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The search for coherence through dynamic

grouping and contextual modulation

William A. Phillips
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Cognitive neuroscience is dominated by evidence for semantic specialization.

Different regions and different cells within regions process information about

different things. We now need to understand how these diverse activities are co-

ordinated. Coordination is necessary to enhance activity relevant to the current

context, to combat noise, to make coherent choices, and to group activity into

coherent subsets. The concept of Coherent Infomax formalizes this view within

a theory of cortical computation. I will summarize evidence that coordinating

interactions are implemented by a distinct family of physiological mechanisms

that include synapses formed by NMDA receptors. Psychophysical studies of the

effects of synchronization on dynamic grouping, and of context on visual size per-

ception will be described. Evidence for the relevance of coordinating interactions

to cognitive style and to cognitive disorganization in psychosis will be outlined.





Figure-Ground Segmentation by Integration of

Multiple Cues
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Humans looking around in the world can, seemingly without effort, segment
out and distinguish different objects in the world. The corresponding capability
has largely eluded the efforts of researchers in computer vision. The problem
is of course not well-defined unless additional assumptions are made. If we ask
ourselves what objects we see around us we realize that such a question has little
meaning and is too imprecise to answer. We need at least a model of the visual
observer and the tasks this observer is engaged in to specify what these objects
could be. They are not given by the visual scene alone.

The processes of perceiving objects in the world and segmenting images of
them depend on each other and figure-ground segmentation is generally not
feasible solely bottom-up. Whatever the processes are they should be possible to
bootstrap in some way and a question is what such mechanisms could be. Work in
perceptual grouping and attention address some such aspects. Here we’ll discuss
the use of 3D cues for figure-ground separation. If something stands out in 3D,
then it forms a separate piece of materia and as such it is more than something
that just stands out visually as, say, a set of contours, surface markings or
colored patches. Such visual patterns may indicate objects or groups of objects
in a multitude of ways. Unless we know more about the scene it is difficult
to say if they define any relevant objects. On the other hand, even without
such knowledge, we can identify a 3D chunk as ”something”, which then can be
ascribed visually observable 3D properties, such as position, location and motion,
but also object intrinsic properties such as shape, color and maybe surface and
material characteristics.

One thing the 3D cues tell us is the geometric relation between the observer
and the object. The identity of a (not necessarily recognized or labeled) object
can also be maintained over time by the appearance of the object, i.e. properties
such as shape and color that can be obtained from the 2D images. This strongly
suggests that a system for robust figure-ground segmentation in a dynamically
changing world should rely on mutiple cues in 3D and 2D and that the 3D cues
play a specific role in the bootstrapping. This forms a main theme of the talk. In
it we will discuss some of the underlying issues and illustrate them with examples
from our own work.

We will discuss figure-ground segmentation based on stereo and motion cues
together with monocular cues from e.g. texture. We will also discuss the combina-
tion of purely monocular cues from motion, color and contrast. We will consider
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several different integration techniques. One is a probabilistic approach where the
likelihood of observing the data given a model of each layer is computed followed
by a classification of each pixel using Bayes’ rule. A second scheme is a voting
method, the key difference being that each cue makes an independent decision
regarding membership before these decisions are combined using a weghted sum.
The advantage of voting in data fusion is that measurements drawn from very
different spaces can easily be combined. With probabilistic methods more care
must be taken in designing the model of each so that the different cues combine
in the desired manner. However, in that also lies there strenght since it requires
an explicit design of the model and specification of what parameters are used
and what assumptions are made.

In the binocular case we show that even coarse estimates of relative depth
provide information that strongly facilitates the computation of motion and
through feedback also depth.

There are many algorithms available for computing the specific cues. Some of
these require iterative solutions and are therefore not always suited for use in a
full-fledged integrated system working in a real dynamic world, since they cause
serious delays. We will therefore go through a number of different algorithms from
a complexity and precision point of view and present results both on simulated
and real data.

A final aspect concerns how models for some cues can be learnt and subse-
quently be adpated online. For instance, this applies to the case when 3D cues
indicate an object for which we can learn some appearance properties, e.g. a color
model over time. We’ll show some results in this direction. One of the main mo-
tivations for this work is in fact to give support to high level visual processes,
such as recogntion and categorization in realistic and natural environments.
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Abstract. Measured optic flow fields are always somewhat erroneous
and/or ambiguous. First, we cannot compute the actual spatial or tem-
poral derivatives, but only their estimates, which are corrupted by image
noise. Second, optic flow is intrinsically an image-based measurement of
the relative motion between the observer and the environment, but we
are interested in estimating the actual motion field. However, real-world
motion field patterns contain intrinsic statistic properties that allow to
define Gestalts as groups of pixels sharing the same motion property. By
checking the presence of such Gestalts in optic flow fields we can make
their interpretation more confident. We propose an optimal recurrent
filter capable of evidencing motion Gestalts corresponding to 1st-order
spatial derivatives or elementary flow components (EFCs). A Gestalt
emerges from a noisy flow as a solution of an iterative process of spa-
tially interacting nodes that correlates the statistics of the visual context
with that of a structural model of the Gestalt.

1 Local motion Gestalts

Velocity gradients provide important cues about the 3-D layout of the visual
scene. Formally, they can be described as linear deformations by a 2×2 velocity
gradient tensor

T =

[

T11 T12

T21 T22

]

=

[

∂vx/∂x ∂vx/∂y
∂vy/∂x ∂vy/∂y

]

. (1)

Hence, if x = (x, y) is a point in a spatial image domain, the linear proper-
ties of a motion field v(x, y) = (vx, vy) around the point x0 = (x0, y0) can be
characterized by a Taylor expansion, truncated at the first order:

v = v̄ + T̄x (2)

where v̄ = v(x0, y0) = (v̄x, v̄y) and T̄ = T|x0
. By breaking down the tensor in

its dyadic components, the motion field can be locally described through 2-D
maps representing cardinal EFCs:

v = α
xv̄x + α

y v̄y + d
x
x

∂vx

∂x

∣

∣

∣

∣

x0

+ d
x
y

∂vx
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∣

∣
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∣

x0

+ d
y
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∂vy
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∣
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(3)
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Fig. 1. Basic gradient type Gestalts considered. In stretching-type components (a,c)
velocity varies along the direction of motion; in shearing-type components (b,d) velocity
gradient is oriented perpendicularly to the direction of motion. Non-opponent patterns
are obtained from the opponent ones by a linear combination of pure tranlations and
cardinal deformations: d

i
j + mα

i, where m is a proper positive scalar constant.

where α
x : (x, y) �→ (1, 0), α

y : (x, y) �→ (0, 1) are pure translations and
d

x
x : (x, y) �→ (x, 0), d

x
y : (x, y) �→ (y, 0), d

y
x : (x, y) �→ (0, x), d

y
y : (x, y) �→ (0, y)

represent cardinal deformations, basis of the linear deformation space.
It is worthy to note that the components of pure translations could be incor-

porated in the corresponding deformation components, thus obtaining general-
ized deformation components in which motion boundaries are shifted or totally
absent. Although this does not affect the significance of the Taylor expansion
in Eq. 3, the so-modified elementary components, present very different struc-
tural properties. Since a template-based approach cannot be used to extract
single components, but only to perform pattern matching operations, the lin-
ear decomposition of the motion field has significance only for the definition
of a proper representation space. Specific templates would be designed to opti-
mally sample that representation space. In this work, we consider two different
classes of deformation templates (opponent and non-opponent), each character-
ized by two gradient types (stretching and shearing), see Fig. 1. Due to their
ability to detect the presence and the orientation of velocity gradients and ki-
netic boundaries, such cardinal EFCs and proper combinations of them resemble
the characteristics of the cell in the Middle Temporal visual area (MT) [1] [2].
It is straightforward to derive that these MT-like components are well suited
to provide the building blocks for the more complex receptive field properties
encountered in the Medial Superior Temporal visual area (MST) [3] [4]:

v = α
xv̄x +α

y v̄y +
1

2
(dx

x +d
y
y)E +

1

2
(dx

x −d
y
x)ω +

1

2
(dx

x −d
y
y)S1 +

1

2
(dx

y +d
y
x)S2

where E = (T̄11 + T̄22)/2, ω = (T̄12 − T̄21)/2, S1 = (T̄11 − T̄22)/2, S2 =
(T̄12 + T̄21)/2 are the divergence, the curl and the two components of shear
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Fig. 2. (a) Two deformation subspaces obtained by the set of cardinal EFCs with
different values of the parameter m. The quadrants of each subspace characterize an
elementary deformation, as evidenced in (b) for expansion (E > 0), horizontal positive
shear (S1 > 0), oblique positive shear (S2), and counterclockwise rotation (ω > 0).

deformation, respectively (cf. [5]). These mixed EFCs constitute, together with
the pure translations, an equivalent representation basis for the linear properties
of the velocity field (see Fig. 2). Yet, they are rather complex since not only the
speed, but also the direction of feature motion varies as a function of spatial
position. Rigid body motion often generates simpler flow fields characterized by
unidirectional patterns, as the cardinal EFCs considered in this study.

2 The context sensitive filter

The problem of evidencing the presence of a certain complex feature in the optic
flow on the basis of both local and contextual information, can be posed as an
adaptive filtering problem (estimation), where local information act as the input
measurements and the context acts as the reference signal, e.g., representing
a specific motion Gestalt. In the following, we propose a solution in the form
of a generalized Kalman filter (KF) [6]. Due to its recurrent formulation, KF
appears particularly promising to design context-sensitive filters (CSFs) based
on recurrent cortical-like interconnection architectures.

Let us assume the optic flow ṽ(i, j) as the corrupted measure of the actual ve-
locity field v(i, j). The difference between these two variables can be represented
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as a constant noise term ε(i, j):

ṽ = v + ε . (4)

Due to the intrinsic noise of the nervous system, the neural representation of the
optic flow v(i, j)[k] can be expressed by a measurement equation:

v[k] = ṽ + n1[k] = v + ε + n1[k] (5)

where n1 represents the uncertainty associated with a neuron’s response. The
Gestalt is formalized through a process equation:

v[k] = Φv[k − 1] + n2[k − 1] + s (6)

with limk→∞ v[k] = v if n2 = 0. The state transition matrix Φ is de facto a
spatial interconnection matrix that implements a specific Gestalt rule (i.e., a
specific EFC); s is a constant driving input; n2 represents the process uncer-
tainty. The space spanned by the observations v[1], v[2],. . . , v[k − 1] is denoted
by Vk−1 and represents the internal noisy representation of the optic flow. We
assume that both n1 and n2 are independent, zero-mean and normally dis-
tributed: n1[k] = N(0,Λ1) and n2[k] = N(0,Λ2). The index k takes explicitly
into account the time necessary for spatial recurrence. More precisely, Φ models
space-invariant nearest-neighbor interactions within a finite region Ω in the (i, j)
plane that is bounded by a piece-wise smooth contour. Interactions occur, sep-
arately for each component of the velocity vectors (vx, vy), through anisotropic
interconnection schemes:

vx/y(i, j)[k] = w
x/y
N vx/y(i, j − 1)[k − 1] + w

x/y
S vx/y(i, j + 1)[k − 1] + sx/y(i, j)

+ w
x/y
W vx/y(i − 1, j)[k − 1] + w

x/y
E vx/y(i + 1, j)[k − 1] + n

x/y
1

(i, j)[k − 1]

where (sx, sy) is a steady additional control input, which models the bound-
ary conditions. The process equation has a structuring effect constrained by
the boundary conditions that yields to structural equilibrium configurations,
characterized by specific first-order EFCs. The resulting pattern depends on
the anisotropy of the interaction scheme and on the boundary conditions. By
example, considering, for the sake of simplicity, a rectangular domain Ω =
[−L, L] × [−L, L], the cardinal EFC d

x
x can be obtained through:

wx
N = wx

S = 0 wy
N = wy

S = 0
wx

W = wx
E = 0.5 wy

W = wy
E = 0

sx(i, j) =







−λ if i = −L
λ if i = L
0 otherwise

sy(i, j) = 0

where the boundary value λ controls the gradient slope. In a similar way we can
obtain the other components.

Given Eqs. (5) and (6), we may write the optimal filter for optic flow Gestalts.
The filter allows to detect, in noisy flows, intrinsic correlations, as those related
to EFCs, by checking, through spatial recurrent interactions, that the spatial
context of the observed velocities conform to the Gestalt rules, embedded in Φ.
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To understand how the CSF works, we define the a priori state estimate at step
k given knowledge of the process at step k − 1, v̂[k|Vk−1], and the a posteriori

state estimate at step k given the measurement at the step k, v̂[k|Vk]. The aim
of the CSF is to compute an a posteriori estimate by using an a priori estimate
and a weighted difference between the current and the predicted measurement:

v̂[k|Vk] = v̂[k|Vk−1] + G[k] (v[k] − v̂[k|Vk−1]) (7)

The difference term in Eq. (7) is the innovation α[k] that takes into account
the discrepancy between the current measurement v[k] and the predicted mea-
surement v̂[k|Vk−1]. The matrix G[k] is the Kalman gain that minimizes the a

posteriori error covariance:

K[k] = E
{

(v[k] − v̂[k|Vk])(v[k] − v̂[k|Vk])T
}

. (8)

Eqs. 7 and 8 represent the mean and covariance expressions of the CSF output.
The covariance matrix K[k] provides us only information about the proper-

ties of convergence of the KF and not whether it converges to the correct values.
Hence, we have to check the consistency between the innovation and the model
(i.e., between observed and predicted values) in statistical terms. A measure of
the reliability of the KF output is the Normalized Innovation Squared (NIS):

NISk = α
T [k] Σ

−1[k] α[k] (9)

where Σ is the covariance of the innovation. It is possible to exploit Eq. (9) to
detect if the current observations are an instance of the model embedded in the
KF [7].

