVM will increase with the amount of data available
for training. Since manual labeling of these amounts of data (>10000 images)
is awkward, ways have to be found for confident automatic or semi-automatic
labeling. Like for the face-finder, it might be possible to start with knowledge
provided by humans. This knowledge has to be increased automatically by the
system to increase the performance.

As Schoelkopf has shown in [Sch97] it is possible to increase the performance
on new data by retraining a SVM with just the previously misclassified data and
the old support vectors. So it is possible to store only the misclassified data and
the support vectors and still keep all necessary information.

For some additional insight into the form of the face class the support vectors
after training have been inspected (see figure 2 for some examples). Notably
many of the support vectors of the non-face-class still look pretty much like
faces. This may indicate that the class boundaries are not very sharp or that the
manual labeling has been rather conservative.



270 Heinrichs, A. et al.

5 Acknowledgments

Funding by the German Federal Minister for Science and Education under the
project LOKI (01 IN 504 E 9), the European Commission in the Research and
Training Network MUHCI (HPRN-CT-2000-00111), and through the “K&rber
prize for European Science” awarded to C. von der Malsburg in 2000 is gratefully
acknowledged.

References

[BHK97]

[Hei01]

[Joa99)]

[LILOS]

[PMRRO0]

[RBK9S]

[Sch97]

[SHO4]

[TP91]

[Vap95]

P.N. Belhumeur, J.P. Hespanha, and D.J. Kriegman. Eigenfaces vs. fish-
erfaces: Recognition using class specific linear projection. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 19(7):711-720,
1997.

Alexander Heinrichs. Einsatz statistischer Lernmethoden zum Finden
von Gesichtern in natiirlichen Bildern. Internal Report IRINI 2001-07,
Institut fiir Neuroinformatik, Ruhr-Universitdt Bochum, 2001.

T. Joachims. Making large-scale svm learning practical. In B. Schélkopf,
C. Burges, and A. Smola, editors, Advances in Kernel Methods - Support
Vector Learning. MIT-Press, 1999.

A. Loui, C. Judice, and S. Liu. An image database for benchmarking
of automatic face detection and recognition algorithms. In Proc. IEEE
International Conference on Image Processing, 1998.

P.J. Phillips, H. Moon, S.A. Rizvi, and P.J. Rauss. The feret evaluation
methodology for face-recognition algorithms. IEEE Transactions On
Pattern Analysis And Machine Intelligence, 22(10):1090-1104, 2000.
H.A. Rowley, S. Baluja, and T. Kanade. Neural network-based face
detection. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 20(1):23-38, January 1998.

B. Scholkopf. Support Vector Learning, Dissertation. R. Oldenbourg
Verlag, Munich, Germany, 1997.

F. Samaria and A. Harter. Parameterisation of a stochastic model for
human face identification. In Proc. 2nd IEEE Workshop on Applications
of Computer Vision, 1994.

M. Turk and A. Pentland. Eigenfaces for recognition. Journal of Cog-
nitive Neuroscience, 3(1), 1991.

V. Vapnik. The nature of statistical learning theory. Springer Verlag,
1995.

[WFKvdM97] L. Wiskott, J.-M. Fellous, N. Kriiger, and C. von der Malsburg. Face

[WLO01]

recognition by elastic bunch graph matching. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 19(7):775-779, 1997.

Jan Wieghardt and Hartmut S. Loos. Finding faces in cluttered still
images with few examples. In Georg Dorflner, Horst Bischof, and Kurt
Hornik, editors, Artificial Neural Networks — ICANN 2001, volume 2130
of Lecture Notes in Computer Science, pages 1026-1033, Vienna, Aus-
tria, 2001. Springer Verlag.



Differential Processing of Facial Motion

Tamara L. Watson', Alan Johnston', Harold C.H Hill* and Nikolaus Troje’

'Department of Psychology, University College London, Gower Street, London WCIE 6BT
2ATR Human Information Science Laboratories, Kyoto, 619-0288
*Fakultit fiir Psychologie, Ruhr-Universitit-Bochum, 44780 Bochum

Abstract. To investigate viewpoint dependence in dynamic faces an avatar was
animated using actors’ movements. In Experiment 1 subjects were shown a full-
face animation. They were then asked to judge which of two rotated moving
avatars matched the first. Test view, orientation and the type of motion were
manipulated. In a second experiment subjects were shown two views of the
same facial animation and were asked which of the two avatars was the same as
the initial animation. Initial views could be rotated to 15° and 45° or 45° and
75° while test views were presented at 30° or 60°. Learnt view, test view,
orientation and type of movement (rigid + non-rigid vs non-rigid) were
manipulated. Both experiments and movement conditions produced an
advantage for upright over inverted matching demonstrating subjects were
encoding facial information. Non-rigid movement alone showed no effect of
view for both experiments demonstrating viewpoint invariance. Rigid and non-
rigid movement presented together produced a decline in performance for larger
test rotations in Experiment 1, while Experiment 2 produced a differential
advantage for 30° test rotation when initially viewed upright faces were rotated
to 15° and 45° however no difference was found in the 45° and 75° condition or
with inverted faces. These experiments suggest that non-rigid facial movement
is represented in a viewpoint invariant manner whereas the addition of rigid
head movements encourages a more viewpoint dependent encoding when the
initial orientation of the head is not rotated further than the half profile (45°).

What role does motion play in the recognition of faces? Two types of motion, rigid
transformations of the head and non-rigid deformations that occur during speech and
changes in expression, are available to the viewer during social interaction. Research
to date suggests that rigid motion of a head does provide beneficial information for
the viewer. Pike et al. [1] have shown that this additional motion information
presented at learning can enhance recognition. It is suggested that this advantage is
affected by the ability to build up or access a 3-dimensional representation. The extra
structural information provided by the rigid transformational motion of the head
offers more opportunity to encode or access this information. However it is rare that
when we are introduced to a person we see their face moving in the highly controlled
way that was adopted by Pike et al. [1]. During most social interaction we will also be
exposed to the face moving in a non-rigid manner.

The advantages of non-rigid motion for recognition have been the subject of
debate. It has been shown that a degraded representation of a face will benefit from
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the addition of non-rigid motion particularly for faces the viewer is familiar with.
Knight and Johnston [2] have demonstrated that recognition of degraded famous faces
will be significantly enhanced by the addition of non-rigid motion. Lander, Christie
and Bruce [3] have demonstrated the same advantage with degraded famous faces.
Christie and Bruce [4] have studied the effects of presenting non-rigid motion at
training and at test with unfamiliar faces. They found no advantages for presenting
motion at training or at test and suggest that non-rigid motion may only be beneficial
when accessing existing representations.

Recently Thornton and Kourtzi [5] have used a sequential matching task rather
than a recognition task in the study of non-rigid facial motion. They demonstrate that
presentation of a short video sequence aided matching when the face differed in
expression or viewpoint between prime and test images. The demonstration of an
advantage in sequential matching of unfamiliar faces after presentation of a face
moving non-rigidly in this study is interpreted with the view that mechanisms
responsible for representing change over time are established and maintained in
working memory and show little transference to long term memory over the course of
the study.

All of the above studies have presented spatial layout cues alongside motion cues
and have therefore not studied the role of facial motion alone. The question of
whether facial motion can be represented independently of spatial cues remains open.
However, Hill and Johnston [6] have shown that both rigid head movements and non-
rigid head movements in the absence of spatial cues provide sufficient information to
allow observers to categorize faces on the basis of both identity and gender. On the
basis of differences between accuracy of categorization depending on the type of
motion, Hill and Johnston [6] suggest that rigid movements are idiosyncratic and
provide the basis for performance in identity categorization while non-rigid
movements provide independent cues to speech and expression. These results would
appear to complement the findings discussed above in that a more permanent
representation is possibly mediated by encoding rigid motion while speech and
expression are both encoded in a more transient manner.

The recognition of static faces has typically been found to be viewpoint dependent.
Results of studies such as that by Hill, Schyns and Akamatsu [7] suggest that when a
single view is presented during a learning stage, recognition of the same face from
other views is impaired. They also found that the addition of cues that do not vary
over view, such as facial colouring, greatly enhanced the accuracy of the results to the
extent that learning presentation times need to be reduced. Recognition for the
reduced presentation time was also found to be view dependent for conditions except
in the case of the % learnt views. These results suggest that generalized prior
knowledge of the 3-dimensional structure of faces does not allow a view invariant
representation of a face to be accessed when generalizing from a single static view.

As non-rigid facial motion is specifically a property of the object in motion it
cannot be mimicked by movement of the viewer in the same way that rigid
transformations can. Since this non-rigid motion is a change in the intrinsic shape of
an object, it would make sense for the visual system to encode the motion in a
viewpoint independent way if possible.
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The first experiment was designed to assess view dependence when matching non-
rigid facial movement as opposed to both rigid and non-rigid movement together from
a full-face view.

Stimuli for both experiments reported consisted of a total of 64 animations based
on motion capture recordings of 8 males and 8 females, each telling 4 question and
answer type jokes. Recordings were made with an eight camera Oxford Metrics'
Vicon motion capture system with the cameras placed in a semicircle at different
heights in front of the head. Forty markers were used to capture facial movement and
a headband with 4 markers was used to capture rigid movements. The resulting
motion information was used to animate an average 3-dimensional facial
model created from 100 male and 100 female faces [8]. Animation of the 3d
model was achieved in Famous Animator where ‘areas of influence’ around each
marker placed on the face inherit the movement of the marker (see also [6]). As no
eye movements were captured the eyes were made to "look at" a point straight ahead
of the face. The three-dimensional head model was texture mapped witha
corresponding average texture and the resulting animated sequences rendered using
3DS Max. Two versions of each sequence were rendered; one with just non-rigid
facial movements and the other with both types of movements combined.

Two groups of 20 subjects were presented with animations containing only non-
rigid motion or rigid and non-rigid together. During one trial participants were first
shown a learning animation sequence oriented at 0° (where 0° is a full face and 90° a
profile). This was followed by a target and distracter animation presented sequentially
at an orientation in depth of 0°, 15°, 30°, 45°, 60°, 75° or 90°. Participants were asked
to indicate which animation was shown in the learning stage. The target animation
was the same sequence as the learning animation while the distracter was randomly
chosen with the constraint that it contains an actor telling the same joke as the target
stimulus. Both target and distracter animations were shortened such that the video
sequence would start at a random point within the first half of the animation and run
for half the length of the full animation. Shortening the animation was required in
order to lower performance from ceiling. Each animation could only be viewed once
and all animations were required to have been viewed before response. Subjects
controlled the speed of presentation.

Faces were also presented upside down as a control in order to assess the
likelihood that subjects were utilizing extraneous cues in order to carry out the task. It
has been shown previously that presenting inverted facial motion reduces the
accuracy of gender and identity judgments suggesting that upright facial motion is
represented in a object-motion encoding system specialized for faces [6]. Inversion
constituted a within-subjects condition. During the upright condition all faces were
presented upright. During the inverted condition all faces were presented upside
down. Initial orientation was randomized. Each condition contained 64 trials.

A within subjects analysis was carried out for each type of motion. Data are shown
in Table 1. The effect of test viewpoint for non-rigid motion was not found to be
statistically significant, f(6,114)=2.163, p>0.05 although a significant overall effect of
inversion was found, f(1,19)=5.834, p=0.03. Rigid and non-rigid motion together
displayed a significant effect of test rotation f(6,114)=2.311, p=0.04 which was found
to produce a linear trend, f(1,19)= 14.468, p<0.01. An effect of inversion was also
found, f(1,19)=5.819, p=0.03.
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Table 1. Mean percent correct for Experiment 1

Non-Rigid Motion

0° 15° 30° 45° 60° 75° 90°
Upright 82.5 77.2 77.8 75.0 78.3 74.5 73.9
Inverted 76.5 65.0 78.3 67.8 68.1 71.1 77.2

Rigid + Non-Rigid Motion

0° 15° 30° 45° 60° 75° 90°
Upright 82.8 82.1 81.5 71.2 74.1 75.3 69.8
Inverted 76.1 73.5 74.1 73.5 72.2 69.8 69.1

These results suggest that non-rigid facial motion is less viewpoint dependent than
non-rigid and rigid facial motion presented together when generalizing from a full
face view. Both the statistics and inspection of the data suggests that for upright non-
rigid animation there is some decline in performance as test viewpoint rotates away
from the target view. However this is not as pronounced as when all motion
information is presented within the animation. The advantage displayed for upright
animations is suggestive of a specialized face processing module that is not available
when inverted animations are presented.

The next experiment was designed to incorporate a larger range of initial views.
Non-rigid movement alone was presented to one group of 40 participants while
another group viewed animations containing both rigid and non-rigid movements.
Two different groups of subjects were shown ‘learning faces’ consisting of two
different views of the same animation rotated by either 15° and 45° or 45° and 75°
and were then tested on faces rotated to 30° or 60°. The target face was the same as
the learnt face while the distracter was chosen randomly with the constraint that it
would be at the same rotation as the test and of the same gender. Subjects were asked
to indicate which animation had been shown in the learning stage. Both target and
distracter animations were shortened and viewing conditions were as in Experiment 1.
Inversion acted as an added within-subjects condition.