3 Results

Fig. 3 shows the responses of the CSF in the deformation subspaces for two
different input flows. Twentyfour EFC models have been used to span the de-
formation subspaces shown in Fig. 2a. The grey level in the CSF output maps
represents the probability of a given Gestalt according to the NIS criterium:
lightest grey indicates the most problable Gestalt. Besides Gestalt detection,
context information reduces the uncertainty on the measured velocities, as evi-
denced, for the circled vectors, by the Gaussian densities, plotted over the space
of image velocity.

4 Conclusions

Given motion information represented by an optic flow field, we specified a CSF
to recognize if a group of velocity vectors belong to a specific pattern, on the
basis of their relationships in a spatial neighborhood. Casting the problem as a
KF, the detection occurs through a spatial recurrent filter that checks the con-
sistency between the spatial structural properties of the input flow field pattern
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Fig. 3. Example of Gestalt detection in noisy flows.

and a structural rule expressed by the process equation of the KF. The CSF be-
haves as a template model. Yet, its specificity lies in the fact that the template
character is not built by highly specific feed-forward connections, but emerges by
stereotyped recurrent interactions (cf. the process equation). Furthermore, the
approach can be straightforwardly extended to consider adaptive cross-modal
templates (e.g, motion and stereo). By proper specification of the matrix Φ, the
process equation can, indeed, potentially model any type of multimodal spatio-
temporal relationships (i.e., multimodal spatio-temporal context).
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1 Introduction

Fig. 1. The illusion of rel-
ative motion introduced
by Pinna and Brelstaff [1]

It remains an open question how different corti-
cal areas interact to accomplish the robust analysis
of moving visual patterns. In order to gain insights
of the neural mechanisms underlying the cortical
processing of large-field motion patterns, we inves-
tigate a relative motion illusion presented by Pinna
and Brelstaff [1]. The stimulus pattern consists of
circularly arranged tiles each bounded by light and
dark lines (Fig.1, left). A forward and backward
moving human observer induces a strong illusory
motion of clockwise and counter-clockwise rotation
of the inner and outer ring while fixating the center
of the circular arrangements of tiles. The contrast
arrangement along the boundary of individual tiles

as well as between the tiles and the peripheral location of the items is important
to generate the illusion. We claim that an investigation of the input-output rela-
tion between stimulus and (illusory) percept reveals key principles of the neural
processing of flow patterns in the dorsal pathway.

We developed a model of recurrent interaction of areas V1, MT, and MSTd
along the dorsal cortical pathway utilizing a space-variant mapping of flow pat-
terns [2]. The model predicts the perception of relative motion for the Pinna-
Brelstaff pattern and new variants of it. In this paper these predictions were
psychophysically investigated in order to assess the strength of relative motion
in a parametric fashion.

2 Model and computational results

Motion information is processed primarily along cortical pathways which involve
areas V1, V2, MT, and MSTd, respectively. Our model [2] is based on a space-
variant representation of V1 as proposed by Schwartz [3]. Motion information
is integrated along the V1-MT-MSTd feed-forward pathway utilizing direction
selective cells of increasing spatial size (1:11:30 ratio). Directional inhibition
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modeled at the stage of MT [4] explains why certain configurations of the input
pattern yield no illusory effect. Most important to our model is that salient
patterns are detected with less spatial accuracy in higher areas. The resulting
activities are fed back to disambiguate information at higher spatial resolution
provided in earlier areas. In the investigated motion illusion, modulatory MSTd-
MT feedback achieves necessary disambiguation of initial unspecific optic flow
estimates. This leads to segregated opponent motions along circular directions
when perceptual splitting occurs, while homogeneous motion fields are detected
when no splitting is observed. Some results of computational simulations are
sketched in Fig. 2. Concerning different contrast configurations of the original
stimulus, our model simulations are consistent with the findings of Pinna and
Brelstaff. The difference between input patterns with one ring and patterns
with two rings is that directional decomposition only occurs for illusory stimuli
consisting of two rings. This decomposition punctuates the rotational part of
illusory motion and enhances perceptual splitting of both rings. The existence
of a mechanism which segregates adjacent flow regions and disambiguates flow
estimations is stressed by the following experiments.

Fig. 2. Simulation results for different contrast configurations of the original stimulus.
The dots and lines encode activities of model MT cells sensitive to the indicated direc-
tion (lines) at the corresponding location (dots). The background represents a cutout of
the log-polar mapped input stimulus (circular directions are plotted along the abscissa,
radial directions along the ordinate). Model MT activities are the result of several it-
erations of feedback processing and therefore are already completely disambiguated.
Dark arrows indicate the mean directions of detected motion components, light arrows
the direction of true motion. (a-c): Stimulus configurations with one ring of tiles, il-
lusory patterns (a,b) and non-illusory pattern (c). (d-f): Stimulus configurations with
two rings of tiles: Note that directional decomposition (perceptual splitting) occurs for
the illusory patterns (d,e) and not for the non-illusory pattern (f).
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3 Psychophysical experiments and results

We developed an experimental setup to test variants of the Pinna-Brelstaff illu-
sion that were predicted by our model. This allows to quantify the relative speed
of various motion patterns in a parametric fashion. These results can be used
again to verify the model predictions by imposing the respective pattern to the
neural computational model.

General Stimuli Configuration: The stimuli consist of one or two rings
containing circularly arranged tiles of a certain type. Beside the original tiles we
investigated patterns composed of patches of oriented Gabor wavelets1, which al-
low to parameterize spatial frequencies and orientations of the stimulus. A novel
variation is the additive combination of two different Gabor patterns to induce
two different motion cues at the same location. The displays of looming ring
patterns are generated using real-time computer graphics techniques (OpenGL).
The speed v of true radial motion is held constant. All stimulus parameters like
speed or wavelengths are specified in pixel, one pixel corresponds approximately
to 0.026 degrees at a viewing distance of 60 cm.

Task/Procedure: In a nulling task an observer is asked to parametrize
real spiral motions to counteract the illusion perceived for the inner ring that is
induced by the looming pattern. In order to get accurate results in an acceptable
amount of time the Best PEST method [5] is applied to detect the threshold of
nulling the illusory effect. The rotational correction is applied anti-symmetrical
on both rings. This correction does not affect the inner and the outer ring equally:
some configurations exist for which the outer ring still induces an illusion of
relative motion after the rotational components of the inner ring have been
eliminated. The results however show that the amount of correction applied for
the inner ring correlates with the strength of the illusion reported by Pinna and
Brelstaff and the predictions of our model.

3.1 Experiment 1: contrast orientation of the original tiles

In the first experiment we acquire psychophysical data, which can directly be
compared to our computational results concerning different contrast configura-
tions of the original illusion presenting either both rings or only the inner ring.
Pinna and Brelstaff found that certain contrast configurations yield a stronger
illusory effect than others, but it remains unclear if this effect is influenced
by spatial interactions between both rings or not. In particular, we want to
know whether the illusory effect is influenced by directional repulsion caused
by a motion contrast between both rings. Stimuli are tested for three contrast
configurations as presented in [1]. We varied the shearing angle α of the tiles
(α ∈ {−40, 0, 40}, see Fig. 3) either with both rings or the inner ring only.

Results: The results illustrated in Fig. 3 (right) show the amount of rota-
tional correction for different stimulus parameters. The results for two rings are

1 Only recently we got notice that earlier this year Mike Morgan utilized a similar
variant of such stimulus for demonstration purposes.
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qualitatively consistent with the findings of Pinna and Brelstaff and with our
computational results (Fig. 3, left). No significant difference can be observed for
different numbers of rings. We conclude that for the investigated stimuli there is
no significant interaction between both rings that influences the strength of the
final percept. If the final perceived motion is interpreted as a population vector
represented by cells within a ring, the psychophysical findings for the single-ring
stimuli are also consistent with our model simulations. The observation reported
by Pinna and Brelstaff that apparent rotations of single-ring stimuli appear to
be much weaker compared to patterns with two rings could be explained by the
optical flow decomposition performed by our model. This decomposition stresses
the existence of illusory rotational motion components.

Fig. 3. Results for different contrast configurations with one and two rings of the origi-
nal stimulus tiles. Left: model predictions for the direction of the MT population vector.
(inner ring) Right: median plot of psychophysical data (Exp. 1, mean±min/max, N=8
trials). The illusory effect for the first two configurations (shear = −40o and 0o) is
significant stronger (**=p≤.01, U-Test) than for the third configuration (shear = 40o).

3.2 Experiment 2: oriented Gabor patches

In order to investigate the role of contrast orientation in more detail we propose a
stimulus setup using oriented Gabor patches. Gabor wavelets have the advantage
to induce a motion cue for a specific scale (λ) and direction (α, α = 0 means ra-
dial orientation). If the aperture problem would explain the illusion as proposed
by Pinna and Brelstaff, the strength of the stimulus should be proportional to
sin(α) cos(α) and therefore maximized for α = 45o with a local symmetry around
α = 45o. Effects of interaction between both rings are re-examined because di-
rectional repulsion or motion contrast enhancement may only occur for small
angular differences. Stimuli are tested for 8 contrast orientations (α ∈ {±67.5o,

±45o, ±22.5o, ±11.25o}) either using both rings or the inner ring only.
Results: Data shown in Fig. 4 (left) demonstrates that the responses are

not distributed symmetrical around α = 45o. Also stimuli with two rings show
enhanced illusory effects for small values of α compared to the single-ring stimuli.
Therefore some mechanism seems to generate a directional repulsion within an
area covering both rings as well as within the rings. We propose that the repulsion
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is initiated in MSTd and that modulatory feedback separates the model MT
responses to form the final percept. Due to increasing receptive field sizes and
therefore decreasing spatial accuracy, flow information of both rings at the stage
of MSTd is likely to be handled as motion transparency. An alternative to the
directional decomposition performed by our model MSTd would be a mechanism
of directional repulsion as proposed by Kim and Wilson for their model of motion
transparency [6].

3.3 Experiment 3: compound Gabor patches

Our model predics that the detection of the true radial flow might enhance the
repulsion of illusory flow components. To test if the illusion is enhanced by such
a directional interaction we generate stimulus tiles, which consist of compound
Gabor patches (additive combination of two Gabor wavelets) inducing flow in-
formation for spiral and radial directions (compound stimulus): A low-frequency
Gabor patch generates clockwise and counter-clockwise spiral motion cues for
the inner and outer ring, respectively (α1 = 45o, λ = 38). An overlaid Gabor
patch with higher frequency induces radial flow information (α2 = 0o). Differ-
ent wavelengths for the radial oriented Gabor are investigated: λ ∈ {12, 8, 4}.
We also tested a stimulus configuration with tiles containing a single Gabor
(α1 = 45o, λ = 38) without overlay (uniform stimulus).

Results: The results (Fig. 4, right) provide information of specific interac-
tions of cells tuned to different directions and different spatial frequencies. For
the compound stimulus with λ = 8 the enhancement of the effect compared to the
uniform stimulus is very significant. Also compound stimuli with lower frequen-
cies show an increased illusory effect. Only for the highest frequency (λ = 4) the
enhancement collapses. This might be caused by the fact that the visual system
is unable to detect such high frequencies in the periphery. These findings stress
the role of directional repulsion between different directions of motion induced
by patterns of different scales. Like in experiment 2 this effect can be explained
by a mechanism of directional repulsion. An alternative, but rather speculative,
interpretation is the following: the illusory percept for compound stimuli is the
result of mechanisms combining form cues with motion cues like those observed
for the barberpole illusion[7]. Most essential for this explanation is that the high-
frequency Gabor patch cannot be accurately located due to its eccentricity. The
radial wave fronts induced by this Gabor patch act as (static) circular bound-
aries. The perceived illusory rotation between these circular boundaries could
then be explained with mechanisms including form information from the form
pathway like those in the model of Viswanathan [7].

4 Summation and conclusion

Our neural computational model [2] provides evidence that feedback from the
higher-order motion area MST is essential for generating unambiguous patterns
of large-field motion. Our investigations also led to a novel interpretation of the
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(**=p≤.01, *=p≤.05, U-Test)

Fig. 4. Left (Exp. 2, mean±min/max, N=9 trials): Strength of the illusion for differ-
ent orientations (α) of Gabor patches. The stimuli consist of either one or two rings
of patches. For some configurations the amount of rotational correction is significant
higher for two rings. Most important is that the responses are not symetrically dis-
tributed around α = ±45o as predicted by the simple normal flow model[1]. Right
(Exp 3, mean±min/max, N=8 trials): Strength of the illusion for different configu-
rations of compound stimuli compared with an uniform stimulus configuration. To
generate compound stimuli a high frequency, radial oriented Gabor patch (λ = 4, 8, 12,
α = 0o) is added to a low frequency, diagonal oriented Gabor patch (λ = 38, α = 45o).
The uniform stimulus consists of the diagonal oriented Gabor patch without overlay.
For λ = 8 the illusory effect of compound stimuli is almost doubled compared to the
uniform stimulus and also significant stronger than all other configurations.