Table 2. Mean percent correct for Experiment 2

Non-Rigid Motion Rigid + Non-Rigid Motion
Target Rotation | 15° + 45° 45°+75° 15° +45° 45° 4+ 75°
Upright 30° 81.3 81.6 85.0 88.1
Test 60° 79.4 81.2 76.3 90.6
Inverted 30° 74.3 75.0 74.4 78.1
Test 60° 70.0 77.8 71.9 78.4

Data are shown in Table 2. Non-rigid motion did not display an interaction

between the initial and test rotation of faces f(1,38)=0.152, p=0.70, however an effect
of inversion was found f(1,38)=14.324, p<0.01. The condition showing all available
motion information displayed a significant interaction between the initial and test
rotation of faces, f(1,38)=9.215, p<0.01. This interaction was not present when faces
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were inverted, f(1,38)=0.599, p=0.45. Again an overall inversion effect was found,
f(1,38)=33.485, p<0.01.

The results of Experiment 2 suggest that non-rigid motion when presented alone
displays less viewpoint dependence than when all motion information is presented in
an animation. Further investigation of the data also suggests that viewpoint
dependence is stronger for the learnt animations closest to the full face view when
compared to those closest to the profile in the full motion condition. This effect could
be due to a larger angular difference between the more frontal views presented in this
condition compared to the views closer to profile. The advantage for upright
animations over inverted, as in Experiment 1, is suggestive of specialized processing
of the upright facial motion.

The results reported here suggest that non-rigid transformations of a face may
initially be encoded in a less viewpoint dependent manner than faces that are
transforming and translating rigidly. It is also noted that while viewpoint dependence
has been found in the latter case it does not seem as pronounced as that found when
investigating view dependence in static faces. This may suggest that motion does have
a large role to play in the perception of faces across different views. That non-rigid
motion alone displays no view dependence unless teamed with rigid motion may
suggest that the addition of rigid motion into the stimulus adds a layer of information
that may make the representation of the motion that is formed less than optimal for
the task at hand. Whether this is specific to the rigid motion or occurs as a
combination of non-rigid and rigid motion is not clear from these experiments. The
inversion effect displayed suggests that the results found in this study are due to
specialized processing of the upright facial motion.
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Viewing-Distance-Invariance
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Abstract. We present a neural network mechanism allowing for distance-
invariant recognition of visual objects. The term distance-invariance refers
to the toleration of changes in retinal image size that are due to varying

view distances, as opposed to varying real-world object size. We propose a

biologically plausible network setup, based on the recently demonstrated

spike-rate modulations by viewing distance, affecting large numbers of

neurons in striate and extra-striate visual cortex. In this context, we

introduce the concept of distance complex cells. We successfully imple-

ment the model in a computer simulation and investigate its response to

changing view distances.

1 Introduction

Invariant object recognition means the ability of the human visual system to
recognize familiar objects appearing in varying poses in the visual field, such as
varying position, size, or three-dimensional view. It can be argued that positional
invariance may mostly be achieved by fixational eye movements. Nonetheless,
some sort of neural computation must be performed along the ventral pathway,
to achieve invariance to size, view, or other transformations involving a change
in retinal projection. Among these, transformation of size plays a special role,
as it is characterized by changes in extent, but not in shape.

1.1 Size-Invariance vs. Distance-Invariance

Size-invariant object recognition demands closer investigation, regarding the pos-
sible causes that make a familiar shape appear in different sizes on the retina.

Viewing Distance. One reason for visual objects having varying retinal image
size is, that the same or identical objects appear at different viewing distances. A
possible source for this type of size variation is self-motion. The resulting images
are perceived as being instances of the very same object even if there are huge
differences in the extent of their retinal projections. We will refer to this type of
invariant recognition as distance-invariance. It is unconsciously perceived.
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Real-world Object Size. Another reason for varying retinal image extent can
be that the observer is facing different objects of the same shape, but of different
physical size, measured in real-world coordinates (e.g. a car and its toy model).
These are perceived as being different objects, though possibly belonging to a
common class.

Under normal viewing conditions, the two types of size variation can percep-
tually be well distinguished. The retinal image of a nearby toy car can match that
of a far away real car. Nonetheless, perceptually the two objects are not confused.
That is, invariant recognition is achieved in the case of varying viewing distance,
but not for varying real-world size. We regard this as being of major importance.
It means that physical size is an inherent object property used to distinguish
between objects, and that it is derived considering the current viewing distance.
To our knowledge, this is not accounted for by other models of size invariant
object recognition, making use of neurally implemented two-dimensional image
transformations [4], or of cascaded local feature pooling [3, 6]. There is, however,
evidence, that the ability to distinguish these two types of size variation is also
based on neural properties recently found in V1, V2 and V4 of monkeys [1, 2, 7].

1.2 Distance Estimation by the Visual System

Distance dependent modulation of single cell spike rates has been found to high
abundance (64-85% of neurons) in visual cortical areas V1, V2, and V4, making
it a very common property of cells at the lower levels of the ventral visual
pathway [2,7]. While cell properties like receptive field size and preferred two-
dimensional stimulus properties (edge orientation, contrast, spatial frequency,
etc.) stay unchanged, the cells exhibit a modulation of firing rate with fixation
distance [1, 2]. The results can be interpreted as viewing distance being a further
property coded by the respective neurons, in addition to their classical receptive
field properties.

What functional purpose could the modulation of such large portions of neu-
rons along the ventral pathway serve? We suggest, that viewing distance in-
formation is used to select, by sensitivity modulation, subsets of local feature
detectors, which represent visual elements at a preferred viewing distance. The
representation of a fixated object then is primarily made up from the responses
of cells sensitive to the actual fixation distance.

2 Model

2.1 Extending the Concept of Hierarchical Visual Coding

Hierarchical models for object recognition adopt the view that increasingly com-
plex features constitute the representation of objects [3,6]. Our present model
extends this concept by introducing the experimental finding of spike rate mod-
ulation by viewing distance into the hierarchy. Our model (Fig. 1) consists of,
A) a linear neural chain representing the current fixation distance by a single
activated blob, B) distance modulated feature detectors, C) distance complex
cells, and D) an object knowledge base.
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Fig. 1. Model architecture. Higher-order features are omitted for clarity. A: Neural
chain coding distance by activation blob. B: Sets of feature detectors assigned to dif-
ferent viewing distances. C: Distance complex cells. D: Object knowledge base for
shape and size, and neural chain coding the perceived physical size

A: Neural Chain Representing Distance. The exact origin and type of
the distance signal is unknown. It can be provided from a variety of sources,
including ocular vergence, lens accommodation, angle below horizon, or pictorial
cues such as contrast, texture gradient and motion parallax. We model its action
by a linear chain of coupled neurons, like a discretized one-dimensional neural
field, in which the position of a single activation blob represents the current
distance estimate of the ocularly fixated object (Fig.1, A).

B: Modulation of Feature Detectors by Distance Signal. The retinal
image is represented by the activation of low- and higher-level visual filters, each
coding for their preferred features. Coding for distance is achieved by modulating
their sensitivity by a distance signal [1,2,7] (Fig.1, A and B). The distance
tuning corresponds to the activation blob in (A:).!

C: Distance Complex Cells. Feature detector signals converge systematically
onto next stage cells, yielding what we term distance complex cells. Their recep-
tive field properties reflect the distance-variant transformation that a distinct
visual feature undergoes, as the distance between observer and fixated object
changes (Fig. 1, B and C, connections shown for one cell only). Throughout
such a movement, the same distance complex cell would be kept activated.

! As experimental data [1,2,7] does currently not allow for exact shape estimation,
we assume Gaussian tuning profiles.
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D: Object Knowledge Base. The representation of objects as visual entities
is based on the outputs of distance complex cells. Features are combined to yield
representations defining not only the shape, but also the physical size of visual
objects (Fig. 1, D). We use a second one-dimensional chain of neurons with a
single activation blob to represent the physical size of a currently fixated object.

2.2 Operation of Model

Under real world viewing conditions the rich environment provides a distinct
visual input, generally sufficient for a reliable distance estimate. As illustrated
in Fig. 1, a subset of all feature detectors receives modulatory input from the
neural chain representing the current viewing distance. Owing to this modula-
tion, feature detectors of appropriate distance preference are facilitated and will
predominantly represent the visual scene, while activity of non-appropriate de-
tectors is diminished.? These detectors will feed the attached distance complex
cells. The pattern of activated distance complex cells then activates a represen-
tation of correct shape and size in the object database.

Finally, activity in the different model modules carries information on identity
(shape and real-world size), as well as the distance of the observed object. This
mediates a stable percept of the three-dimensional scene, as the observer explores
the environment in a series of saccades.

3 Results

We examined the model’s response to hypothetical viewing situations, using a 3d-
rendering system to compute retinal projections of an artificial three dimensional
scene. Projection parameters such as position of lens and size of viewfield were set
to match those of the human eye. Network input consisted of the retinal image,
plus the current fixation distance (Fig.2). No further information entered the
network. Output was the activation of a topologically arranged set of distance
complex cells.

3.1 Simulation Results

In a computer implementation, the model proves to generate size-invariant out-
put from distance-varying views of an object. (Fig. 2). Although different viewing
distances cause huge variations in retinal image size, the output of distance com-
plex cells is largely independent of fixation distance. Figure 2 shows results for
viewing distances of 30 and 60 m, but the network operates reliably over the
full simulated distance range of 15-135m. Note that the output is labelled in
real-world coordinates: Objects of different physical size will generate different
output, while representations will not change with varying view distance. The
network thus reproduces the two viewing modes described in Sec. 1.1.

2 Modulation affects the whole visual field, preserving spatial feature relations, but also
causing false size transformations of peripheral objects not at the fixation distance.
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Fig. 2. Simulation results. Size-invariant output is generated from distance-varying
stimuli. Note that output is labeled in real-world coordinates

Output quality depends on the spacing and width of the distance tunings:
Non-overlapping tunings generate unique contours (Fig. 2, 2°¢ column), but their
level of invariance depends on the density of distance sampling (i.e., the num-
ber of distance layers in Fig. 1, B). For broad, overlapping tunings, the level of
invariance is high, but the network generates multiple ghost images of fixated
objects (Fig.2, 3" and 4" column). Furthermore, the use of a single retinal
frequency channel in the implementation causes increasing blur with fixation
distance. The interdependence of retinal frequency tuning and distance modu-
lation is currently subject to investigations in our laboratory [1], and will be
incorporated into forthcoming versions of our model.

4 Discussion

The presented model belongs to the class of hierarchical models for object recog-
nition. These are known to produce invariance when constructed accordingly [3,
6], but do so implicitly, losing information, e.g. on object size, position, and
spatial relations among local features. Other models use control signals to set
up image transformations [4], but act in the two-dimensional domain, unable
to exploit the distance signal to gain information on physical object size. Our
model can be seen as an extension to both strategies, using pooling operations
guided by an explicit distance signal.

Based on the recent findings of firing rate modulation by fixation distance
[1,2,7], we propose the existence of a new class of cells, exhibiting complex
properties in the sense of being insensitive to feature transformations caused by
change in viewing distance. Cells with receptive field properties that in several
respects are similar to those of the hypothetical distance complez cells (Fig.3)
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Fig. 3. RF-properties. A: Distance complex cells, as expected from model setup
(Fig.1). B: Cells in V4A are reported to have large, radially oriented, “comet-shaped”
RFs. They prefer small stimuli and often respond to stimulation at appropriate distance
only (Fig. taken from [5])

have recently been reported for the newly identified area V4A of monkey visual
cortex [5]. These findings strongly encourage the further development of our
model.

A possible drawback of our approach is the large number of required feature
detectors. Detectors need to be present, which share the same preferred two-
dimensional feature, but are sensitized for different viewing distances. The qual-
ity of invariance generation depends on the width and overlap of tuning profiles,
as well as on the number of sampling points in distance. We will investigate, to
what multiplicity detectors are required to allow for stable operation, and what
constraints are imposed thereon by biological cell numbers. A radial gradient in
spatial frequency preference could compensate for distance dependent blur [1].

Many more setups of our model can be investigated, including attention
to distance and real-world size, attention to known objects, and operation in
reduced cue environments (i.e., size changes with no distance signal available).
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Abstract

We present a conceptually simple algorithm for dense image point matching be-
tween two multi-modal (e.g. color) images. The algorithm is based on the as-
sumption that correct image point matches satisfy locally a particular statistical
distribution. Through an iterative evaluation of a local probability measure, global
constraints are taken into account and the most likely set of image point matches
is found. An advantage of this approach is that no information about the cam-
era geometries, as for example the epipoles, has to be known. Therefore, the
algorithm can be used for stereo matching and optic flow.

1 Introduction

The basic idea behind all optic flow and stereo matching algorithms is, that if
two images are projections of the same 3D-scene taken from slightly different
positions or at slightly different times, then certain properties of corresponding
pixels are invariant. However, it is not necessarily the case that a pixel in one
image can be identified with exactly one pixel in the other, since rigid objects
may appear shrunk or grown in different projections. Furthermore, parts of a
3D-scene that can be seen in one projection may be occluded in the other. The
transformation between two images related by optic flow or stereo, is therefore
more like a homotopy, as Florack et al. [1] point out, than a vector field. Never-
theless, a vector field is what we need in most applications. Therefore, in general
an assumption is made about the invariant properties of corresponding pixel,
which approximates nearly invariant properties of the underlying homotopy.

The invariant properties which are typically identified are those of pixel color
and pixel neighborhood structure. Algorithms differ in how they model these
invariances and the method employed in identifying corresponding pixels using
the assumed invariant properties.

Some different types of approaches are for example: feature based methods
(e.g. [2]), pixel labelling methods (e.g. [3, 4, 5]) and Bayesian methods (e.g.
[6, 7, 8, 9]).
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Bayesian methods have the advantage of clearly stating the invariance as-
sumptions made about corresponding pixels by defining priors on the parame-
ters of the system. Markov random field (MRF) approaches as described in [10]
play an important role in this context [11]. The details of the different Bayesian
approaches to dense image point matching are quite varied. However, typically
they do not assign a single disparity label to a pixel but a discrete probabil-
ity distribution function (pdf) over a set of disparities. Although this might, at
first, seem to violate the often used uniqueness assumption as stated by Marr
and Poggio [12], one can always define the final disparity to be the expectation
value of the pdf. The advantage of defining a discrete pdf is that, in effect, we
can test a number of hypotheses concurrently and eventually extract the most
likely one. Finding the set of disparities which maximizes an appropriately de-
fined probability measure then gives the answer to the correspondence problem.
Such a maximization may be done iteratively or through a global maximization
scheme.

In this paper we also follow a Bayesian approach which is based on an idea we
published previously [13] using different mathematical tools. A detailed discus-
sion of our approach, including a number of experiments, can be found in [14].
Our approach is similar to [15] but differs in the implementation of the pixel
invariance properties. Where they use a MRF approach to enforce a smooth
disparity space, we follow the idea that the distribution of correct pixel matches
can locally be described by a particular pdf, whereas wrong match candidates
are uniformly distributed. Through an iterative evaluation of a local probability
measure, local matching constraints are propagated through the image, such that
global constraints are taken into account. Although, occlusion is not modelled
explicitly, half-occluded pixels are either given two different disparities simul-
taneously, or they are matched onto the nearest matchable pixel. That is, the
algorithm does not break down in the presence of occlusion.

2 Theory

In the model we develop, we are not interested in the exact camera geometry. We
simply assume that we are given two images A and B whose pixel are correlated
in as far as they represent the same scene, albeit from a different point of view
(stereo matching) or at a different time (optical flow). The only constraints we
can invoke then are pixel similarity and an ordering constraint.

We assume that correct image point matches satisfy a particular statistical
distribution whereas incorrect matches are equivalent to noise and are uniformly
distributed. We are looking for an iterative procedure that amplifies those pixel
that satisfy the appropriate distribution and subdues the others. We can only
give a short overview of the algorithm’s derivation here. For a detailed account
see [14].

First of all we need a measure for pixel similarity. This measure has to express
the likelihood that two pixels were created by the same element in a scene,
without taking into account any neighboring pixels. Such a measure therefore
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will be based on a pixel’s color, but may also include any other local property
like the local scale or local phase. We will denote this measure by s(xa,xp),
where x4 denotes a pixel position in image A and xp a pixel position in image
B.

Using s(x4,Xxp), we can evaluate for each pixel in image A its similarity to
the pixels within an area of image B where we expect the correct match to lie. We
will also call this a test patch. That is, each pixel in image A has associated with
it a probability distribution giving its matching likelihood to a set of pixels in
image B. Our goal is to minimize the entropy of these probability distributions,
i.e. to minimize the match uncertainty.

In order to do this, the pixel similarity measure alone is not enough. We
also have to take into account a structural constraint. We do this by assuming
that the local distribution of pixel matches takes on a particular form. This
becomes the prior distribution in our derivation, denoted by h(xa,X5,y4,¥B).
That is, given an assumed pixel match (x4,xp) and a particular neighbor y 4
of x4, h(xa,XB,y¥4,yYB) gives the a priori probability distribution for y 5 being
a correct match of y 4.

It can be shown that the probability of (x4,x5) and (ya,ys) being two
neighboring pixel matches is then given by

P(Xp=xp,Yp=yB|A, B, X4 =%x4,Y,=Yya4) 0

= 5(x4,XB)s(yA,yB)M(XA,XB, YA, YB)-

The probability measure on which we base our match decision is the following.
Assuming (x4,xp) are a correct match, then for a given neighbor y 4 of x4 we
say that the most likely match yp of y 4 is the one where the data best satisfies
the prior distribution of neighboring matches. That is we are looking for the
estimator yp given by

P(Xp,Yg ZYB|AanxA;YA)> @)

YB = aIgniax ( maxy P(Xg, Y5 = y|Xa, Y )

The effect of this is that if for a particular set (x4,Xxp,ya) the corresponding
¥ B maximizes the prior, then

P(XB = XBaYB = yB|A5B7XA = XA7YA = yA) = S(XA’XB)S(YAaYB)' (3)

That is, the match probability depends solely on the pixel similarities.

What we really need to estimate is the probability of (x4, xp) being a correct
match. However, for each neighbor y 4 of x4 we obtain a match probability es-
timate from P(Xp,Yp =y5|A, B,X4,Y 4). We therefore take the final match
probability estimate of a pixel pair (x4,Xp) to be the expectation value of the
set of probability estimates for all eight neighbors of x 4.

P(Xp=xp|A,B,X4=x,)

h(XA7 XB,YA, YB) (4)
maxy h(Xa,XB,ya,y)

= p s(xa,xp) % ZyA maxy, $(ya,yn)
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where p is a normalization constant and the sum over y4 goes over all eight
neighbors of x 4.

Evaluating the probability measure from equation (4) only once, will not give
us a final match result. In order to minimize the entropy of the match probability
distributions, we have to apply this measure iteratively. This distributes local
match information throughout the image. It also means that homogeneous areas
are matched according to the match constraints contained in their surroundings.
In [14] we have shown that such an iteration converges. Note that this iterative
procedure can be regarded as a recurrent neural network, whose equilibrium
state gives the match result.

Half-occluded pixels, i.e. pixels that appear in one image but not in the other,
have not been treated explicitly. However, by using a bidirectional matching
scheme, the matching process is stabilized in the presence of half-occluded pixels.

3 Experimental Results and Conclusions

Fig. 1. Left image Pentagon example with evaluated disparity map.

In order to run the algorithm we have to set five parameters: the number
of iterations to perform, the test patch size, the mean pixel displacement, the
standard deviation of the ordering constraint o;, and the standard deviation of
the pixel similarity function os. The mean displacement is basically an approx-
imate pixel match. This is easy to find for optical flow, since we assume that
corresponding pixel are almost at the same position. For stereo correspondence
this initial match will have to be set by some other means. Finding the best
number of iterations could be automated by stopping the algorithm once it has
converged. The test patch size has to be set such that the correct match is always
included. Here we have to make an assumption about how much we expect the
pixels to have moved. The parameters o, and o4 only change details of the final
match result. They do not have to be changed for different images.
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The Pentagon stereo pair was provided by CMU/VASC. Here we matched
an area of 500 x 500 pixels with a test area size of 21 x 1. Figure 1 shows the first
of the two Pentagon images together with the evaluated disparity map after 20
iterations. It can be seen that the algorithm works quite well for stereo matching
on rectified images.

We used the Yosemite sequence cre-
ated by Lynn Quann at SRI to test
the algorithm in an optic flow setting.
We matched the lower part of the first
two images of the sequence, since no
ground truth is available for the cloud
region. The image dimensions were 315 x
177 pixels, the test patch size was 7x 7
pixels. The parameters o and oj, had
the same values as in the Pentagon
example. We performed 20 iterations
which took approximately 150 seconds
on an AMD Athlon XP 1800+ (1.53
GHz) running Windows XP. The al-
gorithm runs about twice as fast if we do not perform bidirectional matching,
which stabilizes the algorithm in the presence of occlusion. Note that the imple-
mentation of the algorithm was experimental and not optimized for speed.

We evaluated the Euclidean dis-
tance between our match results and - 8
ground truth. Figure 3 shows the dis- ] -
tribution of the pixel match errors over q o
the image. White regions indicate that
the pixel match errors are below half a
pixel. The next darker level indicates
pixel errors of between half and one
pixel. The meaning of the other shades
of gray are given in the legend of fig- EE B = “:|
ure 3. Note that since we try to match >4 <4 <3 <2 <1 <05
pixel onto pixel, half a pixel error is
as good as we can statistically expect Fig. 3. Distribution of matching errors.
the result to be. Large areas have been
matched very well, whereas there are problems in the area of the mountain on
the left. Nevertheless, problematic areas are locally confined, which shows the
robustness of the algorithm. Recall that we only used two images to evaluate
the optic flow. By extending the algorithm to incorporate more images of a flow
sequence we hope to improve the matching quality further.

Fig. 2. Initial image of Yosemite se-
quence.

Although the algorithm has a simple mathematical structure, its computa-
tional complexity is high. Nevertheless, in principle the match likelihood estima-
tion of all pixels can be done in parallel. In fact, each element of the pixel match
probability distributions can be regarded as a single neuron which performs a
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simple calculation. Evaluating each neuron is all that has to be done per itera-
tion. We have implemented a similar structure on an FPGA which shows good
preliminary results.

Of course, there are still a number of problems that have to be addressed by

future research. Nevertheless, the results obtained with the algorithm show that
despite its simple structure, it is a good dense image point matcher. Note that a
program called Acre to test the algorithm on arbitrary images, is available from
the web page of the first author (www.perwass.de).
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Abstract. We propose an algorithm for the fast estimation of the shift
that maximizes correlation of panoramic images. By using Fourier trans-
formation we achieve sub-pixel accuracy. We use a coarse-to-fine ap-
proach exploiting the fact that in natural images low spatial frequencies
have higher spectral power. Starting from maximization of image cor-
relation, we derive an expression for the estimated shift, consisting of a
weighted sum of frequency-dependent shifts. After estimation of the opti-
mal shift, correlation has to be computed only once for each (panoramic)
image comparison. This reduces the complexity compared to the stan-
dard approach where all orientations have to be tested from O(N?) to
O(N) (N: number of pixels per row). We also introduce a scalar measure
of local image variation where we use the fast shift estimation to find the
optimal orientation of neighboring images.

1 Introduction

In recent years numerous articles have been published about the use of panoramic
images for robot localization, e.g. [1]. In a purely image-based approach where
no additional information about relative orientation is available, the correla-
tion of two panoramic images consisting of N pixels' (image vectors I,J, T :=
(In, I, ..., In_1)T) usually has to be performed by testing all possible orienta-
tions (see e.g. [2]), i.e.?

corr(I,J) := maxcorr(I, J, s) (1)

COI‘I‘(I, J, 8) = Z I[(z+s) mod N] . (2)

This is time consuming, if a large image data base has to be searched. Therefore
a method for the fast estimation of relative orientation is desirable.

With this paper we propose an algorithm for the fast sub-pixel estimation of
the shift that maximizes correlation using Fourier transformation of panoramic
images.

! Although we consider only one dimensional panoramic images in this paper the
extension to two dimensions is fairly straightforward.
% To simplify notation we assume that image vectors have zero mean and unit length.
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2 Fourier representation and shift estimation

The correlation of two images with complex Fourier coefficients {Cy, = |Ci|e** },
{Dy, = |Dy|e™*} can be rewritten using Co = Do = 0 and C_j, = C}; (since
pixels are real values),

corr(L,J,s) = Z I(+5) mod N1Ja 3)
T
N—1 N/2 N/2
— Z Z Cle—i%"l(w-i-s) Z Dke—i%"kw (4)
z=0 l:—N/2 k:—N/Q
N/2
=N 2Re[e!F*C; Dy (5)
k=1
N/2 o
= 2N; |Ck||Dk| cos(pr — Y — wis) , wg = Nk . (6)

Searching for s that maximizes the correlation, we compute the derivative:

0
0= %corr(I,J,s) = (7
0= Z |Ck||Dk| Sil’l((pk - ’lﬂk - wks)wk (8)
k

If I and J are approximately shifted versions of each other |Cy| = |Dy| holds
and there exists a shift s € [0, N[ and integers n;, which satisfy

Vi X o —wps + 2mng, Yk 9)
<— 0~ @p—Pr —wps+ 2mny (10)
o =YK +2mng N o — g
nsy = e V¥ ome N ok — Yk . 11
<= s s oL % ( o +nk) (11)

Hence, if ny, is unknown, only for £ = 1 we get an unique s; € [0, N[. Using (10)
we approximate

sin(py — Y — wgs) = sin(py — Y — wrs + 2ang) (12)
R o — Y — WiS + 270y, (13)
and obtain from (8),
0 = Z|Ck||Dk|wk(90k — g —wks+27mk) (14)
k

D — 2

s sng . 2klCklPrlwr(or ¢§+ ) (15)
2k |Crl | Dr|wi

(1) X [Ckl|Dilwisr _ Xg ansn
2k |Crl| Di|wg 2k

where we have defined ay, := |C||Dy|w3.
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Considering (11), (16) and the fact that the integers ny are unknown, we
propose the following coarse-to-fine algorithm for the estimation of shift s:

man= (2 mod N o =|G1|Dife? (17)
w1
For k=2,3,...,K (< N/2) do:
ng = rint[djk i wksk_l] eZ (18)
2w
— Y + 270
= LET ORI IDelw (19)
Wk
_ Zle aps; (Zf;ll Qp)5p—1 + apsy
Sk = % - k—1 ’ (20)
pIRT: 2 ata

where ’rint[ |’ means "round to the nearest integer”.
Using the estimated shift s*** := 5x mod N, the correlation according to (6) can
be computed.