Pinna-Brelstaff illusion as one of motion transparency [4, 6] in which the same
mechanisms are involved to generate the observed perceptual segregations.

Our experimental investigations using the original stimulus tiles reproduce
the results obtained by Pinna and Brelstaff. With our nulling technique we now
quantified the strength of the illusion in relation to other variants of the input
pattern. Experiments concerning the role of the component spatial frequencies
and their orientations reveal evidence for specific interactions between cells tuned
to different motion directions and different spatial frequencies. In particular we
found that the investigated illusions cannot be ascribed solely to the aperture
effect and that additional mechanisms are needed like those presented in [2].
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Abstract. A novel algorithm for simultaneous estimation of many local and a
few global parameters in image sequences is presented. Usual parameter estimation
frameworks as e.g. the structure tensor method for extended optical flow [8] are de-
signed for local parameters only. There the estimation can be performed for every pixel
neighborhood separately. Global parameters effect a full coupling of the model equa-
tion matrix. The main idea in this paper is to split the model equation matrix into an
easily invertible local parameter part and a small global parameter part. We compare
our new approach to two common estimation methods. In a performance evaluation
of systematic errors and noise stability the superior behaviour of the new approach is
demonstrated.

Keywords: extended optical flow, least squares parameter estimation, large-scale

optimization, image sequences

1 Introduction

Combined motion and brightness change estimation in physically motivated
models proved to be successful in many applications (e.g.[15, 16, 10]). In well es-
tablished parameter estimation frameworks as e.g. the structure tensor method
(total least squares (TLS) approach) [9, 8] or its mixed ordinary least squares
(OLS) and TLS version [6] physical models with local parameters only can be
applied. These methods can be implemented efficiently in terms of RAM needed
and CPU time used as all estimations can be performed separately for each
pixel neighborhood. In other words, the model equation matrix is a block diag-
onal matrix with one block per pixel and we process one block after the other.
This is no longer true if global parameters have to be estimated as well. They
introduce full rows in the model matrix, thus coupling all blocks. In this paper
we present an OLS estimation method for simultaneous estimation of local and
global parameters. It has comparable complexity and memory requirements as
pure local methods.

The example model used here is designed for optical flow estimation where
the camera has an automatic gain control. This is the case for most consumer
camcorders and thus a quite interesting application.

Related work. Although there is a rich literature on optical flow estimation
techniques (see [12, 1] for current overviews), direct extensions have been studied
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to a much smaller extent. There are extensions towards affine motion estima-
tion [3, 4], flow in texture and depth maps [18], physically motivated brightness
changes [11] and robust estimations [6, 2]. Regularization schemes [19], special
filters [17, 14, 5] and coupled denoising methods [20] have been developed. But
to the best of our knowledge there is no extension using global parameters as
e.g. camera gain.

2 The Model

An automatic gain control changes gray values g(x, y, t) in space-time by

dg(x, y, t)

dt
= k(t)g(x, y, t)

where k(t) a spatially constant factor describing gain changes. For optical flow
estimation we get for each pixel one model equation

dg(x,y,t)
dt

= ∂g
∂x

dx
dt

+ ∂g
∂y

dy
dt

+ ∂g
∂t

= k(t)g(x, y, t)

⇔ gxux + gyuy + gt = kg

using the notation g∗ = ∂g
∂∗

and substituting u∗ = d∗
dt

. The local parameters are
the motion components ux and uy, the global parameter is the gain factor k.
Let us in the following only consider the central image of a temporal slice of the
sequence, and order the N = Ny × Nx pixels of the image in some arbitrary
way, numbered with an index i = 1, . . . , N , replacing the space coordinates.
Given the coefficients gi

x, gi
y, gi

t, and gi at each pixel (e.g. using the derivative
convolution kernels given in [17, 14, 5]), we want to determine an estimate for the
local parameters u1

x, u1
y, u2

x, u2
y, . . . , uN

x , uN
y and for the global parameter k, that is

best in a least squares sense. For this aim, we define a neighborhood Ωi (with nΩ

pixels) around each pixel i. Then we define a least squares term
∑

j∈Ωi
(gj

xui
x +

gj
yui

y + gj
t −kgj)2, which measures the misfit of estimated parameters and image

data in each neighborhood. The approach followed in this paper is to minimize
the sum of all misfits:

N
∑

i=1

∑

j∈Ωi

(gj
xui

x+ gj
yui

y+ gj
t − kgj)2 (1)

by varying the parameters ui
x, ui

y, i = 1, . . . , N , and k. If the global gain param-
eter k was not present (k = 0), the optimization could be carried out pixelwise
for i = 1, . . . , N , thus allowing for an efficient sequential processing over the
whole data set. The same applies for a local gain estimation, where k is replaced
by a local gain factor ki in each local misfit term. In our case, with a global

gain parameter k, a coupling between all terms is introduced. Thus, the above
optimization problem has to be treated as a large scale problem and can only be
solved for practical problems, if the problem structure is carefully exploited. In
this paper, we propose a numerical solution method which achieves this aim by
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making use of the so called Sherman-Morrison-Woodbury-Formula, which allows
to efficiently obtain the inverse of an easily invertible matrix when it is modified
by a low rank matrix.

3 The Novel Algorithm

The idea is as follows: defining the parameter vector x =
(u1

x, u1
y, u2

x, u2
y, . . . , uN

x , uN
y , k)T , x ∈ R

n, n = 2N + 1, the large scale op-
timization problem with objective (1) can be summarized in the form
minx∈Rn ‖Ax − b‖2

2 and the solution vector x̄ necessarily satisfies the normal

equation

AT Ax̄ = AT b, (2)

i.e., x̄ = (AT A)−1AT b, if AT A is invertible. The matrix A has the following
block structure

A =











B1 V1

B2 V2

. . .
...

BN VN











=
[

B V
]

(3)

with nΩ × Nlp-blocks Bi and nΩ × Ngp-blocks Vi. In the above application, we
have Nlp = 2 and Ngp = 1. The squared system matrix consequently has the
form

AT A =

[

BT B BT V
V T B V T V

]

.

Each of these matrix products can be calculated efficiently using convolutions
(compare [13, 15] for the TLS case). Finally, the squared matrix can be decom-
posed as

AT A = M + RSRT

with

M =

[

BT B 0
0 V T V

]

, R=

[

BT V 0
0 I

]

, S =

[

0 I

I 0

]

,

where M is block diagonal and R is a matrix of low rank, 2Ngp, so that the
Sherman-Morrison-Woodbury formula [7] can be used to efficiently compute the
inverse:

(AT A)−1 = M−1− M−1R(S−1+ RT M−1R)−1RT M−1.

In addition to the matrix blocks BT
i Bi and

∑N
i=1 V T

i Vi of M we therefore only
have to invert one further (2Ngp) × (2Ngp) matrix, (S−1 + RT M−1R), and all
remaining calculations for computation of

x̄ = (AT A)−1AT b =
(

I −M−1R(S−1+ RT M−1R)−1RT
)

M−1AT b

can be performed as matrix vector products. As the inversion of the matrix
blocks BT

i Bi is by far the most time consuming step in the computations of the
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algorithm, the computational burden is comparable to that of an OLS velocity
estimation without gain estimation. When local gains ki are estimated, this re-
sults in a completely decoupled problem, but with larger local matrix blocks,
so that the computational burden is considerably higher than for the proposed
approach.

4 Experimental Validation and Comparison with Existing

Methods

In order to quantify the accuracy and noise stability we measure the veloc-
ity of a translating “wave”-pattern with a global brightness change g(x, y, t) =
exp(kt) cos(2π(x − uxt)/λx) ∗ cos(2π(y − uyt)/λy) with varying wave lengths
λx, λy. The camera gain factor is here given by exp(kt), and k is constant in
time. To those sequences, normal distributed noise with a standard deviation up
to σ = 10% is added. For comparison, we calculated the velocities ux and uy

using three estimation models: the first does not estimate the gain (“no gain”,
k = 0), the second estimates local gain factors ki, i = 1, . . . , N (“local gain”),
and the third is our new algorithm estimating a spatially global gain k for each
picture (“global gain”). The first two algorithms use the well known OLS method
for local parameters (see e.g. [12]). Below some results of these tests are shown.

no gain local gain global gain

Fig. 1. Estimated flowfields for three different models.

The picture shows the estimated velocity vectors for the three estimation
methods, using a a simulation with 5 % gain and 5% noise. It can be seen that
the velocity estimates of the first model, which is not able to capture the gain,
are highly distorted. The velocity estimates of the global gain model show less
variation than the local gain model. This is due to the fact that the effects of
noise are better dampened out by inclusion of the knowledge that k is spatially
constant. The corresponding variances in ux and uz are shown in the second last
line of the table below, which also shows variances for some other gain and noise
scenarios.

As expected, all models capture well the scenario without gain and without
noise, whereas the no gain model has increasing difficulty with growing gains
in the data. Compared to the local gain model, the global gain model shows
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Fig. 2. Variances and relative estimation errors of the velocity estimates, tested for
different scenarios with varying gain k and noise level σ, using different models

Variances [10−4] Rel. est. errors [10−3]

k σ no local global no local global
[%] [%] gain gain gain gain gain gain

ux uy ux uy ux uy ux uy ux uy ux uy

0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 5 56 71 143 125 58 72 56 121 103 232 57 122
0 10 283 349 531 266 251 308 172 676 253 607 163 590

1 0 19 31 0 0 0 0 0 50 0 0 0 0
1 5 75 99 141 117 64 77 58 169 101 211 59 131
1 10 263 335 514 280 256 311 165 641 254 625 165 603

5 0 477 763 0 0 0 0 0 1205 0 0 0 0
5 5 483 742 148 119 56 71 57 1262 102 217 57 121
5 10 587 816 523 270 262 324 157 1553 249 604 167 634

comparable or lower variances. Similar observations hold for the following table,
where the mean relative errors in the velocity estimates (compared to the correct
values) are listed for the same set of scenarios.

Note that the computational load of the proposed algorithm for global gain
estimation is smaller than that of the OLS method for local gain estimation,
because far less free parameters have to be determined.

5 Summary and Outlook

We have introduced a novel algorithm for simultaneous estimation of many lo-
cal and a few global parameters in image sequences. A numerically efficient
algorithm to solve the arising large scale least squares optimization problems
is presented. The algorithm is based on the idea to split the model equation
matrix into an easily invertible local parameter part and a low rank part in-
troduced by the presence of global parameters. The inversion of the combined
system is efficiently performed by means of the so called Sherman-Morrison-
Woodbury-Formula. The resulting algorithm has comparable complexity and
memory requirements as a pure local method without estimation of the global
parameters.

The capacity of the new algorithm to cope with global gains is demonstrated
in a first series of numerical experiments. The resulting velocity estimates com-
pare well with those obtained by existing OLS methods with local gain estima-
tion, and are affected less by noise.

Further work will focus on extending the simultaneous local-global parameter
estimation towards TLS formulations, and on replacing the normal equation
approach (2) by a suitable, structure exploiting Q-R factorization of the system
matrix (3).



� � � ��� ����
�� ��� � �����

References

1. J.L. Barron, D.J. Fleet, and S.S. Beauchemin. Performance of optical flow tech-
niques. In IJCV, pages 43–77, 1994. 12(1).

2. M. Black, D. Fleet, and Y. Yacoob. Robustly estimating changes in image ap-
pearence. CVIU, 7(1):8–31, 2000.
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Abstract. In the present paper, we propose a neurally-inspired model of the 
primate motion processing hierarchy and describe its implementation as a 
computer simulation. The model aims to explain how a hierarchical 
feedforward network consisting of neurons in the cortical areas V1, MT, MST, 
and 7a of primates achieves the detection of different kinds of motion patterns. 
Moreover, the model includes a feedback gating network that implements a 
biologically plausible mechanism of visual attention. This mechanism is used 
for sequential localization and fine-grained inspection of every motion pattern 
detected in the visual scene. 

1 The Feedforward Mechanism of Motion Detection 

In the present paper, we propose a neurally-inspired model of the primate motion 
processing hierarchy and describe its implementation as a computer simulation. The 
model aims to explain how a hierarchical feed-forward network consisting of neurons 
in the cortical areas V1, MT, MST, and 7a of primates achieves the detection of 
different kinds of motion patterns. 

Cells in striate area V1 are well known to be tuned towards a particular local speed 
and direction of motion in at least three main speed ranges [1]. In the model, V1 
neurons estimate local speed and direction in five-frame, 256×256 pixel image 
sequences using spatiotemporal filters (e.g., [2]). Their direction selectivity is 
restricted to 12 distinct, Gaussian-shaped tuning curves. Each tuning curve has a 
standard deviation of 30º and represents the selectivity for one of 12 different 
directions spaced 30º apart (0º, 30º, …, 330º). V1 is represented by a 60×60 array of 
hypercolumns. The receptive fields (RFs) of V1 neurons are circular and 
homogeneously distributed across the visual field, with RFs of neighboring 
hypercolumns overlapping by 20%.  