The algorithm reduces the complexity from O(N2) to O(N). Because of (18)
the correct estimation of 5 is crucial for the coarse-to-fine procedure. Although
occurring rarely (since natural images usually have high spectral power in low
frequencies), small and hence noisy values of |C;| and |D;| are therefore critical.
In this case (a; small) we compute a second estimation of s starting with 5] =
(31+N/2) mod N. The shift with the larger correlation is then assumed to be the
correct estimation. (If successive oy, [ = 1,2,..., are small, even more possible
estimations of s will have to be considered, but this case never occurred for the
data base used in Sect. 3). However single small values of a, ¥ > 1 are not
critical since 5j, is calculated as a weighted sum.

Computation of Fourier coefficients can be done during the exploration/image
acquisition phase to speed up shift estimation and image correlation. The num-
ber K of Fourier coefficients that have to be used for the calculation depend on
the required accuracy and the frequency distribution of the noise.

3 Comparison to ”standard correlation”, equation (1)

Panoramic images were recorded during a full rotation of a Khepera robot and
correlated with the image taken at 0° orientation. Rotation angles were measured
using the robot’s odometry. Panoramic vision is achieved by a CCD-camera
mounted on top of the Khepera and directed vertically towards a conic mirror, as
described in [2]. Panoramic 1D-images consisting of N = 72 pixels, each of them
representing a 5° region (vertically) around the horizon, were extracted from the
camera images. The Khepera did the full rotation in steps of approximately 0.5°
until image similarity reaches a maximum. To correct small odometric errors,
the measured values were thereafter scaled to give the full range of 360°. The
drift during rotation was within the accuracy of the tracking system (=~ 2mm).

Due to an occlusion range of 3 pixels (= 15°) caused by the cable for video
transmission to the host computer, images taken at different rotation angles do
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Fig. 1. a: Estimation of rotation angle using the phase-based calculation (filled circles)
with 15 Fourier coefficients compared to standard correlation (rectangles). The straight
continous line shows the corrected angle measured by odometry ¢°%° (see text), dashed
lines represent ¢°° +2°. Only the range [85°, 110°] is shown where the largest error of
approximately 2° occurs. b: Maximum (dashed curve) and mean (continuous curve) of
the estimation error of the rotation angle, i.e. [¢°%° —$°*|, in dependence of the number
of Fourier coefficients used for the calculation (horizontal lines show the corresponding
errors using standard correlation).

not overlap completely (pixel values in the occluded range were linearly interpo-
lated from the neighboring pixel values). Hence small differences of the Fourier
amplitudes and phases occur and lead to errors in the estimated rotation angle.

While standard correlation allows calculation of the rotation angle only in
steps of 5°, the proposed algorithm achieves sub-pixel estimations (Fig. 1a). As
can be seen in Fig. 1 b, the use of only four coefficients results in a smaller orien-

tation error (mean = 0.45°, max = 2.73°) compared to the standard correlation
(mean = 1.30°, max =~ 3.21°).

4 Calculation of local image variation and comparison to
”zero phase representation”

Since the algorithm is intended to be used for image-based localization, we in-
vestigate the performance in the vicinity of places where images were recorded.
We introduce a (scalar) measure of local image variation,

i (PR () - (G 20)’ - v

( ag(x) ) 2 Bg(x) Bg(x)

A e g xr Y

9(x) := D1(x) 910x)  (91(x) )2 ’ (22)
dx Oy oy

where x = (z,y) € R? is a parameterization of the image manifold I(z,y). § is
known as metric tensor in differential geometry. A surface element in the image
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space corresponding to a small area D C R? is given as

S(D) := //D liv(z,y) dedy =~ liv(xg) //D dzdy = liv(xg)D (23)

5(D)

= liv(xs) ~ D

(24)

where xg is the centroid of D. Three image vectors at neighboring points I(x;),
I(xs), I(x3) define a triangle in image space,

1
Sa = §|AI12||4113|| sin / (AT, Alg)| (25)

1
= 5\/A1f2m§3 — (AL ALg)? , ALy, = 1I(xa) —I(x1), a=2,3 . (26)
The corresponding triangle in R? is

1 .
Dp = §|Ax12||AX13|| sin /(Axy3, Axy3))| @0

1
= 5\/AX%2AX%3 — (Ax124%313)2 , Ax1, =X, —x1,a=2,3 . (28)

Hence we can approximate

) Sa ALZ, ALZ, — (AL5 ALj3)?
liv(xg) 8 — = , 29
( S) _DA \/AX%ZAX%3 - (AxlgAx13)2 ( )
1
Xg = §(X1 + Xo + X3) - (30)

We evaluated a data base consisting of 1250 panoramic images, which were au-
tomatically recorded by a small Khepera robot (width ~ 5cm, height ~ 13 cm)
inside a toy house arena of approximate size 140cm x 120cm. Recording posi-
tions were approximately on a rectangular 44 x 36 grid with cell size 2.5 x 2.5 cm?.
Minimum distances of recording positions to the arena walls were =~ 15 cm, min-
imum distances to toy houses were =~ 5cm. The accuracy of the tracking system
used for the estimation of the robot’s pose is & 2mm (position) and 1.5° (orien-
tation). We calculated the average power spectrum |P(f)|? of the images in the
data base as described in Chap. 2 of [3]. The resulting exponent of —1.84 +0.24,
i.e. |[P(f)|? o< 1/f184 is in the range reported by other studies (summarized in
[3]) and is in agreement with the empirical finding that in most natural images
low frequencies are dominant.

Using three image vectors at points of an approximately rectangular triangle,
local image variation was calculated as follows: After choosing one reference im-
age I, images I and I3 were rotated by shifts which maximize corr(I;,I,) and
corr(Ii,I3) using (20) for the shift estimations and inverse Fourier transforma-
tion. Then liv and xg according to (29) and (30) were calculated. Each grid cell
consisting of four recording positions was divided into two triangles resulting in
approx. 3000 liv-values for the whole image data base.
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Fig. 2. a: Local image variation calculated using the image data base and (20) with 25
Fourier coefficients to optimize orientation of images. Bright areas have high liv-values
(see gray scale). Continuous dark regions depict toy houses where no images were
recorded. b: Calculated liv-values using the zero phase representation of panoramic
images. Since at several positions values are much higher than in a, relative orientation
differences of proximate images were not sufficiently reduced at these locations.

In Fig. 2a calculated liv-values in the toy house arena are shown as gray
values. As expected, high values occur at positions near objects (toy houses)
with texture of high contrast. We expect that locations with high liv-values
allow better localization than places with low values, i.e. liv-value can be used
as a local heuristic measure where snapshots should be taken in order to achieve
efficient image-based localization. This will be investigated in future work.

In [4] the zero phase representation for panoramic images was suggested yield-
ing orientation-independent representations: Panoramic images are rotated in
order to obtain phase ¢ = 0 for the first Fourier coefficient. To perform image-
based localization, image correlation has to be computed only once (in the re-
sulting orientation) since images at proximate positions are expected to receive
approximately the same orientation. However, as can be seen in Fig. 2b, at sev-
eral locations in the toy house arena, the use of only one Fourier phase is not
enough to reduce the image shift of neighboring images sufficiently, resulting in
significantly higher liv-values compared to Fig. 2a. At these places image-based
localization using the zero phase representation is likely to fail.
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Abstract. The primate posterior parietal cortex (PPC) is involved in the
multisensory processing of spatial information. Damage to this part of the
cerebrum leads to marked, and often long lasting, disturbances in spatial
perception and visualy guided action. Much has been learned about the
underlying cortical mechanism subserving spatially oriented behavior in the last
twenty years, due in large part to the development of awake primate behavioral
physiology, to detailed investigations of behavioral deficits following brain
damage in humans and to functional imaging of normal human volunteers. This
review aims at describing some of the underlying neuronal circuits involved in
spatial processing as has been revealed by single cell recordings in awake
monkeys and fMRI studies in healthy human subjects. Both approaches, used in
paralel, have led to an improved understanding of the basic principles of the
processing of spatial information in the primate brain.

1 Introduction

The primate PPC is related to the processing of spatial and motion information [1]. In
humans, damage to this where or how pathway, in particular in the right hemisphere,
leads to behavioral deficits often referred to as extinction and neglect [2]. While
extinction describes the inability to perceive a contralateral stimulus that is presented
simultaneously with an ipsilateral one, neglect refers to the inability of perceiving
(objects in) the contralateral space in general. Two specific functional aspects of
neglect (and/or extinction) are essential for the description of this behavioral deficit
and might be crucia for the understanding of how normal posterior parietal cortex
operates. Firstly, these patients sometimes look at points in space contralateral to their
lesion site although they do not perceive what is there (see e.g. [3]). Accordingly,
some of these spatial locations that are not perceived, are located ipsilaterally with
respect to the fovea but contralaterally with respect to the head or the body. This
implies that the observed behavioral deficit occurs not in an eye- but rather in a head-
or body-centered frame of reference. Secondly, extinction and neglect can occur
across different sensory modalities, i.e. they are polymodal [4].
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Lesions of posterior parietal and frontal cortex lead to comparable behavioral
deficits in humans and non-human primates. It therefore appears appropriate to (i)
consider the macagque monkey as an animal model for the better understanding of the
normally working posterior parietal cortex and (ii) test for functional equivalencies
between humans and macaques concerning specific cortical regions which have been
described in detail for the macaque.

2 Polymodal motion responsesin macaque PPC

Recent neurophysiological studies in macaque monkeys reveadled a number of
functionally distinct subdivisions along and within the intraparietal sulcus (IPS). One
of these areas is the ventral intraparietal area (VIP) located in the fundus of the IPS.
Based on anatomical data, area VIP was originally defined as the MT projection zone
in the intraparietal sulcus (IPS) [5]. This anatomical result suggested that neurons in
area VIP might be responsive for the direction and speed of moving visual stimuli,
and in general might encode self-motion information.
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Fig. 1. Response of a neuron from area VIP to a visual stimulus moving on acircular pathway.
Response is shown as histogram in (A) and as polar plot (B). This neuron clearly prefers
stimulus motion right- and downward.

Recent studies confirmed that V1P neurons respond selectively to basic optic flow
pattern like frontoparallel motion, or forward or backward motion [6,7]. An example
for responsiveness to frontoparallel motion is shown in Figure 1. Both panels show
the response of a VIP neuron to movement on a circular pathway. Data are shown as
response histogram (A) and in a polar plot (B). It is obvious that this neuron responds
best to stimulus motion down and to the right. Figure 2 shows the response of a cell
preferring visually simulated forward over backward motion. Responses are shown
for an expansion stimulus simulating forward motion (A) and a contraction stimulus
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simulating backward motion (B). A total of 70% of the cells in area VIP responds
selectively to frontoparallel motion and/or forward or backward motion. Interestingly,
preference for forward or backward motion cannot be predicted by knowledge of the
location of a neuron’s visual receptive field and its preference for frontoparallel
motion. It therefore appears that the responsiveness for forward or backward motion
is an inherent response property of cellsinareaVIP.
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Fig. 2. Response to visualy simulated forward and backward motion. The two histograms
show the response of a neuron from area VIP to an expansion stimulus simulating forward
motion (A) and a contraction stimulus simulating backward motion (B). Vertica lines within
the panels indicate the onset and offset of motion. Response differences were statistically
significant at p<0.001.

Like visual information, somatosensory signals can be used to encode motion
information. Many neurons in area VIP respond also to tactile stimulation [8,9]. Most
VIP cells that have a somatosensory receptive field (RF) show a positive response to
passive superficial stimulation of restricted portions of the head, with the upper and
lower face areas being represented equally often. Tactile and visual RFs are organized
in an orderly manner with tactile RFs showing a systematic relation to the main axes
of the visua field. Critically, the matched tactile and visual RFs often demonstrate co-
aligned direction selectivity.

Another source of mation information may result from vestibular stimulation, i.e.
rotational and/or tranglational self-motion. Accordingly, neurons in area VIP were
tested for their responses to vestibular stimulation. About one third of the neurons
respond with direction selective discharges during whole-body sinusoidal horizontal
rotational movement [10]. All neurons with rotational vestibular responses also show
directionally selective visua responses. Interestingly, preferred directions for visual
and for rotational vestibular stimulation are co-directional, i.e. non-synergistic, or
non-complementary.

These response characteristics led us to hypothesize that area VIP might be
involved in the encoding of visual motion in near extrapersonal space. We thus tested
neurons for their sensitivity to horizontal disparity. Random dot patterns moving
along a circular pathway were presented at one of seven disparities, ranging from -3°
(near) to 3° (far) disparity. These disparity values correspond to stimuli located
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between 27cm (-3°) and 223cm (3°) in front of the monkey. An example for the
responses of a cell with a maximum discharge for the nearest stimulus is shown in
Figure 3A. The population histogram on the right (B) indicates that this response
characteristic was quite common in area VIP and significantly different from a
uniform distribution (chi*test: p<0.001): 70% of the neurons had their response
maximum for stimuli in near space while only 21% of the neurons preferred stimuli
presented in far space. The remaining cells had their response maximum within the
plane of fixation. Our data therefore supply evidence for the proposed role of area
VIP for the encoding of motion in near extra- personal space.
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Fig. 3. Disparity selectivity in area VIP. Panel (A) shows the response of a single neuron for
visual stimuli presented at different (virtual) depths. Bars indicate the mean response (+ sd) for
a random dot pattern moving into the cell’s preferred direction. Response is strongest for the
nearest stimulus (p<0.001) presented at -3° disparity. Panel (B) indicates that this preference
for near stimuli was acommon response behavior for the population of cells (n=90) tested.