In area MT a high proportion of cells are tuned towards a particular local speed 
and direction of movement, similar to direction and speed selective cells in V1 [3, 4]. 
A proportion of MT neurons are also selective for a particular angle between 
movement direction and spatial speed gradient [5]. Both types of neurons are 
represented in the MT layer of the model, which is a 30×30 array of hypercolumns. 
Each MT cell receives input from a 4×4 field of V1 neurons with the same direction 
and speed selectivity.  
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Neurons in area MST are tuned to complex motion patterns: expand or approach, 
shrink or recede, rotation, with RFs covering most of the visual field [6, 7]. Two types 
of neurons are modeled: one type selective for translation (as in V1) and another type 
selective for spiral motion (clockwise and counterclockwise rotation, expansion, 
contraction and combinations). MST is simulated as a 5×5 array of hypercolumns. 
Each MST cell receives input from a large group (covering 60% of the visual field) of 
MT neurons that respond to a particular motion/gradient angle. Any coherent 
motion/gradient angle indicates a particular type of spiral motion. 

Finally, area 7a seems to involve at least four different types of computations [8]. 
Here, neurons are selective for translation and spiral motion as in MST, but they have 
even larger RFs. They are also selective for rotation (regardless of direction) and 
radial motion (regardless of direction). In the simulation, area 7a is represented by a 
4×4 array of hypercolumns. Each 7a cell receives input from a 4×4 field of MST 
neurons that have the relevant tuning. Rotation cells and radial motion cells only 
receive input from MST neurons that respond to spiral motion involving any rotation 
or any radial motion, respectively. 

Fig. 1 shows the activation of neurons in the model as induced by a sample 
stimulus. Note that in the actual visualization different colors indicate the response to 
particular angles between motion and speed gradient in MT gradient neurons. In the 
present example, the gray levels indicate that the neurons selective for a 90º angle 
gave by far the strongest responses. A consistent 90º angle across all directions of 
motion signifies a pattern of clockwise rotation. Correspondingly, the maximum 
activation of the spiral neurons in areas MST and 7a corresponds to the clockwise 
rotation pattern (90º angle). Finally, area 7a also shows a substantial response to 
rotation in the medium-speed range, while there is no visible activation that would 
indicate radial motion. 

2 The Feedback Mechanism of Visual Attention 

Most of the computational models of primate motion perception that have been 
proposed concentrate on bottom-up processing and do not address attentional issues. 
However, there is evidence that the responses of neurons in areas MT and MST can 
be modulated by attention (Treue & Maunsell, 1996). Moreover, we claim that 
attention is necessary for a precise localization of motion patterns in image sequences. 
As a result of the model’s feedforward computations, the neural responses in the high-
level areas (MST and 7a) roughly indicate the kind of motion patterns presented as an 
input but do not localize the spatial position of the patterns. 

In order to create a comprehensive motion model that is in agreement with 
biological findings and is capable of localizing motion patterns, we added a 
mechanism of visual attention to it. We decided to use the biologically plausible 
Selective Tuning approach [9], requiring the introduction of a feedback gating 
network to the model. Each neuron in the original motion hierarchy received an 
assembly of gating units that control the bottom-up information flow to that neuron.  
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Fig. 1. The model’s response to a clockwise rotating stimulus (panel a). Brightness indicates 
activation in areas V1, MT, MST, and 7a (panels b to e). Arrows represent selectivity for 
direction of motion or the angle between motion and speed gradient, and the three concentric 
circles stand for the three speed selectivity ranges in the model. 
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The attentional processing works as follows: First, a “motion activity'' map with 
the same size as a 7a layer is constructed after the bottom-up processing. The value of 
a node in the activity map is a weighted sum of the activations of all 7a neurons at this 
position and it reflects the overall activation. Second, a WTA (Winner-Take-All) 
algorithm finds the globally most active location. Then at this location, two WTAs 
will compete among all the translational motion patterns and spiral motion patterns 
respectively and thus result in two winner neurons. A WTA runs among the winners’ 
gating units, whose activation pattern is initially  identical to the one in the winner 
neurons’ RFs. The resulting winners activate the connected neurons in lower layers, 
whereas the bottom-up information flow through the losing gating units is inhibited. 
This process continues until the bottom layer, and the recognized motions are 
localized in the input sequence. The gating network then inhibits the feed-forward 
processing of neighboring motion patterns so that no interfering information reaches 
the higher levels of the model. Loosely speaking, the model “focuses its attention“ on 
the winning motion pattern. Afterwards, a simple inhibition of return mechanism 
induces the model to switch attention to the second most active motion, and so on.  

In addition, the wirings between the neurons within the same layer and the 
direction-selective attribute of some of the neurons enable our model to do a 
simplified constant motion tracking. If a neuron sensitive to motion direction a is 
activated at time t, then it passes its activation to neighboring neurons in the direction 
a at time t+1. In this way, the model focuses on the relevant area without 
recomputation of the whole motion hierarchy under the assumption that the motions 
do not change with time. In addition to tracking motion, a simple method for 
detecting the start and stop of motion is included. We applied a DOG operator to the 
area MST to detect motion changes [10]. Fig. 2 presents a 3D visualization of the 
model receiving an image sequence that contains an approaching object and a 
counterclockwise rotating object. Both motion patterns are correctly detected and 
localized. 

3 Discussion and Conclusions 

Due to the incorporation of functionally diverse neurons in the motion hierarchy, the 
output of the present model encompasses a wide variety of selectivities at different 
resolutions. This enables the computer simulation of the model to detect and classify 
various motion patterns in artificial and natural image sequences showing one or more 
moving objects. Most other models of biological motion perception focus on a single 
cortical area. For instance, the models by Simoncelli and Heeger [11] and Beardsley 
and Vaina [12] are biologically adequate approaches that explain some specific 
functionality of MT and MST neurons, respectively, but do not include the 
embedding hierarchy in the motion pathway. On the other hand, there are hierarchical 
models for the detection of motion (e.g., [13, 14]), but unlike the present model they 
do not provide a biologically plausible replica of the motion processing hierarchy in 
primates. 

Another strength of our model is its mechanism of visual attention. To our 
knowledge, the only other motion model employing attention is the one by Grossberg, 
Mingolla, and Viswanathan [15], which is a motion integration and segmentation 
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model for motion capture. Their idea is that MST cells tuned to the winning direction 
have an excitatory influence on MT cells tuned to the same direction and 
nonspecifically inhibit all directionally tuned cells in MT. This kind of top-down 
influence from MST to MT has not been proved to exist yet. The current knowledge 
of effects of attention on single cell responses in area MT and MST suggests that cells 
in these areas have stronger responses when attention is directed into their RFs 
relative to when attention is directed outside the RF [16], which is compatible with 
our model. 
 
 

 
 
Fig. 2. Visualization of the attentional mechanism applied to an image sequence showing an 
approaching object and a counterclockwise rotating object at the same time. First, the model 
detects the approaching motion and attends to it (panel a); the localization of the approaching 
object can be seen most clearly from below the motion hierarchy (bright area in panel b). Then, 
input from the activated area is inhibited, and the model attends to the rotating motion (panels c 
and d). 
 
 

The model has been tested on a variety of artificial and real image sequences. 
Simple motion patterns such as rotation, expansion, translation or combined motions 
with two or three patterns can be correctly recognized, localized in the image 
sequences and attended serially. Simple dynamic motions such as motion start, 
motion stop and motion pattern changes have been correctly detected as well. We 
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conclude that by combining four stages of motion processing with an attentional 
mechanism, our approach yields a biologically plausible model of visual motion 
processing. No current motion processing system, whether biologically inspired or 
not, exhibits such labeling and spatial-localization of motion patterns in image 
sequences. 

The compatibility of our model with current neurophysiological findings and its 
incorporation of the diverse types of neurons found in the motion pathways provide it 
with predictive power for biological vision systems. Some of its predictions about 
activation patterns in V1, MT and MST are currently being tested in fMRI 
experiments on human subjects. Future work will address the perception of ego-
motion, including the use of the model for controlling autonomous robots. 
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Abstract. We presenta computationalframework that extendsclassicalimage
velocity estimationto include more generalparametersof dynamicbrightness
changes.The introducedmethodallows for an extraction of theseparameters,
ranging from modelsof linear illumination changesover diffusion and decay
constantsto expansionrates.We illustrate the benefitof suchan extensionon
a realimagesequencewith illumination changes.We alsointroducea new depth
estimationtechniquetermeddepthfrom diffusion andapply it to somereal ex-
amples.

1 Introduction

Classicalimagemotionanalysisrelies on theassumptionthatall intensitychangesare
dueto motion.This implies that the total derivative of the intensityg with respectto
time vanishes,which is thebrightness change constraint equation [Horn andSchunk,
1981]:

dg

dt
= gxu + gyv + gt = 0 . (1)

Herewedenotepartialderivativesusingsubscripts. Thisconceptis illustratedin Fig.1a
wherethe motion is along isobrightnesscontours.Clearly this assumptiondoesnot
hold in real world situationswherewe encounterchangesin imagebrightnessdueto
variationsin surfaceorientationor lighting conditions.An examplewheretheintensity
functionalsoundergoesadiffusionis shown in Fig.1b. Heretheisobrightnesslineswill
not correspondto themovementany more.Theresulting velocity field computedwith
andwithout incorporationof this additional brightnesschangefor an exampleimage
sequenceis shown in Fig. 1c-f. Interestinglyhumanshave little difficulty in perceiving
thecorrectmovementin this case.
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Fig. 1: Illustration of the brightnesschange equation:a with conservedbrightness,b with in-
tensitychangingdueto diffusion.c first andd last frameof a moving Gaussianbell undergoing
diffusion.e optical flow assumingconservedbrightnessand f estimatedvelocityusing the ex-
tendedmodel.

To accountfor suchvariationsthe usedconservation law hasto be extended.To-
wards this end the useof multiplier and offset fields have beensuggested[Negah-
daripour, 1998].Below we give a more generalextensionthat replaces(1) by a linear
partialdifferentialequation[Haußecker et al., 1999;Haußecker andFleet,2001].The
novel contributionsof thispaperarequantitativeresultsfor asequencewith motionand
illuminationchangesandtheintroductionof anew depthfrom X algorithm.

2 Models for Dynamic Processes

To describemoregeneraldynamicmodelswe allow for theintensityto vary alongthe
trajectorieswe areestimating.We assumethatthis variationcanbeexpressedin terms
of a model function f which may dependon the intensity, time and a set of model
parametersa. Thenthebrightnesschangeequationbecomes:

[gx gy]v + gt = f(g, t, a) . (2)

Herev is thegeometricvelocity, for instancedescribedby anaffine motion(v = t +
Ax). The concept is very generalin the sensethat the parametersof any dynamic
processthatcanbemodeledby a linearpartialdifferentialequationcanbequantified.
Sincemost physical,chemical,andbiologicalprocessescanbe describedby equations
of this type,it coversmany applications.
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3 Total Least Squares Estimation

As all theobservationdatain (2) is suspectto noiseit is appropriateto usea total least
squares(TLS) method[VanHuffel and Vandewalle,1991].Thismethodis in contrastto
ordinaryleastsquaresestimation wherethenoiseis assumedto beconfinedto thetem-
poraldomain.It hasrecentlybeenpointedout thatsucha TLS modelcansuccessfully
describesomeobservations madefor themammalianvisualsystem[Langley, 2002].

To enablea total leastsquaressolutionwe note that(2) canbewritten asthescalar
productof aknown datavectord with anunknown parametervectorp: dT p = 0. This
equationposesonly oneconstraintin theunknown parameters,thusfurtherassumptions
areneededin orderto solvefor theparameterfield.A commonsmoothnessrequirement
assumesconstantparametersin asmalllocalneighborhoodof N pixel.A weightedtotal
leastsquaresestimateis thengivenby theeigenvectorên to thesmallesteigenvalueλn

of thesocalledstructuretensor[Haußeckeretal., 1999]:

J = B ∗ ( d dT ) , (3)

whereB is an integrationkerneland∗ denotesconvolution.A goodchoicefor B is a
binomialfilter asit is bothsymmetricandleadsto adecreasinginfluencewith distance
from theconsideredpixel.

Theaboveestimationis only optimalif theentriesin thedatavectord areuncorre-
latedzeromean randomvariableswith thesamenoisevariance[Mühlich andMester,
1998;VanHuffel andVandewalle,1991].Dependingonthemodelusedthismaynotbe
casehere.To accommodatefor thiswesimplyscalethedatavectoraccordingly, imply-
ing diagonalcovariancematrices.More elaborate schemesarediscussedin [Mühlich
andMester,1999;VanHuffel andVandewalle,1991].

4 Experiments

In this sectionwe demonstratetheapplicationof thedescribedtechniqueto real image
sequencescontainingillumination changesand diffusion causedby a small field of
depth.

4.1 Brightness Changes

In Fig. 2a,btwo framesof a sequencecontaininga translatingplanewith a random
dot textureareshown. In addition to themovementtheillumination changessmoothly
during the sequence.The sceneis illuminated via a fiber optic bundle which moves
towardsthesceneandcausesagradualincreasein intensity. Suchilluminationchanges
areeasilymodeledin (2) by a linear sourceterm f(g, t, a) = −q anda translational
velocityv = [u v]T :

gxu + gyv + gt = −q → d = [gx gy 1 gt]
T ; p = [u v q 1]T . (4)
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Fig. 2: Sequencewith illumination changes: a frame1, b frame20 and c correct displacement
field. d Velocityestimatedusingstandard optical flow constraint equation,e displacementwhen
a linear source term is modeledand f estimatedbrightnesschanges in the range of [0, 2.5]
greyvalues/frame.

In this casethereevenis aconstant(errorfree)termin thedatavector. Herewesimply
useanerrorvariancefor this termthat is two ordersof magnitudesmallerthanthat in
the other termsin the scalingprocedure.In practicethis simplified approachusually
gives good results.However, it is possibleto take this error structureexplicitly into
accountto achieveevenbetter results[Garbeetal., 2002].

Thesceneconsistsof a planewhich is movedusinga linearpositioner. In our lab-
oratorysetupgeometriccalibrationinformationfor theobservingcamerais available.
Thuswe cancomputethe groundtruth velocity field asshown in Fig. 2c. The veloc-
ity computedassumingconservedbrightnessis givenin Fig. 2d andthatusinga linear
sourcetermin Fig. 2e.In the latercasewe alsoobtainanestimateof the illumination
changewhich is givenin Fig. 2f.

Comparingthevelocityfields(Fig.2c,d,e)wecanclearlyseeanimprovementwhen
theextendedmodelis used.Howeverbecausewedohaveavailablegroundtruthwecan
evenput numbersto this improvement.The following tablecontainsthe relative error
in themagnitudeof thevelocity, thedirectionalerrorandtheangularerroroftenused
in opticalflow evaluations[Barronetal., 1994].

method density[%] rel. error[%] dir. error[◦] ang.error[◦]
standard 92.6 7.9 ± 6.3 3.3 ± 2.7 2.5 ± 1.4
extended 94.7 1.3± 1.2 0.5± 0.5 0.4± 0.3

Obviously thereis a dramaticincreasein accuracy when the illumination changeis
modeled.
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4.2 Depth from Diffusion

An interestingapplicationof thepresentedtechniqueallows anextensionof thedepth
from focusprocedure.In its standardform aseriesof imageswith limited depthof field
is acquiredandat eachpixel the depthis determinedby the framewhereit appears
in focus.This techniquedoesrequiretelecentriclensesasthe world point viewed by
eachpixel changesotherwise.It is commonto model the blurring causedby out of
focusimagingwith a Gaussianpoint spreadfunction.Hencethe assumedunderlying
processis diffusion.If wethusmodelthechangesin theintensityasatranslationplusa
diffusionwecancaptureboththemotiondueto thenontelecentriclensandtheamount
of blur. Suchamodelcanbeformulatedas:

gxu + gyv + gt = −D∆g → d = [gx gy ∆g gt]
T ; p = [u v D 1]T , (5)

whereD is thediffusionconstant.It canbeshown thatthisdiffusionconstantis directly
proportionalto thedistanceof theobservedpoint to theplanein focus[Dierig, 2002].
HenceD is adirectmeasureof depth.

In Fig. 3 two real examplesaregiven. The displacementfield is diverging asex-
pectedandtheestimateddepthappearsto bequalitatively correct.A quantitative anal-
ysis of the recovereddepthon real datahasyet to be done.For a realisticsetup and
typical imagenoisewe obtaina relative error in thedepthbelow 5% on syntheticdata
[Dierig, 2002].This shows that thepresentedgeneralparameterestimationframework
canbeusedsuccessfullyto computedepthfrom focussequencesusingstandardoff the
shelf lenses thusavoiding expensive telecentricsetupsandallowing for a muchwider
field of view.

5 Conclusion

We have presenteda generalframework to estimatethe parametersof dynamic pro-
cessesin imagesequenceswheretheassumptionof conservedbrightnessdoesnothold.
This haspotentiallya very wide application.Herewe quantitatively investigatedthe
increasein accuracy of the computeddisplacementfield on onesequencewherethe
illumination changes.Furthermorewe introduceda novel algorithmtermeddepth from
diffusion to computedepthfrom focusseriestakenwith nontelecentriccameras.This
is achievedby modelingblur asadiffusionprocess.
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M. MühlichandR. Mester. Theroleof total leastsquaresin motionanalysis.In ECCV,
pages305–321,Freiburg, Germany, 1998.
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Abstract. Visual il lusions reveal fundamental processing mechanisms of which 
we are unaware during our daily perceptual experiences. The “line-motion” 
illusion1,2 consists of a flashed dot followed by a flanking bar with some time 
delay. Instead of sensing the bar at once, subjects report an illusory line 
drawing, away from the dot (see Fig. 1). Using voltage-sensitive dye optical 
imaging, we visualized line-motion in real-time on the surface of cat area 18. 

 

 

Fig. 1. The Line-Motion Illusion. a) A square of light (“pre-cue”) is presented just before a bar 
stimulus. b) Instead of sensing the bar at once, subjects report an il lusory line drawing starting 
from the pre-cued location. 
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Wertheimer (1921)3 and Kenkel (1913)4 made the surprising observation that even 
stationary stimuli can give the impression of motion, the “gamma movement” . An 
appearing local stimulus is perceived as expanding or otherwise as contracting when 
it disappears from a homogenous background. This effect can be polarized and 
strengthened if a local cue is presented adjacent to an elongated bar stimulus. In such 
a case, il lusory motion is seen away from the cue5. 

The line-motion illusion was attributed to an attentional gradient that facil itates 
processing in the surround of the pre-cueing dot. Although many alternative 
explanations exist, most psychophysicists encircled the origin of the line-motion 
illusion in early processing stages likely after binocular fusion. Yet, in need of a 
neurophysiological method that offers both high temporal and high spatial resolution, 
it remained unclear which neural mechanisms could account for building-up motion 
within a bar. 

In order to visualize cortical li ne-motion we used optical imaging of voltage-
sensitive dyes in area 18 of the anaesthetized and paralyzed cat6,7 This technique 
measures changes in synaptic potentials of neural populations, thus monitoring 
evoked activity in real-time across a certain cortical region that entirely represents the 
stimuli shown8. 

The spatio-temporal characteristics of activity evoked by a flashed square alone 
can be described in two steps: 1.) Stimulus appearance evokes “subthreshold” 
propagating activity that gradually slows down as the response amplitude increases. 
2.) Only at high levels activity stays local, i.e. motionless. The deceleration of 
propagating activity could be the result of a filter process that transmits activity 
through horizontal axons onto the wide arborisation of neural dendrites. How does a 
flashed square then affect the response to a subsequently presented bar? 

In the line-motion condition, the ”subthreshold” propagating activity is rapidly 
enhanced (15 ms after the bar onset) by the following bar and thus, expressed above 
threshold at a speed guided by the spatio-temporal properties in response to the 
flashed square alone. This leads to a very significant wave front that moves at a 
constant speed, away from the pre-cued location. As a result, the cortical surface is 
representing the progressive line drawing illusion. 

Our results are in line with studies that referred to the phenomenon as motion 
induction by pre-attentive facili tation or as an apparent-motion process with no need 
of attention per se. However, high-level processes might modulate speed and shape of 
propagating activity. There are evidences for attention-related components, operating 
on a slower time scale on the perception of the line-motion illusion. It has also been 
shown that line-motion can be induced voluntary. Thus, in the behaving subject, 
additional mechanisms are interacting along the visual pathway. We suggest that the 
cortical representation of the line-motion illusion uncovers an “automatic” process in 
primary visual cortex that may serve to compute motion at higher processing stages 
and guide bottom-up attention. 

Bringing together psychophysics and neurophysiology using awake animals in 
future studies may reveal influences of top-down attention and stimulus attributes on 
the representation of speed in primary visual cortex. 
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Abstract. To survive in a complex and ever changing environment, an
organism has to cope with sensory stimuli often varying on a short time
scale. Signal processing in the nervous system should, therefore, be dy-
namical and fast: often it is not feasible to wait until the neural activation
pattern of the brain settles into a steady state before an appropriate re-
action is initiated. Here, we study visual processing at the brink of its
temporal and spatial resolution by using the recently discovered shine-
through effect. We show how transient perception can arise by neural
dynamics described by a Wilson-Cowan type neural network. Moreover,
our results impose restrictions on the time and length scales involved in
visual cortical processing, and allow to predict under which conditions a
masked stimulus reaches visibility.

1 Introduction

One of the fundamental questions in visual processing is how a complex, time-
varying stimulus is segmented and interpreted by the neural hardware to form
a coherent percept. A particularly useful strategy to tackle this question is to
study the limitations of this process – because those limits effectively restrict
the search for possible mechanisms behind the information processing going on
in the brain.

Here, we present a new psychophysical effect, shine-through, that allows to
investigate the dynamics of transient perception in great temporal and spatial
detail. In contrast to many other pyschophysical studies, the stimuli as well as
the percepts are non-static, and therefore yield valuable conclusions about the
time-course of visual signal processing. These dynamical phenomena and their
underlying mechanisms are studied in a neural network model, where we focus
explicitly on the transients, and not on the fixed points or limit cycles that are
normally investigated.

2 Shine-through

In the shine-through effect a target element, for example a vernier (two abut-
ting lines with displacement d), precedes a homogeneous and extended grating
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Fig. 1. A vernier presented for 20 ms precedes a grating of various spatial layout
presented for 300 ms. (a) Only for a homogeneous grating shine-through occurs: the
vernier appears as a transient, short flash superimposed on the grating looking wider,
brighter, and even longer than the vernier really is. For (b) and (c), the vernier element
is rendered invisible by the masking gratings – no shine-through occurs.

(Fig. 1(a)) displayed for 300 ms [1, 2]. In spite of the masking grating, for trained
observers the vernier is clearly visible even if display times are as short as 20 ms,
i.e. in the range of a few neural spikes. Visibility is assessed as the threshold
displacement d of the vernier necessary to yield 75% correct discrimination per-
formance.

Shine-through diminishes dramatically if the grating comprises less than
seven elements (Fig. 1(b)). Shine-through ceases also for spatially inhomogeneous
gratings. For example, a grating containing gaps renders the vernier completely
invisible (Fig. 1(c)). From a figure-ground-segmentation point of view, the grat-
ing is parsed into three independent entities. Performance deteriorates since the
central part is a small grating not allowing shine-through (see Fig. 1(b)).

In all three conditions the target vernier either appears as a transient entity
or is rendered invisible by changes of the spatio-temporal layout of the masking
grating. Hence, the underlying mechanisms point to a system in which neurons
compete with each other. Although the psychophysical results suggest that high
level Gestalt factors cause the changes in perception and performance, we show
in the following that a simple model can account for the empirical findings –
without including any explicit high order Gestalt processing.

3 Model

Our model employs the horizontal axis x of the visual field only and neglects
the vertical spatial direction and the orientation tuning of cortical visual cells to
simplify analysis. The network (Fig. 2) consists of a one-dimensional layer with
one excitatory and one inhibitory neuronal population, mutually connected with
coupling kernels W{e,i}, with typical length scales σ{e,i},

W{e,i}(x − x′) =
1

√

2πσ2

{e,i}

exp

(

−
(x − x′)2

2σ2

{e,i}

)

. (1)
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Fig. 2. Structure of model employed in the simulations. A spatio-temporal stimulus
S(x, t) is filtered by a difference of Gaussians and projected onto two populations in a
one-dimensional neuronal layer. The two populations, an excitatory and an inhibitory
one, are mutually coupled with synaptic weight functions described by the Gaussian
kernels We and Wi, respectively. The inset shows the neuronal gain functions mapping
the synaptic inputs J{e,i} to the firing rates h{e,i}.

The dynamics of the system are given by a set of Wilson-Cowan type equa-
tions [3] (for an overview see [4]) for the excitatory activities Ae and inhibitory
activites Ai of the populations,

τe

∂Ae(x, t)

∂t
= −Ae(x, t) + he {wee (Ae ? We) (x, t)+

+wie (Ai ? Wi) (x, t) + I(x, t)} (2)

τi

∂Ai(x, t)

∂t
= −Ai(x, t) + hi {wei (Ae ? We) (x, t)+

+wii (Ai ? Wi) (x, t) + I(x, t)} , (3)

with wee, wei, wie, wii denoting coupling strengths, τ{e,i} denoting time con-
stants, I(x, t) denoting the efferent input, and h{e,i} describing the gain functions
(see Fig. 2 inset). The stars in Eqs. (2)-(3) denote convolutions of the population
actitivies with the coupling functions as e.g. for

wee (Ae ? We) (x, t) = wee

∞
∫

−∞

Ae(x
′, t)We(x − x′) dx′ . (4)
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The convolution of the efferent coupling kernel V ,

V (x − x′) =
1

√

2πσ2

E

exp

(

−
(x − x′)2

2σ2

E

)

−
1

√

2πσ2

I

exp

(

−
(x − x′)2

2σ2

I

)

, (5)

with the spatio-temporal pattern S(x, t) modeling the stimulus sequences used
in the experiment (see Fig. 1), yields the efferent input I converging onto both
populations, I(x, t) = (S ? V ) (x, t). For the mutual couplings defined in Eq. (1),
the range of inhibition is chosen to be larger than the range of excitation; also,
we assumed that recurrent input dominates over efferent input [5, 6].

The psychophysical detection threshold d was related to the activity profiles
coming out of the model via the time interval T the excitatory activity Ae(0, t)
in the center population remained above an observation threshold ht. While the
exact relationship between these two measures is analyzed elsewhere [7], let us
note here that with a longer duration T , the more information about the vernier’s
displacement can be gathered, and a smaller detection threshold d can therefore
be expected.