Sensory signals arising from different modalities are encoded in different frames of
reference. While vestibular signals and tactile information (arising from stimulation of
RFs on the head) are encoded in craniocentric coordinates, visual information is
initially encoded retinocentrically. This led to the question, whether information from
different sensory modalities might be encoded in a common, probably craniocentric
reference frame. Accordingly, area VIP was tested for the existence of head-centered
cells by measuring the location of visual RFs for different fixation locations [11]. A
wide range of RF types was found. Some neurons had an RF that moved rigidly with
the eyes, while other neurons encoded the same location in space irrespective of eye
position. Such cells code visual information in a head-centered frame of reference.
Interestingly enough, many cells had intermediate reference frames: they
compensated only in part for the underlying gaze shift. While it was initially unclear
whether these intermediate encoding cells represented an incomplete computational
step from an eye-centered to a head-centered representation, there is now evidence
from computational studies that these intermediate types arise naturaly in neural
networks involved in polymodal space representation [12].

suouinau jo uoipiodold
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3 Polymodal motion responsesin human PPC

Fig. 4. Locdization of area VIP in the macaque (A) and the human (B) posterior parietal
cortex. The left panel (A) shows an anatomical MRI from one of the monkeys involved in the
experiments. The right panel (B) shows a superposition of an anatomical MRI from the group
of subjects (n=8) involved in the study and the region within the PPC activated by polymodal
(visual, tactile, auditory) motion signals.

From the aforementioned, it becomes obvious that the question needed to be
explored, whether or not in humans an equivalent area to macaque area VIP exists.
Accordingly, the test for the existence of ‘human area VIP' was based on one of its
most prominent response features in the macaque, i.e. sensory responses to polymodal
motion stimuli. In this functional MRI study, subjects experienced a visua (large
random dot pattern), tactile (air flow) or auditory (binaural beats) motion stimulus or
a stationary control. Significant cortical activation (p<0.05, corrected) was observed
for each individual stimulus condition. Conjunction analysis revealed cortical
structures activated by motion in all three modalities, i.e. vision, touch, and audition.
Bilateral significant activation was found in three circumscribed cortical regions, one
of which was located in the PPC. By superimposing the functional images on the
average anatomical brain originating from the group of subjects (Figure 4) it was
possible to identify the activated region as lying in the depth of the IPS [13]. Based on
these functional and anatomical characteristics it was suggested to consider this area
to be the functional equivalent of macague area VIP.

4 Conclusion

Complementary studies of macaque single cell recordings and fMRI in humans
helped to elucidate the functional role of the PPC in polymodal spatial perception and
motion encoding. In addition, the reviewed findings relate to neuropsychological
deficits observed in patients with (most often right) posterior parietal lobe injury: The
most prominent functional features of macaque area VIP are (i) responses to
polymodal stimuli predominantly in near extrapersonal space, and (ii) the encoding of
sensory information from different modalities in a head- or body-centered frame of
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reference [11]. It is exactly this related type of attentive behavioral sensorimotor
deficit, which in patients most often results from lesions centered on the (right) PPC.
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Abstract. To investigate whether eye movements and arm movements share
motor control processes or are programmed separately we analysed the
characteristics of multisensory, visual-auditory integration in eye and arm
movements using a focussed attention paradigm. The effects of spatio-temporal
visual-auditory stimulus relationship, found in a first experiment, contradict the
notion of common control processes. In contrast, no evidence for separate
movement programming was found in a second experiment with variation of
auditory stimulus intensity. These conflicting results indicate that brain
structures in charge of hand movement control may have the capability of a
higher spatial resolution for auditory stimuli. A third experiment gives an
indication of the origin of the higher spatial resolution and supports the notion
of a common visual-auditory representation as a basis for eye and arm
movement control.

1 Introduction

The question of whether saccadic eye movements and goal directed arm movements
share common processing stages or are programmed separately is still under debate.
Recent physiological findings have provided new evidence for a combined
representation of eye and arm movements in several brain areas [1,2].

Three experiments are presented which investigate visually guided eye and arm
movements under visual-auditory stimulation. We employed a focussed attention
paradigm where subjects are asked to respond to the visual target stimulus and to
ignore an accessory auditory stimulus. However, although the auditory stimulus is to
be ignored it has specific effects on the performance of movements [3,4]. These
effects change with the variation of temporal and spatial relationship between visual
and auditory stimulus. Given that eye and arm movements share processes based on
the same multimodal representation of sensory stimuli, the effects of the auditory
stimulus in dependence of spatiotemporal stimulus arrangement should be the same
for both movements.

The neutral basis for this is that both multimodal, visual-auditory neurons as well
as arm-movement-related neurons were found in certain brain structures, e.g. the
superior colliculus [5].
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2  General Methods

2.3 Participants

Ten paid volunteers with normal or corrected to normal visual acuity took part in the
experiment. Participants reported to have no hearing problems of any kind. All
participants were naive towards the purpose of the study.

2.2 Apparatus and Stimuli

Experiments 1 and 2 were performed in a virtual auditory environment, whereas we
used a free-field setup with loudspeakers for Experiment 3.

Participants were seated in a dark sound proof room with the head supported by a
table-mounted chin rest. Unless arm movements were executed both forearms were
resting on the table.

Auditory stimuli. White noise signals (band-passed 0.2 to 20 kHz, 500 ms) were
used as stimuli in all experiments. For virtual acoustics these signals were convolved
with the head related transfer function of a dummy head and played back via a high
precision sound card on headphones. Noise signals for free-field stimulation,
generated by a TDT System (Tucker Davis Technologies), were displayed by two
loudspeakers placed at the subject’s eye level.

Visual stimuli. In Experiments 1 and 2, white dots (diameter 0.1°) presented on a
black monitor screen (37”) were used as central fixation point and peripheral visual
target stimuli. In Experiment 3, two red light emitting diodes attached to the
loudspeakers served as visual stimuli; a third, central LED as fixation point.

The respective spatio-temporal stimulus relationships, stimulus onset asynchronies
(SOAs) and intensities are given in sections 3 to 5.

Data recording. Eye movements were measured with an infrared light reflecting
system (IRIS, Skalar Medicals) providing an analog signal of horizontal eye position
and velocity. Data were recorded with a sampling rate of 1 kHz. In Experiment 1 and
2 a joystick placed midline in front of the participant was used to measure goal
directed arm movements. In the third experiment a photoelectric switch was used to
collect reaction time data of the arm movements and a magnetic position tracker
(Polhemus Frastrack) to register movement trajectories.

2.3 Procedure

Each trial started with the presentation of the fixation point for a random time
interval of between 800 and 2000 ms. The visual stimuli were presented to the left or
right in pseudorandom order after extinction of the fixation point for 500 ms, either
alone or with an auditory stimulus. The spatial distance between visual and auditory
stimulus and SOA varied pseudorandomly from trial to trial. Participants were
instructed to fixate properly and to place their right hand in a central position. As soon
as the visual target appeared, a saccade and/or a goal directed arm movement had to
be made.
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3  Experiment 1

The first experiment investigates whether the effects of spatiotemporal, visual-
auditory relationship are the same for eye and arm movements.

3.1 Methods

Visual targets (19 cd/m*) were presented at eccentricities of 15° or 25° to the left or to
the right of a fixation point. Accessory auditory stimuli (76 dB) were presented
straight ahead or 15° or 30° to the left or to the right; either 30 ms prior to the visual
stimulus, simultaneously, or 60 or 120 ms after the onset of the visual stimulus.

3.2 Results

Eye Movements Arm Movements
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Fig. 1. Example of mean latencies to bimodal targets for different spatio-temporal stimulus
conditions. The x-axis indicates the temporal arrangement (SOA), the z-axis refers to the spatial
arrangement, i.e. relative position of the auditory stimulus with respect to the visual stimulus, il.
= ipsilateral, cl. = contralateral. Mean unimodal reaction times are indicated by arrows.

However, the effect of the auditory signal was stronger for hand movement latencies
than for eye movement latencies. This holds true for the latency reduction resulting
from the presence of the auditory accessory and for the effects of spatiotemporal
stimulus arrangement (Fig.1). Statistical analysis (ANOVA) revealed a significant
interaction between type of movement (eye or arm) and effect of temporal resp.
spatial stimulus arrangement. Moreover we observed a markedly higher number of
directional errors in hand movements compared with eye movements - even if both
movements had been performed simultaneously.
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3.3 Discussion

The effect of SOA on reaction times may be resulting from unspecific warning effects
elicited by the auditory signal. However, the dependency on spatial stimulus
configuration shows that (a) general arousal or warning effect alone cannot account
for the RT changes and that (b) visual and auditory information converges at some
point of processing. Since these effects occur within eye and arm movements we may
assume that visual-auditory integration follows the same rules in eye as in arm
movement control.

On the other hand, our results suggest a stronger influence of the auditory stimulus
on manual latencies. The stronger effect of SOA is easily explained by the fact that
motor execution and muscle control are more complex in arm movements than in eye
movements and thus may benefit more strongly from warning or arousal mechanisms.
The assumption of a common control process is not violated. In contrast, the stronger
effect of the spatial stimulus arrangement and the higher error rate in arm movements
contradicts the hypothesis that eye and arm motor commands access the same
multimodal representation of the environment.

4 Experiment 2

To corroborate the finding of Experiment 1 we varied the intensity of the accessory
auditory stimulus. The hypothesis was that, due to the stronger dependence of arm
movements on the auditory stimulus, the effect of intensity variations should be
stronger for arm than for eye movements.

4.1 Methods

Possible positions for both stimuli were 25° to the left and to the right from the
fixation point and, additionally, straight ahead for the auditory stimulus. Visual target
and auditory signal were always presented simultaneously.

Visual stimulus intensity was 11 cd/m* Auditory intensities were determined
individually for each subject in an intensity matching task. Three intensity levels were
used: the intensity determined in the matching task and two additional intensities of 6
dB above and 6 dB below the determined intensity.

4.2 Results

As in the first experiment the spatial variation in the stimulus arrangement led to
stronger effects on manual latencies compared with saccadic latencies. However, the
latencies for both types of movement decreased with increasing auditory intensity in
an almost identical manner. There was no evidence of a stronger effect of the auditory
intensity on arm movements.

The comparison of eye movements with and without concomitant arm movements
indicates an effect of the arm movements on visual-auditory integration in saccades.
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A test designed to verify integration processes (horse race inequality test [6]) provides
less evidence for multisensory integration in accompanied compared with
unaccompanied saccades. Although a negative outcome of the test does not mean that
no integration takes place, this finding would deserve further investigation.

4.3 Discussion

The lack of a stronger influence of auditory intensity on arm compared to eye
movements contradicts the idea that, generally, the auditory stimulus has larger
effects on arm movements compared to eye movements. Rather the result suggests
that a higher spatial resolution for auditory stimuli in arm movement control evokes
the differences found in Experiment 1. This raises the question what the origin of this
higher resolution might be.

S5 Experiment 3

A higher spatial resolution in arm movement control may be evoked by different
representations of the visual-auditory environment for eye and arm movements or by
the fact that arm movement latencies are approximately 100 ms longer than saccadic
latencies. Although most of this latency difference is attributed to (peripheral) motor
processes, it might provide additional processing time to improve auditory resolution.
To investigate this hypothesis we varied SOAs over a wide range.

5.1 Methods

Visual and auditory stimuli were presented under free-field conditions either spatially
coincident 25° to the left or right of the fixation point or in different hemispheres.
Seven SOAs between —50ms (auditory first) and 250ms separated by 50ms were used.
Auditory stimulus intensity was 65 dB SPL.

5.2 Results

For small SOAs the same spatiotemporal effects on eye and arm movement latencies
were found as in Experiment 1. However, the spatial as well as the temporal effects
decay for larger SOAs. In eye movements unaccompanied by arm movements the
decay occurs at approximately 50 ms shorter SOAs compared to arm movements
executed without eye movements. For conjoined eye and arm movements this
difference is less clear.

Saccades are altered by the concomitant execution of an arm movement. Saccades
are larger and in some subjects faster when accompanied by an arm movement
compared with unaccompanied saccades. Amplitude, peak velocity and main
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sequence (peak velocity with respect to saccadic amplitude) differ significantly
between eye movements with and without concomitant arm movements [cf. 7].

5.2 Discussion

Similar effects of spatiotemporal stimulus arrangement on latencies of conjoined eye
and arm movements are within expectation. The interdependence of the movements -
reflected for example in changes in latencies and the main sequence data - may be the
basis of this resemblance. However, the high degree of correspondence in
unaccompanied eye and arm movements when corrected for the 50 ms difference in
SOAs is remarkable. This may indicate, that both movements are based on the same
representation of visual-auditory stimuli. Arm movement control processes might
access the spatial representation approximately 50 ms later than systems controlling
saccadic eye movements. During this additional processing time the spatial
representation may have changed. E.g. the detection of auditory stimulus position
which is based on the comparison of the input signals from the left and the right ear
may be refined.