4 Results

In the shine-through effect, the vernier appears as a bright flash superimposed on
the grating. Therefore, the processing of the vernier signal is expected to occur
as a transient in the neural dynamics and not as a steady state. Numerical
results for the stimulus conditions (a)-(c) of Fig. 1 are shown in Figs. 3(a)-
(c). The color-coded activities of the excitatory populations show peaks at the
position of the vernier and at the edges of the gratings, whereas almost no activity
emerges for the inner grating elements. The time course of the activity of the
central neural population in Figs. 3(a)-(c) is shown in Fig. 3(d). The central
peak in the condition with the small grating (Figs. 1(b),3(b)) decays faster as
compared to the condition with the extended grating (Figs. 1(a),3(a)). This
behavior is explained by the strong inhibition radiating from the active neurons
representing the nearby edges of the grating comprised of only 5 elements (see
arrow in Fig. 3(b)). However, if the extended grating comprises 25 elements, the
edges are too remote to exert a substantial inhibitory influence on the center
(Fig. 3(a)). Thus, the activity elicited by the vernier is sustained by feedback
excitation, and decays much more slowly than in condition (c). Inserting gaps in
the grating of 25 elements (see Fig. 1(c)) introduces inhomogeneities leading to
an enhanced activation at these gaps whose inhibitory surrounds suppress the
vernier activity as fast as in the 5 element condition (see arrow in Fig. 3(c)).

Perceptually, the fast suppression of the vernier activity by the small central
grating shown in Figs. 1(b) and (c) leads to a complete masking of the vernier
element. On the other hand, conditions which allow a longer persistence of the
vernier activity like the one in Fig. 1(a) result in a conscious perception of
the vernier and its displacement. Thus, the occurrence of shine-through can be
explained with the transient dynamics of a Wilson-and-Cowan type model.
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Fig. 3. Spatio-temporal activation patterns emerging from the Wilson-Cowan model
for the three different masking conditions in Fig.1. The activation levels of the excita-
tory population are color-coded (dark for high activation). The ordinates correspond
to the location of the neuronal population x, and time t in milliseconds is shown on the
abscissa. (a) Vernier activity persists since peaks of neural activity appear only at the
distant edges of the 25-element grating, exerting no inhibition on the activity corre-
sponding to the vernier. In (b) and (c), the activities corresponding to the edges of the
5-element grating rapidly suppress vernier activity. The time course of the activation
of the center population is shown in (d), where the solid and dotted curves correspond
to the conditions modelled in (b) and (c), respectively, while the dashed curve shows
the slower decay from the condition modelled in (a). The thin line in (d) shows the
observation threshold ht choosen to be ht = 0.008.

5 Summary and Discussion

Our results demonstrate that a structurally simple model based on only two
partial differential equations is sufficient to explain psychophysical phenomena
of the visibility of masked stimuli. Transient activation of a neuronal population
instead of fixed points of its dynamics determines the visibility of the target
element. Moreover, global, Gestalt-like perceptual conditions can be explained
through simple interactions in topologically arranged neural layers.

The mechanisms behind the observed model dynamics can be summarized in
terms of the most important model parameters: The convolution of the stimulus
with the Mexican-hat efferent coupling kernel having the length scales σE,I ,
yields enhanced input at the edges of a regularly spaced grating, while input
from the inner elements is suppressed. The activity subsequently emerging at
the aforesaid edges then suppresses any activity in a distance of σi ≈ 3 dbar,
being the length scale of the recurrent inhibition. This ”edge detection” on a
length scale dbar [8], and the ”competition” between activity on a length scale
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of 3 dbar, leads to the differences between the shine-through (Fig. 3(a)), and the
other two stimulus conditions (Figs. 3(b) and (c)). These differences are most
pronounced when the ratio of the excitatory and inhibitory time constants, τe/τi,
gets large.

When interpreting the experiments and simulations in terms of a figure-
ground segmentation process, one may draw the following conclusions from the
observed dynamics. First, segmentation enhances inhomogeneities in a stimulus
being presented – in our case, the inhomogeneities correspond to the edges of the
masking gratings. Second, segmentation is a time-consuming process: the vernier
activity has to be high enough, and has to persist for a sufficiently long time, in
order to be perceived correctly. This condition is fulfilled only in Fig. 1(a), while
in Figs. 1(b) and (c), the segmentation of the masking grating rapidly disrupts
the segmentation of the vernier. Third, in contrast to the previous conclusion,
the onset of segmentation is very fast – even slight temporal and spatial changes
to the shine-through condition Fig. 1(a) render the vernier invisible (data not
shown, [7]). And finally, two on-going segmentation processes do not interfere
when the features of the stimuli are well separated either in time or in space
(see Figs. 1(a) and 3(a)).

Supported by the Sonderforschungsbereich 517 “Neurocognition” (M.H.H.,
C.W.E., and U.A.E.) and the Volkswagen Stiftung, Project 5425 (U.A.E.).
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Abstract. Cortical organization of vision appears to be divided into
two pathways: the ventral pathway and the dorsal pathway. Models of
vision have generally adopted this separation into a functional division
such that recognition is supposed to be located in the ventral pathway
and spatial attributes are processed in the dorsal pathway. I suggest
a less distinct separation. According to my model the ventral pathway
contributes to the selection of the location of an object by feedback con-
nections. Those projections localize the object of interest by transferring
information about its features in IT to cells with smaller receptive fields
in V4 and earlier. I demonstrate the performance of the model in a visual
search task which demands an eye movement towards a target.

1 Introduction

Visual perception is proposed to rely on a pathway for object vision, the ”what”
pathway and one for spatial vision, the ”where” pathway [1]. A refinement of
this concept emphasized the relevance of the ”where” pathway for action control
[2]. Almost all computational models of visual perception and attention follow
this separation between ”where” and ”what”. The general idea is, that the dor-
sal pathway first selects the location of an object and then the ventral pathway
recognizes it by analyzing only a spatially defined part of the scene [3]. This
decoupling of recognition and selection has the advantage of a facilitated recog-
nition as compared to a fully parallel approach, since it is not practicable to
apply several object models at the same time at several locations [4]. However,
such a model of perception has its limitation if we search for a specific object.
How could the ”where” pathway know what is relevant?
The relevance of an object seems to be reflected by the activity of IT cells [5] [6].
Although the initial activation of IT neurons is largely stimulus driven and cells
encoding target and non-target become activated, different populations compete
for representation and typically the cells encoding the non-target are suppressed.
Such competition is assumed to be biased by top-down feedback from working
memory [5] [6]. A computational approach by Usher and Niebur [7] shows that
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a parallel competition based on lateral interactions is sufficient to qualitatively
replicate some of those findings, but they argue that the parallel stage is useless
in case of a search for a conjunction and the decision has to be based on a serial
scan of all objects.
It was suggested that the frontal eye field (FEF) could implement a saliency
map by the convergence of information from different brain areas [8]. This raises
the question how the FEF knows what is task relevant and where the object of
interest is located. The FEF has connections to occipital, temporal and parietal
areas, the thalamus, superior colliculus and prefrontal cortex [9]. The projections
from V2 and V3 are weak, from V4 intermediate and heavy from TEO. Anterior
IT cortex does not project directly to FEF. Information about the target features
could be received from prefrontal areas and compared with features of interme-
diate complexity from V4 and TEO. This would require that the FEF or related
areas perform a match detection in topological and topographic space. Alterna-
tively, Desimone and Duncan [10] speculate ”at some point in time, mechanisms
for spatial selection may also be engaged to facilitate localization of the target
for the eye movements”. Some authors proposed feature specific top-down influ-
ences [11] [12] that could guide attention before the eye movement is planned.
However, their implementation and exact function remained mysterious. Others
suggested a top-down directed beam within the ventral pathway [13]. Only re-
cently the influence of top-down feedback is beginning to be investigated more
closely [14] [15] [16] [17] [18] [19]. In this paper I suggest that the visual areas
process incoming stimuli first in a parallel bottom-up manner without a signifi-
cant bottleneck and then acquire a more detailed knowledge about an object of
interest by feedback. I show that such feedback within the ventral pathway can
account for goal directed covert and overt search. Even for conjunction search a
serial scan is not imperative.

2 Model

I model aspects of the areas V4, IT, FEF and PF and refer to the model by the
prefix M (Fig. 1). M-IT, M-V4 and M-PF are subdivided into different dimen-
sions (e.g., color and shape). My model consists of ascending populations, called
(s) stimulus cells that can be primed by feedback connections and descending
populations (t) target cells that project the dominant patterns back into the
source areas.
The model prefrontal cortex serves for two major functions, memorizing a pat-
tern in M-PFwm (working memory) cells and indicating a match of the incoming
pattern with the memorized pattern in M-PF match cells. Thus, M-IT cells can
only drive M-PFm cells when their pattern matches the prior knowledge from
M-PFwm cells.
The neurons in the FEF can be categorized based on their responses to visual
stimuli or to saccade execution into visual, visuomovement, fixation and move-
ment cells [20]. I consider (v) visuomovement, (f) fixation and (m) movement
cells in my model (Fig. 1). The M-FEFv neurons receive convergent afferents
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from features in M-V4 at the same retinotopic location and add-up across all
dimensions. M-FEFf cells generally inhibit M-FEFm cells. A threshold detection
of the M-PF match cells is applied to determine if the target is in the search
array. In this case the input into the M-FEFf cell is removed and thus the map-
ping from sensory to motor is facilitated. M-FEFv cells activate M-FEFm cells
by surround inhibition. Since there is evidence that saccades are elicited when
movement related activity in the FEF reaches a particular level [21], I assume a
fixed threshold in M-FEFm cells to initiate a saccade. A spatially organized gain
control input of M-V4 and M-IT stimulus cells originates from from M-FEFm
cells.
M-PFwm cells modulate visual processing via feedback into M-ITs according to
the current goal of the task. The resulting local increase of firing in M-ITs cells is
directed further downwards by feedback form M-ITt cells to M-V4s cells. Thus,
increased local activity in M-V4 enhances the visually responsive neurons in the
frontal eye field, such that these cells reflect the task-relevance of a location.
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Fig. 1. (A) Sketch of the simulated areas. Each box represents a population of cells. The
activation of those populations is a temporal dynamical process. Bottom-up (driving)
connections are indicated by a bright arrow and top-down (modulating) connections
are shown as a dark arrow. (B) Outline of the minimal set of interacting brain areas.
Our model areas are restricted to elementary but typical processes and do not replicate
all aspects of these areas.

3 Results

In order to demonstrate the possible role of feedback in the ventral pathway I
simulated a memory guided search task [6] (Fig. 2A). If the same cued object
reappears in the search array, the condition is called ’Target Present’. In the
’Target Absent’ condition the cue stimulus is different from the stimuli in the
choice array. Now a saccade has to be withheld.
The target was presented to the model and its features have been memorized in
M-PFwm cells. Prior to the onset of the search array the active M-PFwm cells
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increase the baseline activity of the M-IT cells selective for the target (Fig. 2B).
When the search array appears, inputs are processed bottom-up without any
strong bottleneck. Each cell initially encodes the presence of its preferred stim-
ulus, but the target cell shows an early advantage due to top-down modulation
from M-PFwm cells. Between 150 and 300 ms the cells encoding the non-target
get suppressed although the input is still present, whereas the cells encoding the
target remain active. A crucial condition is the target absent condition. Both
non-targets decrease their activity, but less than in the distractor suppression
case. A simple winner-take-all competition would not replicate the experimental
data because due to noise in the system, a non-target would be selected in the
target absent condition. My simulation results even match the temporal course
of activity of IT cells in the different conditions of the experiment from Chelazzi
et al. [6]. This constraint allows me to give reliable predictions of the processing
in other areas.
The model predicts that the early advantage of IT cells encoding the target is
sent to V4 cells, which have smaller RFs and creates an early target effect in
V4 (see also [15]). Recent cell recordings confirmed this prediction: During the
early phase until 150 ms after array onset, V4 cells show a slight target effect,
which is stronger when two stimuli are located within a V4 receptive field [6].
Since FEFv neurons receive their main input from M-V4 an enhancement within
the topographic/topological(feature) space is transferred into topographic space,
such that a target selection is possible. This result explains how the visual cells of
the FEF might discriminate over time the target from the distractor in conjunc-
tion visual search. The advantage in different dimensions adds up. The location
of the target receives enhanced input from both dimensions. Locations encoding
distractors sharing a single feature with the target receive enhanced input just
from one dimension. The temporal course of activity of the FEFv and FEFm
cells is similar to what has been found in experiments [8] [24]. FEFm cells quickly
discriminate the target from the non-target.
The fronal eye field and areas within the dorsal pathway form a fronto-parietal
network. These areas can use such a discrimination for overt and covert search.
In overt search an eye movement is executed when the activity of the FEF
movement cell reaches a threshold. Covert search is possible if activity, e.g. from
the movement cells, reenters extrastriate visual cortex and enhances the input
gain in V4 and IT in a spatially organized manner.

4 Discussion

This study demonstrates how findings in single cell recordings can be used to
constrain models of perception. Each modeled area exhibits a temporal course of
activity that has been observed by similar physiological experiments performed
by various investigators. What are the major findings and predictions of this
study for modeling object recognition and attention? First of all, the ventral
pathway encodes an object of interest as well as its location. The model predicts
that one role of feedback is to enhance the gain of cells encoding features of the
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Fig. 2. (A) Simulation of the experiment of Chelazzi et al. [6]. The objects are repre-
sented by a noisy population input, here illustrated by a snapshot. RF’s without an
object just have noise as input. Each object is encoded within a separate RF, illus-
trated by the dashed circle, of M-V4 cells in two simulated dimensions (only one is
shown). All M-V4 cells are within the RF of the M-IT cell population. The model has
to indicate a successful search, by selecting the previously shown object as the target
of an eye movement. (B) Activity within the model areas aligned to the onset of the
search array in the different conditions.

object of interest. Such a mechanism would allow for a foreground-background
discrimination throughout the ventral pathway down to V1.
Second, object recognition and attention recruit the same neural architecture.
Recognition is related to the firing of detector cells and attention is typically
implemented by control units. My model does not contain any control units.
Competition and cooperation within the recognition network implements a dy-
namic filter that allows the brain to connect planning processes with the physical
world. As a result, suppressive and facilitatory effects occur, commonly referred
to as ”attention”.

Acknowledgements: This research was supported by DFG HA2630/2-1 and in
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Abstract. Two experiments investigated the control of attention shifts. Exoge-
nous orienting [1], singleton capture [2], contingent orienting [3], and direct pa-
rameter specification [4] served as alternative hypotheses. Attentional alloca-
tion was assessed via its facilitating influence on perceived latency of stimuli. 
Facilitation was larger for intention-matching than for non-matching masked 
stimuli. This result tentatively supports the direct parameter specification ac-
count which predicts that masked visual information may directly specify open 
parameters of a response to the extent that they match intended features. 

1 Introduction 

Control of attention shifts in dynamic visual displays may be of several different 
types, such as exogenous or bottom-up capture, or endogenous or volitional orienting 
towards relevant stimuli matching the current intentions. According to the attentional 
capture account, sudden changes of peripheral stimulation elicit involuntary, stimu-
lus-driven orienting towards the location of these changes [1, 5]. Recently, several 
alternative types of top-down control have been proposed. Folk, Remington, and 
Johnston [2] observed that onset cues did not capture attention if observers did not 
search for onset targets. They reasoned that attentional settings for specific feature 
classes controlled orienting in a top-down manner (contingent capture). They further 
observed limitations with respect to the features that can be specified in attentional 
sets: Control settings can be directed to either dynamic features, such as abrupt onset 
and motion, or static features such as specific colours. However, if observers are set 
for abrupt onset targets, other dynamic features, such as motion targets, will also 
capture attention.  

An alternative top-down approach is the direct parameter specification model 
(DPS) [4, 6]. It likewise proposes that stimuli may control attention only to the extent 
that they match intended features. However, types of features apt for direct processing 
are not restricted. Additionally, DPS explicitly allows for not consciously perceived 
information to exert control over responses. The DPS concept was originally developed 
while studying sensorimotor effects of masked stimuli [7]. It assumes that, as far as an 
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action plan is available, response parameters can be specified by direct processing path-
ways from stimulus to response that bypass a conscious representation. Masked visual 
information indeed has been shown to lead to the activation of a corresponding re-
sponse [8, 9]. Control of attention shifts might be another case of DPS with the pa-
rameters specified being the amplitude and the direction of an attention shift.  

A third type of intention-dependent control has been proposed by Bacon and Egeth 
[1]. They reported that if observers search for a feature singleton (a single deviating 
feature), other singletons may interfere with visual search even if they do not contain 
the relevant features. They thus distinguish between two top-down controlled search 
strategies, singleton search (set for any singleton present) and feature search (set for 
any stimulus that has a certain feature). 

The present study explored the contributions of these types of orienting to per-
ceived latency of visual stimuli. Distribution of attention over the visual field was 
assessed by means of perceptual latency priming (PLP). In PLP, the latency of a 
stimulus is decreased by a masked prime that precedes it. PLP results from an atten-
tion shift towards the prime’s location which facilitates processing of the trailing 
target. Earlier studies of PLP revealed evidence for the contribution of exogenous 
orienting. For example, PLP has been found to be independent of similarity between 
prime and target [10]. By contrast, in a recent study, larger effects for intention-
matching than for non-matching primes were found [6]: The primes were either simi-
lar to the targets or similar to irrelevant distractor stimuli. Target-like, but not distrac-
tor-like, primes facilitated perceptual latencies of targets trailing at their positions 
supporting the DPS account. However, the results of this study were also in line with 
an explanation by singleton capture: Observers searched for singleton targets, and the 
target-like prime may thus have captured attention due to a singleton-detection strat-
egy. This was not possible for the distractor-like prime since it was always preceded 
by at least one similar distractor. 

2 Method 

Throughout the experiments, PLP was assessed by temporal order judgments (TOJ). 
Participants judged the temporal order of two targets in a small set of distractors. One 
of the targets could be primed by a smaller stimulus (a prime). Size and temporal 
sequence of prime and target stimuli met the conditions of metacontrast masking [11]. 
From the psychometric distributions of order judgments, Points of Subjective Simul-
taneity (PSS) were computed by logit analysis [12]. PLP was measured by differences 
between primed and unprimed PSS values. Discrimination performance was meas-
ured by mean slope of the inner quartile of the psychometric distributions (Difference 
Limen, DL). If necessary, degrees of freedom were corrected by the Greenhouse-
Geisser coefficient, and adjusted alpha values are given [13]. 

If PLP is due to exogenous orienting towards the location of the prime, it will be 
independent of whether the primes resemble target features. On the other hand, it will 
be influenced by prime validity, that is, the extent to which a prime predicts the loca-
tion of a subsequent target [13]. If PLP is due to singleton capture, it will arise exclu-
sively if the participants have the opportunity to search for singletons, and the prime 
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is a feature singleton. If DPS is responsible for PLP, intention-matching, though not 
non-matching, primes will attract attention. By contrast, if the control of attention in 
TOJ tasks is due to contingent orienting, there will be no difference between match-
ing and non-matching primes which differ within a static feature since participants are 
set to search for a dynamic feature (onset).  

Two main experimental factors, prime match and prime validity, serve to decide 
between these alternative accounts. Prime match was manipulated by presenting 
primes that resembled either the targets (matching prime) or the distractors (non-
matching prime). Prime validity was manipulated by the number of primes presented. 
In the valid case, a single prime was presented at the location of one target, and in the 
neutral condition, two primes appeared simultaneously, one at a target location and 
the other one at an otherwise blank location. According to the exogenous-orienting 
account, a single valid prime will have a larger effect than a prime that is presented 
simultaneously with a competing stimulus. This manipulation of validity also allowed 
to control for the influence of singleton capture since only the valid prime was a fea-
ture singleton. The manipulation of prime match served to differentiate between the 
DPS and the other accounts since only the former predicts an exclusive influence of 
matching primes in the PLP paradigm. 

We controlled the observers’ task strategy by presenting two different targets or 
two similar targets in different blocks. In the latter case, observers adopt a feature-
search strategy whereas the former case allows a singleton-detection strategy since 
each of the targets is a singleton. According to the exogenous-orienting and singleton-
detection account, though validity effects may be absent in feature-detection mode, 
primes will have an influence on PLP in singleton-search mode. 

3 Experiment 1 

Participants judged the temporal order of two targets while disregarding additional 
visual distractors. In one of the two sessions, they performed the task in singleton-
search mode, in the other one, feature-search mode was forced. 16 voluntary partici-
pants with a mean age of 25 years took part in the experiment. Al l had normal or 
corrected-to-normal vision.  

Stimuli were red, yellow, and blue rings on dark grey background. In each trial, 
four non-offset visible rings were presented equidistant to fixation, two distractors 
defined by colour, and two targets also defined by specific colours. Intervals between 
the targets were 192, 128, and 64 ms. Prime stimuli were smaller rings. The prime 
(presented for 32 ms) preceded one of the targets by 64 ms. In the matching condition, 
it had the same colour as the masking target, whereas in the non-matching condition, 
it had the distractor colour. In the valid condition, one prime was presented at a loca-
tion subsequently occupied by a target. In the neutral condition, a second prime was 
simultaneously presented at a further unoccupied location. As a baseline, unprimed 
trials were included. In singleton-search mode, targets had different colours so that 
each target was a feature singleton. Observers indicated which target colour had been 
the first one. In feature-search mode, targets had the same colour. After presentation 
of the trial, one of them was marked and observers had to indicate if it had appeared 
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first or second. Apart from the unprimed baseline condition, there were 8 conditions 
(2 tasks × 2 prime match conditions × 2 prime validity conditions).  

Experiment 1 revealed a priming effect on PSS: The prime facilitated perception of 
the primed target by an average of 20 ms (see Fig. 1). However, PLP did not differ 
due to the experimental factors (main effects and interactions: F < 1). Separate t-Tests 
of PLP values for each condition revealed that with one exception (feature search / 
non-match / neutral condition), all latencies differed significantly from zero (all p < 
.00625). Discrimination performance was lower in feature search than in singleton 
search (F[1, 16] = 6.25; p < .05). It was slightly lower with a non-matching than with 
a matching prime (F[1, 16] = 3.98; p = .0634) and with neutral compared with valid 
primes (F[1, 16] = 3.76; p = .0703). 
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Fig. 1. PLP values in Experiment 1. The combinations of the main experimental factors (prime 
match and prime validity) are given on the abscissa, the two tasks as separate columns 

The DL results indicate that the visible distractor prime may have interfered with 
TOJ. The valid and the neutral condition were not strictly comparable since the valid 
prime was masked by the trailing target whereas the neutral prime was not and may 
have led to a confusion of prime and target. This was controlled for in Experiment 2. 

4 Experiment 2  

Experiment 2 replicated Experiment 1 with the single exception that both primes in 
the neutral condition were masked, the second one by a distractor trailing at its loca-
tion. There were 16 voluntary participants with a mean age of 27.6 years. All had 
normal or corrected-to-normal vision.  

Again, PLP was found. On average, it was 16 ms (see Fig. 2). Search strategy had 
no effect on PLP (F[1, 16] = 2.46; p = .1367), as well as prime validity (F < 1). 
Matching primes entailed larger PLP effects than non-matching primes (F[1, 16] = 
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13.78; p < .01), a finding which was qualified by a task × match interaction (F[1, 16] 
= 5.5; p < .05). The differential effects of matching and non-matching primes were 
larger in the singleton-search task than in the feature-search task. Separate t-Test of 
PLP values for each condition revealed that three PLP values differed significantly 
from zero: the feature search / matching / valid condition (PLP: 16 ms), and the sin-
gleton search / matching / valid (25 ms) as well as singleton search / matching / neu-
tral condition (30 ms; all p < .00625). DL was slightly larger in feature search than in 
singleton search (F[1, 16] = 8.48; p < .05). No further influences on DL were found. 
In sum, Experiment 2 revealed an advantage of matching primes in the control of 
attention shifts. 
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Fig. 2. PLP values in Experiment 2. The combinations of the main experimental factors (prime 
match and prime validity) are given on the abscissa, the two tasks as separate columns 

5 General Discussion 

The absence of a prime validity effect on PLP in the experiments is not in line with an 
exogenous-orienting account: According to this explanation, presenting the prime 
simultaneously with a second prime impairs its effect on orienting of attention since 
the primes compete for capture. It also disfavours a singleton-capture account. If 
subjects searched for feature singletons in the TOJ task and the prime captured atten-
tion due to its being a singleton, again no effects in the neutral condition would have 
been expected.  

Some support for top-down control of attention is revealed by Experiment 2: Dif-
ferential effects of matching and non-matching primes were found in Experiment 2, as 
predicted by the DPS account. This effect is not predicted by the contingent orienting 
account. The control of attention shifts thus seems to be possible in a mode of DPS. 
However, the influence of non-matching primes on PLP found in Experiment 1 indi-
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cates an additional effect of an irrelevant stimulus. This capture effect may be invol-
untary, or it may be due to other top-down processes, such as whether target and dis-
tractor features are linearly separable [15, 16]. Comparison with earlier studies [10] 
reveals that the priming effect in the present study is rather small. With priming inter-
vals of 64 ms, PLP typically amounts to about half of this interval. With an average of 
28 and 24 ms, the priming effect of matching primes was substantially smaller even in 
the singleton-search sessions; in the feature-search sessions, it was further reduced to 
17 and 20 ms. This may be due to an increment in task diffi culty that could have left 
less space for differential effects of intended and non-intended signals to show up.  
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Abstract. There is some neuropsychological evidence for a differential capacity 
of the cerebral hemispheres to process local and global levels of compound vis-
ual stimuli. Corresponding visual field (VF) effects in response time studies, 
though, are mainly obtained with stimuli that induce response conflicts with re-
spect to the levels. Here we investigate why response conflicts are favorable to 
VF–effects. Two experiments with hierarchical letters are reported, in which the 
difficulty of response selection was varied for conflicting and non-conflicting 
stimuli. For the difficult situation, VF–effects were also obtained for non-
conflicting stimuli. The results are interpreted in the way that in both cases the 
letter identity and the corresponding stimulus level had to be integrated.  

The human brain is subdivided into two homologous areas, the left and right cere-
bral hemisphere, which perform some cognitive functions with different efficiency. 
One example is the differential hemispheric capacity to process large-scaled (i.e., 
global) and small-scaled (i.e., local) aspects of compound visual objects. This asym-
metry was often reported in studies with brain-damaged patients, where right- and 
left-hemispheric lesions were accompanied by impairments for the processing of 
global and local stimulus aspects, respectively [1]. 

Corresponding hemispheric differences in response time studies, though, are only 
obtained if a number of favorable conditions are met [2]. One such condition that 
turned out to be particularly important is a response conflict between the information 
on the global and that on the local level of the stimulus [for a meta-analysis see 3]. 
For instance, Hübner and Malinowski [4] presented compound stimuli to the left 
visual field/right hemisphere (LVF/RH) or right visual field/left hemisphere 
(RVF/LH), and let their subjects name the form on the global or local level. In all 
three experiments they conducted, Hübner and Malinowski only found an interaction 
between visual field and target level for those stimuli where the global and local in-
formation was mapped to different responses. 