6 Conclusion

Our results corroborate the notion of a common control process in saccades and
goal directed arm movements. Latency data suggest that both movements rely on the
same visual-auditory representation which they access at different points in time.
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Abstract Cue integration from multiple cameras is an important aspect
for machine vision systems operating in complex, natural environments.
One successful approach for self-organized cue integration is Democratic
Integration. The hallmark of Democratic Integration is that different cues
can autonomously determine whether and in how far they are useful for
the current task, giving the system flexibilty to engage in different tasks
and robustness in the face of sudden failures of cues. In this paper we
embed Democratic Integration in a probabilistic framework and extend
it hierachically in order to model adaptive cue integration for the general
case of n calibrated cameras. Our experiments show that the method is
capable of robust cue integration and adaptation during object tracking
using three cameras placed arbitrarily in the scene.

1 Introduction

It is an unsolved problem in computer vision how sensor data selection and fusion
should be done in the case that multiple cameras and multiple cues from each of
the cameras are available. Such problems arise for example in surveillance tasks,
where different sensors (e.g. infrared and daylight cameras) are placed at different
positions in the environment and information from these sensors needs to be
combined dependent on the environmental conditions (day/night, rain/sunshine,
etc.). Also, the estimated position of the tracked object in the scene will have an
influence on the contribution, each sensor can make. Of particular importance for
real world applications in this respect is also, that individual sensors or cues may
sometimes (unexpectedly) fail due to, e.g., limited view, occlusions, or hardware
problems, or other reasons, and that the system must be robust with respect to
such disturbances.

The main contribution of this work is a robust cue integration and adap-
tation mechanism for object tracking using multiple cameras. The basis of our
approach is the Democratic Integration mechanism [3]. It is briefly summarized
in the next section. Democratic Integration has originally been applied to fuse
multiple cues arising from a single camera. We extend this approach towards hier-
archically fusing cues originating from multiple calibrated cameras. Our goals are
to demonstrate that cues from multiple cameras can be fused in a self-organized
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manner, such that the contribution of each of the cameras is dependent on the es-
timated reliability of that camera, and that such a system is robust with respect
to unexpected failure of individual cues or entire cameras.

2 Democratic Integration

The idea behind Democratic Integration is to integrate different perceptual cues
in a self-organized manner [3]. Adaptation of the cues is driven by the agreement
or compatibility between the different cues and sensors in the system. This idea
was first studied in a face tracking system [3]. The system employed a stationary
camera monitoring a room. Five simple cues analyzed the camera images. Each
cue computes a 2-dim. saliency map registered to the camera image, in which
high values inidicate a high confidence of the cue that there is a face at that
location. The different cues are integrated or fused by computing a result saliency
map which is a weighted average of the individual saliency maps. Importantly,
the weights are time dependent and are constantly adpated in a self-organized
fashion. To this end, an agreement or quality function is defined, that compares
a cue’s saliency map to the result saliency map. A cue whose saliency map is very
similar to the result saliency map currently has a high quality. The important
step now is to change the cue weights based on these qualities. A cue whose
quality becomes very small, indicating disagreement of its saliency map to the
result saliency map, will reduce its weight to no longer disrupt the overall system.
Conversely, a cue that has recently been in very good agreement with the result
will increase its weight. In addition, each cue can adapt internal parameters in
order to better match its saliency map to the result saliency map. This allows
the system to recalibrate cues and to use cues for a particular task that have no
a priori information about the task. These cues are bootstrapped by other cues
and simply adjust their internal parameters to match the result.

3 Probabilistic Fusion with Multiple Cameras

In Democratic Integration one of the key concepts is the result saliency map into
which all different cues are fused to produce the final result for tracking with
one camera. The main idea in our approach is, that for fusing the information
gathered by multiple, calibrated cameras, the local and result saliency map is
substituted by a probability distribution over a state space. Note, that it is quite
intuitive to interpret the saliency map in 2-D — assuming proper normalization
— as a distribution over a 2-D state space. In this special case the 2-D state
consists of the position of the moving object on the image plane. In our approach
we deal with the general case of an n—dimensional state space and observations
that are made in several 2-D image planes.

The key idea of the hierarchical probabilistic approach can be summarized
in the following informal way:

Probabilistic modeling of the state A particle filter framework is used to
estimate the state of the object in 3-D (in the experiments the position,
velocity, and acceleration of a moving object). This gives us a distribution
over the state space represented by a particle set. A similar approach in the
case of cue integration for a single camera has been proposed in [2].
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Figure 1. Left: Experimental setup. Position of the three cameras and the rail track.
The images show the view on setup basic. Right: Images of setup complex, bucket
and yellow_bucket (taken from camera 1).

Local state estimation For each sensor local state estimation is done using
the original cue integration mechanism of Democratic Integration, i.e. a re-
sult saliency map is generated for each sensor from the different cues. This
saliency map is used as likelihood function for evaluating the likelihood of
each particle, that is drawn while applying the particle filter. In the case of
calibrated cameras each particle, which might be interpreted as a kind of
hypothesis for the 3—D state, is projected into the image plane and a score
can be computed for each hypothesis by the likelihood function (for a de-
tailed introduction on how particle filters are used the reader is referred to
[1]). The weights of the different local cues as well as the other parameters
of the cues are adjusted as described in [3] afterwards.

Global state estimation In an additional step a global state estimate is com-
puted in a similar manner as it is done for each of the local state estimates.
Each particle is projected onto the image planes of the different cameras.
The global score of a particle is now computed as a weighted average of
the local scores (already computed during the local state estimation). The
weights, assigned to each camera, are updated in an additional Democratic
Integration step. The main difference is, that now distributions represented
as particle sets have to be compared, to figure out the agreement of the
local estimates with the global ones. For comparison different metrics can
be used to measure correspondence (agreement) between two distributions.
One example is the Kulback-Leibler distance.

4 Experimental Setup and Results

During the experiments a moving toy train is tracked in 3-D using our proposed
framework. 3-D estimation is conducted with a particle filter. The state (i.e. each
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Figure 2. Estimated versus true motion path for setup complex_occl. Left: without
sensor weight update. Right: with sensor weight update.

particle) consists of the 3-D position, velocity and acceleration of the object. For
all experiments 2000 particle have been used.

In order to analyze our approach we choose the for the following basic ex-
perimental setup: the toy train is moving on a circular path in front of three
cameras. Camera 1 and Camera 2 are SONY DFW-VL500 firewire cameras
with a resolution of 320 x 240 at 25Hz. Camera 3 is a SONY digital camera with
a resolution of 720 x 576 at 30Hz. The positions of the rail track and the three
cameras are indicated in Figure 1. This setup is called basic in the following.
In the beginning the cameras have been calibrated using Tsai’s method [4].

Three different scenes are built up modifying the basic setup: a scene complex
that contains a lot of different objects inside and outside the rail track to induce
occlusions for one or the other camera and heterogeneous background. The scene
bucket consists of a big red bucket in the center of the circular track, while in
scene yellow_bucket a yellow bucket that has similar color as the moving toy
train is used. Two more setups are constructed: basic_occl and complex_occl.
In both cases the setups basic and complex are used, except for a sensor failure
that was simulated by totally covering one of the cameras for a couple of seconds.

For each of the six setups a 10s sequence has been recorded for each of the
three cameras simultaneously. The cameras have been manually synchronized
only once at the beginning of the recording and in the end to subsample the
30Hz sequence of the third camera to match the 25Hz sequences of the first two
cameras. The resolution of the images has been reduced to 80 x 60 for the first
two cameras and to 75 x 60 for the third one. Additionally, the RGB images
have been transformed to HSV color space.

To evaluate the quality of tracking for the different setups the circular rail
track was reconstruced in 3-D using the calibration information of the cameras.
As quality measure the mean euclidian distance between the estimated position
of the toy train during tracking and the reconstruced circle in 3-D is used.
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Figure 3. Cameras’ weights for scenes complex_occl (left) and bucket (right)

For tracking the moving object, each camera uses the cues motion, prediction,
contrast and color (for the computation and the parameters of these cues see
[3]). Each experiment starts using only color and motion cue, i.e. the weights for
color and motion cue are both set to 0.5. The other two cues are bootstrapped
by the former ones.

In the experiments we tested different settings for the time constants Ty
(for sensor weight adaptation) and 7, (for cue weight adaptation, see [3]). The
time constants directly control how fast the influence of a sensor or a cue is
changed. Since the different scenes differ in the demands on the adaptation, a
compromise has been chosen between fast adaptation but not over-reacting on
sensor noise or processing errors. Due to lack of space we only present results
for 74 = 7. = 10000msec. Smaller values tend to improve the results for the
sequences complex and complex_occl while at the same time the quality for
basic and bucket is slighly reduced. For the setup complex_occl the advantage
of the sensor weight adaptation can be best shown. Without sensor weight update
tracking of the 3-D position breaks down during the simulated failure of sensor
1. With our proposed method (Figure 2, right) the system keeps track of the
moving object with high accuracy. In Figure 3, left, the weights for cameras 1-3
are plotted over time. Evaluating the weights of the sensor over time, we can
observe that the influence of each sensor is changed due to the visibility condition
of the object (a periodic up and down of the weights can be observed). During
failure of camera 1 the weight of this camera is decreased, as expected. A similar
plot for scene bucket is shown in Figure 3, right, that again shows the periodic
increase and decrease of the cameras’ influence due to the visibility situation in
the scene.

In Table 1 the estimation error is summarized for the different setups, Demo-
cratic Integration without and with sensor weight update as well as a result
achieved if no cue and sensor adaptation is applied. In the latter case a non—
adaptive particle filter approach is used to estimate the position in 3-D by
probabilistic fusion of all three cameras.
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no weight update|| weight update no DI
setup mean| std. dev. ||mean|std. dev.||mean]std. dev.
basic 24.6 14.4 22.3 | 13.0 39.1| 23.7
bucket 22.7 13.3 26.6 | 16.6 50.7 | 34.2
yellow_bucket|| 46.7 32.5 38.8 | 283 /1304 734
complex 33.2 204 375 | 270 53.0| 37.7
basic_occl 30.9 29.6 26.3 | 21.7 39.6 | 28.1
complex_occl || 52.5 56.5 325 | 20.6 59.3 | 48.5

[total [351] [306] [62.0] |

Table 1. Mean euclidean error and standard deviation in the 3—D estimation of the
moving toy train (in mm). Left column: without sensor weight update. Middle column:
with sensor weight update. Right column: non—-adaptive sensor data fusion using par-
ticle filters without adaptation of cues’ or sensors’ influence. The size of the toy train
is approx. 110 x 80 x 90mm at a distance of 1.5-2.0m from the cameras.

5 Conclusions

In this paper we have shown first, that the integration of cues from multiple
cameras can be done very elegantly in a probabilistic framework using particle
filters, and second, that adaptation in Democratic Integration can not only be
performed locally in each sensor but also globally giving more influence to more
reliable sensors at the current situation. The circumstances in our experiments
(i.e. weak synchronisation of the cameras, different types of cameras, different
and low resolution of the images) prove that our approach is robust and also
capable for handling systematic differences in the reliablity of the sensors, as
well as unexpected temporary failure of one or the other sensor3. The particle
filter allows for handling multi-modal distributions over the state space, i.e.
dealing with multiple hypotheses and objects in the scene.
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Abstract. Service robots intended to interact with people must be able
to localize and continuously track their users. A method is described
which integrates information from visual and sonar based tracking path-
ways while updating hypotheses about the position of the robot’s human
user. Each tracking method uses information from the other to generate
a more robust measure of the user’s position, and thus a more robust
behavior generation is achieved.

1 Introduction

A service robot, which is designed to serve people in special domains or to help
them in their everyday life, must be able to localize and continuously track
its users. If the user breaks the interaction off, there is no need for the robot
to continue to produce any outputs. Lacking these capability would result in
a robot, which is trying to contact arbitrary things or which is proceeding to
offer its services even when the user already left the operation area. The authors
consider the knowledge about the position of the user as fundamental for a smart
appearance of any service robot. On the other side, the price determines the
economical success of any service robot application, so it seems favorable to use
cheap hardware whenever possible, which has consequences on the complexity
of any people tracking algorithm.

Our experiments were carried out in a home store, where our service robot is
to operate as a mobile shopping assistant, guiding customers to desired products
in the store [1]. A major problem concerning people tracking in this environment
are the varying illumination conditions from natural to artificial lighting, which
imply a multimodal approach to the problem, not only relying on visual cues.

2 Tracking

Tracking of users can be realized by using different sensor systems. The distance
to an object can be measured by means of sonar or laser data, and there are
methods that extract hypotheses about the position of people in the robot’s
surroundings from laser data [6]. In contrast to laser scanners, the resolution and
accuracy of sonar sensors give only a vague hint about the nature of the object,
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and it seems that these methods can not be assigned to cheap sensor systems
such as sonars. Moreover, the used features are not very person-specific and
could detect other objects as potential users as well. Cameras can be considered
as cheap sensors compared to laser scanners, and visual data can be used to solve
ambiguous situations and to discriminate people from arbitrary objects. Thus
the proposed tracking method consists of a sonar and a vision based tracking
module.

2.1 Sonar Based Tracking

The task of the sonar based tracking is to always keep contact to the user by
moving the robot according to its mode of operation and the position of the user.
Our experiments were carried out on a B21 mobile robot (RWI IS Robotics)
equipped with two layers of sonar sensors with 24 sonars respectively. The raw
sensor data is noisy and depends on the orientation and the material of the
objects around the robot. Therefore the raw data is preprocessed as follows:

1. replacement of invalid measurements: distances larger than 22, 5m are con-
sidered as invalid and are replaced by the previous measurements

2. local spatial low pass filtering of adjacent measurements

. temporal low pass filtering of successive measurements

4. calculation of a weighting factor in each direction which is inversely propor-
tional to the measured distance Wé(«?mr —1—d%9u, /dmaz, Where A9 is
the preprocessed sonar measurement at position ¢ in the scan and d,qz is
the maximum distance (1,5m); for distances larger than d,,,. the weight is

set to 0

w

The position of the maximum in the resulting weighting vector corresponds
to the nearest object (see Figure 2e) and is used to generate an appropriate
behavior, depending on the robots mode of operation:

1. communication: orient the touch interface mounted on top of the robot to
the position of the maximum, thus allowing the user to make inputs

2. guide user: keep the distance to the user small and stay in front of him, while
driving towards a goal position in the market

3. follow user: keep distance to user small and try to stay behind him

The advantages of the sonar based tracking are its low computational costs
and thus its ability to continuously track the user and align the robot appropri-
ately. It generates an adequate behavior as long as the nearest object is really
the user, otherwise the robot reacts to any object in its surroundings and tries to
interact with it. This drawback can be encountered by integrating information
from a vision based tracking module, which is able to distinguish people from
any other objects in the area.
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2.2 Vision Based Tracking

The basis of the vision based tracking procedure is the condensation algorithm
[4]. The task of calculating the probability of the existence of a person for every
pixel and tracking the resulting density function is solved by an approximation
of the density function by a relatively small number of samples. The condensa-
tion algorithm operates on the panorama images from an omnidirectional color
camera and uses different feature extraction methods to calculate hypotheses
about humans faces and the upper part of the human body. Compared to a
panoramic image with 720 x 106 pixels calculating the feature extraction only
for 200 samples yields a reduction to merely 0.262%.

Skin Color A widely used method for finding faces in images is skin color
classification. Here the dichromatic r-g-color space (r = R/(R+ G + B), g =
G/(R+G+B)) is used, which is widely independent from variations in luminance.
The color model consists of a look up table with manually classified skin color
pixels in the r-g-color space [3]. To prevent the color model from getting holey
because of insufficient training data, there is a small Gaussian placed around
each skin color pixel. The skin color model is depicted in Figure 1. The color
detection can be calculated very fast but it is highly dependent on illumination
color and variations in hue and often fails in back light situations.

Head-Shoulder-Contour The second method uses a contour model which de-
scribes the mean head-shoulder-contour of a person [2]. The model A was derived
from a number of images containing frontally aligned persons. On the mean gray
level image, the local orientations were calculated with a structure tensor [5]. The
same tensor is used during head-shoulder-contour detection to calculate the gray
value orientation in a local surrounding around each sample, and the template
matching is carried out for every sample according to equation 1, where o is the
orientation in the image and A is the orientation in the contour model. Figure 1
depicts the head-shoulder-contour model A of size 20 x 20.

I-1 ~J—1 . .
20 20 3 [cos(2[ij —o(z — i,y — §)|) + 1] (1)
card(supp(A))
The head-shoulder-contour is computational more expensive and not as per-

son specific as the skin color detection, but it yields good results in back light
situations, where any other gray value or color based face detector fails.

thc (‘Ta y) =

Combination of the Vision Based Cues Although both cues are person-
specific, it can happen that they do not detect a user or give false alarms. There-
fore both cues are combined by a fuzzy min-max-operator (minmaz(a,b) =
~vymin(a,b) + (1 — v) max(a, b)), which can be configured between a pessimistic
and an optimistic fusion. Pessimistic (min, v = 1) means that an user which
was not detected by at least one cue is not accounted for at all, while using the
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Fig. 1. Models used for vision based tracking. Left: Color model in the dichromatic r-g-
color space. Right: Head-shoulder-contour model, local orientations are represented by
gray levels, where white and black pixels code horizontal, and gray pixels code vertical
edges respectively

max (y = 0) fusion results in a behavior, where all false positive matches from
one cue are considered valid. See Figure 2 for results of the single cues and their
combination.

3 Sensor Fusion

As mentioned before, vision based tracking shall now be used to prevent the sonar
based tracking from interacting with arbitrary non-human objects. On the other
hand, the vision based tracking can benefit from the sonar based method by
using it as third cue for calculating the sample weighting.

Support of Vision Based Tracking by Sonar Data Since the sonar scan
as well as the image constitute an 360° description of the robots surroundings,
it is possible to assign a scan measurement at position c in the scan to each
position « in the image. This way, the sonar vector can be used to modulate the
sample weighting in the condensation algorithm, equation 2 and 3. Thus only
those samples get a high weight, that are supported by the vision based cues
and, at the same time, lie in a direction with a short distance measured from
the sonar sensors. Samples that are only supported either by the vision or the
sonar based tracking eventually die out (Figure 3).

Wé'z)mple ((IZ) = minmax (Ws(llc)incolor (:B)’ W}(Lls)c(m)) Wﬁona’f‘(c) (2)
i Wé’gm le(w)
é’a)mple (w) = (3)

Zi Wé?mple (w)
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Fig. 2. Results of the single vision based tracking modules and the sonar based track-
ing: a) original panoramic image; b) skin color classification; c¢) head-shoulder-contour
detection; d) MinMaz-fusion (v = 0.7), note that at the position of the users head,
both cues give the largest contribution; e) weighting factors Wi, calculated from the
sonar scan

Support of Sonar Tracking by Vision Based Data Since only the sonar
based tracking is responsible for behavior generation, the case where vision based
data supports sonar tracking is more important. The camera image is divided
into columns corresponding to the single sonar measurements. In every column
¢, the sum of the sample weights is calculated, resulting in a vector with high
values on those positions where most likely the user is. For behavior generation,
the positions of the maxima in the sonar and vision based scan are compared.
If they are aligned, the motor commands are executed, otherwise all actions are
suppressed. Thus, other people can approach, without the robot turning away
from its current user.

4 Summary

The paper presents the integration of a sonar and a vision based user tracking
pathway into a robust tracking procedure, which was applied successfully on a
mobile service robot in a home store.
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Fig. 3. Comparison of pure vision based tracking (left) and vision based tracking with
sonar support (right). Every 10th image in the sequence is shown; the user moves
around the robot (sometimes the robot is turning to the user based on sonar tracking).
While at the left many samples get stuck on other objects, the tracking with sonar
support does not loose the user

5 Outlook

In our current work, we investigate possibilities of automatic camera color cal-
ibration to get the skin color classification independent from variations in illu-
mination color. In addition to that, we analyse the performance of other feature
extraction and face detection methods, such as cascade correlation neural net-
works for the vision based tracking pathway. Furthermore, a robotic face with
two cameras was designed, which is always oriented towards the currently tracked
person. High resolution images from these frontally alligned cameras can be used
to recognize a user who was lost from the omnidirectional view during tracking.
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Abstract. The time-window-of-integration model is a quantitative frame-
work for describing crossmodal effects in saccadic response time. It dis-
tinguishes a first stage of parallel peripheral processing followed by a
second stage of multimodal integration. The occurrence of crossmodal
effects (facilitation/inhibition) hinges upon the peripheral processes ter-
minating within a temporal window of integration. The window mecha-
nism is determined by unimodal stimulus properties like intensity, while
the size of the effect is modulated by crossmodal stimulus properties like
spatial configuration.

1 Multimodal Integration in Saccadic Responses

Saccades are fast, voluntary movements of the eyes to align the high-resolution
fovea with objects and events of interest. In a natural environment saccades are
part of a rapid goal-directed orienting response system to stimuli occurring in
the periphery. Stimuli are usually multimodal: in addition to visual and audi-
tory inputs, vestibular and somatosensory afferents have access to the saccade-
generating mechanism. Thus, the oculomotor system has become a prominent
site for the analysis of crossmodal integration.

For example, it has been found that saccadic reaction time to visual targets
(the time between the onset of the visual stimulus and the onset of the saccadic
eye movement) tends to be faster when auditory stimuli are presented in close
temporal or spatial proximity (see [1], [2], [3], [4]). Similar response enhancement
effects for saccades have been observed for combining visual and somatosensory
stimuli (cf. [5] for monkeys; [6] for humans).

These behavioral studies are in line with neurophysiological evidence for mul-
tisensory integration in the deep layers of the superior colliculus (DLSC) (see
[7], [8])- Multisensory neurons in DLSC of anaesthetized cats ([9]) and monkeys
([10]) showed an enhanced response to particular combinations of visual, audi-
tory, and tactile stimuli paralleling the spatial-temporal rules in the behavioral
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studies. Similar results for recordings from the awake behaving monkey have
recently been obtained ([11], [12]).

Here we present a stochastic model that establishes a formal framework in
which rules of crossmodal integration can be stated. Within that framework one
can specify how the integration mechanism depends on the uni- and multimodal
stimulus parameters and on specifics of the experimental paradigm. It allows
to make qualitative and quantitative predictions and should thereby ultimately
provide a link between the neural and the behavioral level of investigation.

2 The Time-Window-of-Integration (TWIN) Model

Since stimulation from different modalities like vision and touch cannot interact
(e.g., on the retina), the model claims the existence of a first stage of parallel
independent modality-specific activations in the afferent pathways. It refers to
a very early stage of processing where detection of the stimuli, but possibly no
"higher” processes like localization and identification, take place. This does not
preclude the possibility of interaction between modality-specific pathways, nor
between modality-specific and crossmodal areas, at a later stage of processing.
In fact, there is increasing evidence that crossmodal processing does not take
place entirely in feedforward convergent pathways but that it can also modulate
early cortical unisensory processing ([13]). Thus the entire processing time must
consist of at least two stages arranged in series. The second stage comprises
neural integration of the input and preparation of the ocular motor response.
True interaction, however, resulting in facilitation or inhibition of the response is
supposed to occur only if the peripheral processes of the first stage all terminate
within a given temporal ”window of integration”.

Even under invariant experimental conditions, saccadic responses typically
vary from one trial to the next due to an inherent variability of the underlying
neural processes in both ascending and descending pathways. This is taken into
account by assuming the duration of each of the stages to be a random variable.

2.1 Distribution-Free Model Properties and Predictions

According to the model, observed reaction time in the multimodal condition can
be written as a sum of two nonnegative random variables with finite first and
second moments:

RTmultimodal g Wl + W27 (1)

where W and W refer to first and second stage processing time, respectively?.
Let I denote the event that crossmodal interaction occurs, having probability
P[I]. Thus the saccadic response time (SRT) distribution is a binary mixture of
two distributions defined by conditioning on event I:

3 2 stands for ”equal-in-distribution”.
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P[RTmultimodal < t] = P[Wl + W2 < t}
P[I|P[Wy + Wy < t[I] + (1 — P[I))P[Wy + W < t|not-I].
(2)

While neither P[I] nor the two conditional distributions in Eq.(2) can be es-
timated directly from the data, mixture distributions have several distinctive
properties that lead to empirically testable predictions even if no specific distri-
bution assumptions are introduced (see [14]).

For the expected SRT in the multimodal condition then follows:

E[RTmultimodal] = E[Wl] + E[WQ]
— E[W1] + P[I|E[Wa|I] + (1 — P[I))E[Wa|not-I]
= E[Wy] + E[Wa|not-1] — PI|(E[Wa|not-1] — E[Wa]1]),

where E[W5|I] and E[W5|not-I] denote the expected second stage processing time
conditioned on interaction occurring (I) or not occurring (not-I), respectively.
Putting A = E[Ws|not-I] — E[W3]|I], this becomes

E[RTmuttimodat] = E[W1] + E[W| not-I] — P[I] A. (3)

The product P[I] A is a measure of the expected crossmodal interaction in sac-
cadic RT in the second stage, with positive A values corresponding to facilitation,
negative ones to inhibition.

In the unimodal conditions, no interaction is possible. Thus,

E[RT unimodat] = E[W1] + E[W2|not-I], (4)
and the amount of crossmodal interaction is
E[RTunimodal] - E[RTmultimodal} = P[I] A.

Several empirically testable predictions can now be formulated. First, the
amount of crossmodal interaction should depend on the stimulus onset asyn-
chrony (SOA) between the stimuli. For example, a stimulus with faster periph-
eral processing has to be delayed in such a way that the arrival times of both
stimuli have a higher probability of falling into the window of integration. In-
deed, the effect of crossmodal interaction tends to be most prominent when
there is some characteristic temporal asynchrony between the stimuli ([1],[2]).
Second, the probability of interaction, P[I], should depend on unimodal features
that affect the speed of processing in the first stage, like stimulus intensity or
eccentricity. For example, if a stimulus from one modality is very strong com-
pared to the other stimulus’ intensity, the chances that both peripheral processes
terminate within the time window are small (assuming simultaneous stimulus
presentations). The resulting low value of P[I] is in line with the empirical obser-
vation that a very strong target signal will effectively suppress any interaction
with other modalities. The principle of ”inverse effectiveness”, according to which
crossmodal facilitation is strongest when stimulus strengths are weak or close to
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threshold level ([9]), can be accommodated in the model by adjusting the width
of the time window: for low-level stimuli the window should become larger so as
to increase the likelihood of crossmodal integration. Third, the amount of cross-
modal interaction (A) and its direction (facilitation or inhibition) occurring in
the second stage depend on crossmodal features of the stimulus set, in particular
spatial disparity and laterality*. On the other hand, crossmodal features have
no influence on first stage processing time since the modalities are yet being
processed in separate pathways.

More specific predictions concerning the effects of varying stimulus intensity
are implied by the following rules governing the window-of-integration mecha-
nism. When the task is to orient toward the target modality stimulus ignoring
stimuli from other modalities (focused attention), the first stage duration is deter-
mined by the target peripheral process, but crossmodal integration is occurring
only if the non-target stimulus wins the race in the first stage, i.e., the window
of integration is opened only by activity triggered by the non-target stimulus.
Increasing the intensity of the target stimulus will thus increase its chances to
win the race decreasing the probability that the window of integration opens,
so that less crossmodal interaction should occur. This prediction is in line with
the observation that a very strong target signal will suppress any interaction
with other modalities. Increasing the intensity of the non-target stimulus, how-
ever, leads to the opposite prediction: the non-target stimulus will have a better
chance to win the race and to open the window of integration, hence predicting
more crossmodal interaction on average. On the other hand, when the task is to
orient toward the first stimulus detected no matter of which modality (redun-
dant target), the first stage duration is determined by the winner’s peripheral
processing time, and the window of integration is opened by whichever stimu-
lus wins the race. Here, the effect of stimulus intensity depends on additional
assumptions not outlined here.

2.2 TWIN Model with Exponential First Stage Distributions

The peripheral processes in the first stage are assumed to have stochastically
independent exponentially distributed durations. The exponential assumption is
motivated by mathematical simplicity and, together with a Gaussian distribution
assumption for second stage processing time, results in an Ex-Gaussian distribu-
tion from that has been demonstrated to be a reasonably adequate description
for many empirically observed reaction time data (cf. [15]). To illustrate the
derivation for the expected SRT, consider a focused attention experiment with
a visual target and an auditory non-target stimulus. The first stage duration is
determined by the target peripheral process of random duration V', say, yielding
E[W;] = E[V] = 1/Av (Av denotes the intensity parameter of the exponential
distribution of V). From the assumptions stated in the last section,

I={A+7<V<A+7+4+w} (5)

4 Laterality here means whether or not all stimuli appear in the same hemisphere.
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where A is the peripheral auditory latency and 7 and w denote SOA and window
width, resp. Straightforward calculation yields

A4

Pl = ——
1] Aa+ Ay

{exp[—AvT] — exp[-Av (T + w)]}, (6)

where A\ 4 refers to the auditory intensity parameter. It is obvious from Eq. (6)
that the probability of interaction increases both with A 4 and the window width
w, as it should. Expected saccadic reaction time then is

Aa

ERTmuimoa =1/Av +p— ——
[ ltimodal] [Av + Aa+ Ay

{exp[-Av7] — exp[-Av (T + w)]}

where y = E[W3|not-I], the mean duration of the second stage when no interac-
tion occurs.

The choice of the second stage distribution is irrelevant as long as only mean
latencies are considered. For predictions of the entire saccade latency distribution
it should be noted, however, that due to conditioning on the event of interaction
I the two stage durations W; and W5 are not stochastically independent. For
the model version considered in this section, it can be shown that they are
negatively dependent if A is positive: in any given trial, whenever the visual
peripheral process (V = W) is relatively slow, the auditory peripheral process
has a better chance of winning the race and opening the integration window,
thus increasing the likelihood of facilitation in the second stage, and vice versa.

3 Conclusion

The TWIN model has recently been shown to give an excellent description of
crossmodal effects on SRT in visual-auditory and visual-tactile focused attention
experiments ([1],[6]). Note, however, that it is not meant to mirror multisensory
processes at the level of an individual neuron. There are many different types of
multisensory convergence occurring in individual neurons (see [16]), and some
of their activities are consistent with the TWIN assumptions while others are
not. Note also that the two-stage assumption does not preclude the possibility of
interaction between modality-specific pathways, nor between modality-specific
and crossmodal areas, at a later stage. In future work, the second stage mecha-
nisms should be specified in more detail, in particular with respect to the spatial
stimulus configuration effects. There is a large data base on receptive field prop-
erties of multisensory neurons available now (cf. [17]), and connecting these with
behavioral data via an appropriate elaboration of the TWIN model should be a
challenging task.

Notes and Comments. This work was supported by DFG grants Di 506/7-2 and
SFB 517/C3 (Neurokognition).
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Abstract. School-childen were provided with contrdled prior knowledge
about eherwise unfamiliar 3Dobjects, tie efect of which on visual categor
learring andgenealisation for 3D obgctsfrom imageswas examned Thee
occurreda dewlopmental doule-dissociabn in thatat ag 8-9 yearsvisual
prior knowledg reinforced visual categoy learring morethan haptic prior
knowledge @, whereas age 13—14/ears andbeyond hagic prior knowledg
was much nore efective. Gereralisation performancereveakd tha objed re-
presentations werview-basedfor the youngest childen but multimodal for
adolescentsand adlts. It is suggestedhat haptic prio knowledge reinforces
visual olject recognition by facilitating the solution ofthe correspondere
problem for matchingnput datao interralised 3D olject represeations.

1 Introduction

For retieving the sptial stricture of 3D objects biological vision systens need taely
on addtional information not given in the static retial image. Ttus it is generally
assunad that inage data areeferenced to object representtions sbred in memory
and currentmodek of human dyject memory differ in their degreeof view-point in-
depadenceand view-point dependence View-pont indegpendence & claimed by the
recognition-by{3D) components mdel, anon-algorithnic account of howhe visual
input is relatd to the non-accidetal characterisationof object parts id their
relations [1]. On the other hand, the multiple-views typathesis hdds that a setof
objectviews is store in memory andthe object isrecogrised ly relating the input
view to the nearestview stored in ramory [2]. These pproachesfocus on the
variation of obsever pefformancewith varying views and ignore the fact that, due ©
object redundarties, view-point depandenceof peiformance canot be equatd with
that of representatiorf3]. They also gnore the neal for a matching process btween
mental representationsdinputimages [4].

We amed at contributing to these issuesby ushg an experimental paraligm
characteised byseveral featuresFirst, the effects of nput information and object
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representation were separated by providing humans with a controlled amount of prior
knowledge about otherwise unfamiliar objects and then submitting them to a fixed
procedure of visual category learning and generalisation [5]. Second, we explored
how object information relevant to visual object recognition can be created in human
memory with haptic and with visual input. Third, we investigated in a developmental
context how humans learn with a teacher (supervised learning) to achieve the
categorisation of 3D objects from 2D views [6]. Fourth, by using objects carefully
constructed to have view-dependent symmetries and ambiguities we have excluded
the possibility that recognition can be based solely on image matching (as in cross-
correlation between view-dependent objects in memory and images).

Fig. 1. The 3D objects used (left) and examples from the learning set of 2D views used for
category learning (right).

2 Method

The three learning objects each consisted of three spheres forming an isosceles
triangle and a fourth sphere placed upright above the centre of one of the base
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spheresObjects2 and 3 wee nirror symmeric to each dier (Fig. 1). Real object
modek were constructed of polystyrere bals, measung 6 cmin diameter. Virtual

object models were costructed anddispayedon a O2workstation(Silicon Graghics

Inc., USA). The leaning setof 22 object views sanpled the viewing sphere in 60°

steps, e test sebf 64 novel vievs in 30° stepsOn theconputer scree the objects
subended1.5° of visual argle ataviewing distanceof 1 m.

Learning units consisted of a laning phase ad a st phase. During learning
phases sbhjectssaw tte learing set three tims inrandan order paired with class
labels. Testphasescorsisted of classifyingthe learnng setonce (far details see ref.
6). For acquring prior object knowedge suljects vere assgned toeither a cortrol, a
visual, or a haptic group. Subjectsof contol groups receivé no pror knowledge
Subject of visual groups rotated the virtual objectmodek onthe computer screen via
the mouse.The bindfolded suljects of the haptic groups were ercouraged to freely
manipulatethe real objectodels.

Threegroups with a total of 45 school-children ard a @ntrol group of 15 adults
participated. Thirty cldrenwere inelenentary schod, grade 3 (8-9 yeas) ard grade
4 (910 years), fifteenin high-school, grade 8 (13-14 year9. The fifteenadults were
aged 20-45years. Tl ag graupswere equally distributed over the three caoditions
of prior knowledee.

3 Results

Fig. 2 shows that the type of prior had a distinct impact on visual category
learnng. At age 13-14 years children with visual prior knowledge were not
significantly better than chldren at ag 8-9 years.In the sane period therewas little
charge in leaning peformance br the control groups & well. By contrast the
children with haptic prior knowledge wereat age 1314 yearssignificantly better in
learning performance tha at age9-10 yeas and nuch better han at ge 8-9 yeas.
MANOVA tests on the maximum performance and lte averageperformance yielded
significant effectsof the factors ag andcondition, as well as signficant interaction
betwea these factors.

The generalisatin to novel obect views is shown in Fig. 3. Perfamance is
measuredn terms of signaldetcion d seaately for the “non-synmetric” object 1
andfor the “symmetric” object2 and3. In the latter case, d’-valseae mean valus
for objects 2 and 3. The children of the @ntrol groups $ow independenty of age no
generalisation alilities at all. The children in grades4 and 8 show a similaimprove-
ment in generalisaton due t visual and haptic prior knowledge. The generalisatin
performance d all age goups of schal-childrenis clearlyworsefor the synmetric
objects asconpared to the non-symnetric object. Tis difference in genealisation
performance sto some extent overcome bythe adults.

The complete lack of generalisation by the children of the cantrol groups suggests
that they sirply learned ® associatéheviews of the leaning set to object classes. By
contast the convergence of “visual’ and “haptic” generalisation performance br
symretric objectsat grales 4and 8,aswell as fornon-synmetric objectsat grale 8,
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indicaes he development of visuo-hatic object represetations with bakbncel
information input from the two nodalities. The factthat childrens' generalisation
performance for he mirror-image objets was generally worse than that for the non
symetric object siggests ttat learningrelational object rgpresatations posegreater
demands on cognitive developmert than leariing non-relational reresetatiors.
100

90

80

70

60

50 | | '

40 | l“ u : . cgntrol
1 visual

30 M haptic

grade 3 grade4 grade8 >20 yr

% correct responses

age group

Fig. 2. Effectsof prior knowledg onvisualcategory learring for 3D objects. Avaage (shaded
bars) andmaximum (white brs) classificationperfamance abieved duing the course of
learringin terms of pexcentcorred classificaions. Schobchildrenpreformedup to 15learning
units, adultslearnedto a criterionof 90% correct. Within eachage groupconditions of pior
knowledge wereontrds (light gray bars, left), visual (medium gray bya, centre), andéptic
(dark gay bars right). 5 subjectpercondition; errobarsS.E. (N=5)

4 Discussion

We havefound adissciation of the dfects of haptic and visual prior knowledge on
visual 3D objectategorisatin in the sésethat the effect of hagic prior knowledge
strongly increasedin late clildhood and addesceie, wlereas tle effect of visual
prior knowledge did not. Active heptic exgoration therefore provdes anindependert
component of hunan 3D object reognition thaf by definition, is not visual end view-
depadent We infer that humans ca constuct multimodal ohject memories from
directy aplying non-visual saurcesto visual input

With regard of the efect d prior knowledge, we nde that computer vision systens
geneally remgnise objects and their posein a scae byfinding valid correspndences
between feauresfrom animage ad thoseof stored object modek. Correpondences
aresaidto be valid if there exsts a tansformation d pose, scad, andlor shape, that
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maps nodel featureonto heir correpondng image feature§7]. They ae typically
solved via different typesof paallel/serial grgph matching algorithms. We propose
that, far human object recogition, prior knowledge facilitates tke search fovalid
correpondencedbetveea internalised ngresematiors andinput images. Ths may be
mediated by the geneation of neuronal dat strucures that constrain theeart for
valid correpondences via smilar classesof procedures dertified in the machine
visionliterature.

non-symmetric symmetric
control
3.0 30| m visual
I haptic
20 i 2.0
d |
1.0 1.0
| i M
0.0 ¥ i 0.0 i e ; i
grade3 graded4 grade8 =20 yr grade3 grade4 grade8 =20 yr
age group

Fig. 3. Genedlisation to nowl views of the three 3D objectsshown in Fig.1. Bias-free
measures of parmance intermsof d’ obtainedfrom signal detectiotheory. Two decisions
per subject antkst view.Subjectsaandconditions of pior knowledge ai Fig. 2

The corstruction of multimodal represetations of object recaynition under the
influence of hagic prior knowledge further raisesthe cuestion of whether they are
object-cettred or view-degndent. We ague that priorknowledge facilitates the
sdution of the correspndence problem for visual olject recogition indeperdently of
the stucture of indexing primitives per se. Indeed tecmical obgct recanition
paradgms vastly dffer in the canplexity of indexing primitives bua all requre the
solution of the mrregpondence problem. The cloice of indexing primitives, raging
from 2D points © 3D volumetric primitives, d@ends on the rature of the dat base
[8]. This suggests that in human object recogition the camplexity of indexing
primitives is also taskeapendent ard na afixed characteristic as . Howewer it is
implausble that prior knowledge from haptc exploraion shaild be encoded in terms
of image featwes. Thus we caclude that the indexing primitives d resuting
multimodal representations alsange n complexity sormewhere betwee 2D feaures
and 3D primitives.
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