To explain this effect, Hübner and Malinowski suggested that response selection 
for non-conflicting and for conflicti ng stimuli i s performed in qualitatively different 
modes, respectively. They argued that for the former type, fast and automatic re-
sponses can be released before the hierarchical structure of the stimulus is repre-
sented. This could be accomplished with equal efficiency in the LH and RH. Contrar-
il y, a more controlled mode of response selection is required for conflicti ng stimuli.  
Here, subjects must integrate the global and local forms with the corresponding stimu-
lus level in order to select a correct answer. Hübner and Malinowski suggested that 
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this binding process is performed with different efficiency in the left and right hemi-
sphere. 

Unfortunately, there is as yet no clear evidence for this hypothesis. A major draw-
back of the reported study was that hemispheric asymmetries were exclusively ob-
tained with conflicting stimuli. Consequently, it can not be ruled out that conflicting 
responses are necessary to produce these effects [3]. If, however, the mode of re-
sponse selection is crucial to hemispheric asymmetries, then it should be possible to 
induce them by means other than response conflicts. This prediction was tested in the 
present study. Two experiments were conducted, where response conflicts and the 
mode of response selection were varied independently. To achieve this, the assign-
ment of stimuli to response keys was held variable. The underlying rationale was that 
a varied mapping procedure would hinder subjects from giving automatic responses, 
because a more thorough evaluation of the stimulus must be performed to select the 
correct answer [5]. Under this constraint, we expected that hemispheric asymmetries 
would be obtained with conflicting as well as non-conflicting stimuli. 

Experiment I 

Eight right-handed volunteers (4 female, 4 male, aged 22-30 years) participated in 
this experiment. They performed 16 blocks of 32 trials within one experimental ses-
sion. The trials started with a central 300 ms presentation of a cue that indicated the 
target level for the following stimulus. After a cue-stimulus-interval of 300 ms, the 
subjects were presented with hierarchical letters [6], which appeared in the LVF or 
RVF for 93 ms (for a description of the used stimuli see Figure 1). Between the re-
sponse and the following trial, there was an interval of 1000 ms. The task was to cate-
gorize the letter at the cued level of the hierarchical stimulus by pressing the left or 
right button of a response device.  

Fig. 1. Two examples of compound letters, where the global shape is composed by local ele-
ments in a 5 by 5 grid. Four letters (A, S, H, and E) were used and combined to 16 hierarchical 
stimuli. The size of the local and global letters is given in degrees of visual angle 
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As in the Hübner and Malinowski study, half of the presented stimuli were con-
flicti ng, whereas the other half was non-conflicti ng. The four letters used were 
grouped to two response categories, which were mapped to the left and right response 
key, respectively. However, only one letter within each category was consistently 
mapped to a fixed response, whereas the mapping of the other letters was changed 
after each block. For example, the letters A and H could have a fixed mapping, 
whereas the mapping of the letters S and E was variable. In this case, the mapping of 
letters to the respective left/right response in succeeding blocks was AS/HE, AE/HS, 
AS/HE, AE/HS and so forth. 

Because stimulus-response mappings were changed frequently, it was unli kely that 
automatic responses would develop [7]. We thus expected that subjects would apply a 
more controlled mode of response selection, where form and level of the hierarchical 
stimulus are integrated. Accordingly, the hypothesis was that hemispheric asymme-
tries would be obtained with conflicting as well as non-conflicting stimuli. The factors 
in the first experiment were target level (global, local), visual field (LVF, RVF), 
stimulus type (conflicting, non-conflicting), and target mapping (fixed, variable), 
which were all randomized.  

Results & Discussion 

Error rates and latencies of correct responses were entered into an analysis of vari-
ance (ANOVA) with repeated measures on all factors. The focus in this as well as in 
the second experiment was on visual field (VF)-effects, that is, on the greater capacity 
of the LH and RH to process local and global stimulus aspects, respectively. In paral-
lel to Hübner and Malinowski, we will  express VF-effects for local elements by sub-
tracting response latencies to RVF-stimuli from those to LVF-stimuli, and analo-
gously VF-effects for global forms are given by subtracting response latencies to 
LVF-stimuli f rom those to RVF-stimuli. For both levels, thus, positive values indicate 
VF-effects in the expected direction. 
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Fig. 2. Interaction between target level, visual field, and stimulus type as revealed in the first 
experiment 
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Generally, responses were faster for non-conflicting compared to conflicting stim-
uli [929 ms vs. 1011 ms, F(1,7) = 15.23, p < .01], and for targets with fixed compared 
to variable mapping [928 ms vs. 1012 ms, F(1,7) = 21.14, p < .01]. Similar effects 
were also revealed with the error rates. Reliable VF-effects, though, were only ob-
tained for response latencies. First, there was a two-way interaction between target 
level and visual field [F(1,7) = 11.69, p < .05]. However, this was qualif ied by a 
three-way interaction between target level, visual field, and stimulus type [F(1,7) = 
9.02, p < .05]. The corresponding results are depicted in Figure 2. As one can see, the 
expected interaction between target level and VF held for conflicti ng stimuli [ F(1,7) = 
19.24, p < .01], but not for non-conflicting stimuli [F(1,7) = 0.12, p = .74]. The inter-
action for the former type was due to large, though non-significant, global and local 
VF-effects (57 ms and 50 ms, respectively). The corresponding (non-significant) ef-
fects for non-conflicting stimuli were 2 ms and 5 ms, respectively. 

The above results did obviously not meet our hypothesis. One possible explanation 
for this flaw is that the subjects could establish automatic responses despite the varied 
mapping. This might have been favored by the fact that only half of the presented 
letters were indeed mapped to variable responses. Moreover, the response mapping 
was only changed after each block. To account for this possible shortcoming, a sec-
ond experiment was conducted, where all four letters were mapped to variable re-
sponses. As well, the mapping was changed within the blocks. 

Experiment 2 

16 right-handed volunteers (12 female, 4 male, aged 19-27 years) took part in the 
second experiment. The procedure and the stimuli were basically the same as in ex-
periment one. The main difference to the first experiment was the response mapping. 
Here, the four letters were grouped to two response categories (‘A , S’ , ‘H, E’), which 
were consistently mapped to the left and right response key, respectively. However, 
the mapping rules were reversed for global and local targets. For example, the sub-
jects had to press the left button for a global A or S, but the right button if A or S ap-
peared at the local level. Accordingly, a global H or E required a right button press, 
whereas a local H or E were mapped to the left response key. The same letter was 
thus always mapped to two different responses. As a consequence, the subjects could 
not give a proper answer before the hierarchical structure of the stimulus was repre-
sented. This applied to non-conflicting stimuli as well as to conflicti ng stimuli. An 
exception from that were those stimuli with the same letters on both levels, e.g., a 
global H with local Hs. Notice that this type of stimulus was conflicti ng, because the 
global and the local H were assigned to different responses. To illustrate the differ-
ence between conflicti ng stimuli with different letters (conflicting/d) and those with 
the same letters (conflicting/s) on the global and local level, consider a trial where the 
task was to categorize the local letter of the described example stimulus. It is clear 
that this local element could only be H, because there was no alternative letter in the 
compound stimulus. In contrast to conflicting/d stimuli, though, the response to the 
local letter could here be selected from an early, incomplete stimulus representation. 
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Two hypotheses could be tested with the present experiment. The first is that re-
sponse conflicts are necessary to induce hemispheric asymmetries in global/local 
processing. If so, then one should obtain respective VF-effects only with conflicting 
stimuli (conflicting/d and conflicting/s). The second hypothesis is that the hemi-
spheres differ in their capacity to integrate the stimulus level and form. If this was 
true, then respective VF-effect should only show up with stimuli where such integra-
tion needs to be performed (non-conflicting and conflicting/d). The factors in the 
second experiment were target level (global, local), visual field (LVF, RVF), and 
stimulus type (non-conflicting, conflicting/d, conflicting/s), which were all random-
ized.  

Results & Discussion 

Latencies of correct responses and error rates were subjected to an ANOVA with 
repeated measures on all factors. As in the first experiment, reliable VF-effects were 
only obtained with response latencies. The corresponding results are depicted in Table 
1. One can see that the global VF-effects were reliable for non-conflicting stimuli [37 
ms, F(1,15) = 17.30, p < .001] and for conflicting/s stimuli [22 ms, marginally signifi-
cant: F(1,15) = 3.53, p = .08]. The global VF-effect to conflicting/d stimuli was con-
siderably high, but not significant [23 ms, F(1,15) = 2.68, p = .12]. As well, none of 
the local VF-effects was significant.  

The most important results with respect to the hypotheses were interactions be-
tween target level and VF. When the data was collapsed over all stimuli, this interac-
tion was reliable [F(1,15) = 5.63, p < .05]. However, planned comparisons revealed 
that this would not hold for all stimulus types. Thus, the results are given separately 
for non-conflicting stimuli, conflicting/d stimuli and conflicting/s stimuli (see last row 
of Table 1). Here, the size of the interaction is expressed as the sum of global and 
local VF-effects. The value is higher the larger the expected hemispheric differences 

Table 1. Response latencies and visual field-effects (ms) to global and local targets in the 
second experiment. The last row shows the interaction between target level and visual field 
(VF, see results section for details) 

Target and VF Stimulus Type 
 non-conflicting conflicting/d conflicting/s 
Global    
 LVF 756 757 720 
 RVF 793 780 742 
Local    
 LVF 926 915 908 
 RVF 925 898 903 
    
VF-effects    
 Global 37c 23 22a 
 Local 1 17 5 
 Global + Local 38b 40a 27 
Note. a p < .10, b p < .05, c p < .001 
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are. Conversely, the value is lower if the expected hemispheric differences are small, 
or if one or both of the VF-effects point in the unexpected direction. 

In line with the results from former experiments, a reliable interaction between tar-
get level and VF was found for conflicting stimuli. This, however, only held for con-
flicti ng/d stimuli [ marginally significant: F(1,15) = 3.63, p = .08], but not for conflict-
ing/s stimuli [F(1,15) = 1.43, p = .25]. Mind that the interaction effect for the former 
type was considerably larger than that for the latter type (40 ms vs. 27 ms). As a sec-
ond major result, the expected hemispheric differences were also reliable with non-
conflicting stimuli [38 ms, F(1,15) = 6.79, p < .05]. Both results are clearly in odd to 
the hypothesis that response conflicts are a necessary condition for hemispheric 
asymmetries in global/local processing. Contrarily, the results support the notion that 
both hemisphere differ in their capacity to integrate the form and the level of com-
pound visual stimuli. 

Conclusions 

Both experiments showed again that hemispheric asymmetries for the processing 
of global and local stimulus aspects can be obtained if the subjects respond to con-
flicting stimuli. However, the data also suggest that response conflicts are not the only 
way to induce VF-effects. Rather, hemispheric asymmetries occurred also under other 
conditions that require a thorough stimulus evaluation, i.e. conditions where the 
stimulus level and form had to be integrated. Thus, the present data support Hübner 
and Malinowski’s feature-integration account of hemispheric asymmetries in global/ 
local processing.  
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Abstract. We present a system for tracking persons which is suited for
environments with a constant as well as a moving background. It is based
on a variant of the condensation algorithm and is capable of combining
the outputs of several measurements, so that it can be considered as
a multimodal tracking system. The measurement modes which are cur-
rently implemented are a pseudo 2-dimensional hidden Markov model
(P2DHMM), a color based skin finder, and a motion detector. The pur-
pose of the combination of several modes is to make the tracking system
more robust in critical situations by combining the individual strengthes
of different modes. The architecture of this tracking system is described
and some exemplary results are depicted.

1 Introduction

The tracking of moving objects in video sequences is a major problem in the
area of visual surveillance and vision-based man-machine-interfaces. We have
proposed approaches where the main goal was the possibility to track persons
in front of moving backgrounds. For this we used a combination of a pseudo 2-
dimensional hidden Markov model (P2DHMM) and a Kalman filter (see e. g. [1,
5]). This combination delivered good results, and so the question arose how this
approach could further be improved with regard to robustness and the possibility
of handling occlusion effects.

Because it seems that each method for locating a desired object has its spe-
cific advantages and disadvantages, one could try to combine the advantages of
different measurement methods and at the same time to overcome their special
disadvantages. This leads to the idea of so-called multimodal tracking methods,
where several modes are exploited in order to increase the robustness of a track-
ing algorithm under real-world conditions.

The two basic problems when developing a multimodal tracking system are
firstly to select and implement the different modes and secondly to successfully
combine this modes. The approaches that we investigated here are a combination
of a P2DHMM with a skin finder or a motion detector for person tracking. The
motivation for this choice was to sustain our proven P2DHMM system as one of
the modes in our new multimodal system. As second mode a color based skin
finder has been considered to be a good complementary information source, since
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skin and face information is not explicitly considered in the P2DHMM (which
operates on gray level images) and especially since this second mode would be
suitable to recover the tracking process in case of occlusions of the lower body.
As a third mode a motion detector has been used, which robustly works on im-
age sequences with a constant background. The tracking modes are merged in a
probabilistic way using the condensation algorithm [2]. The condensation algo-
rithm has found to be especially interesting for multimodal fusion since it offers
flexible methods for a stochastical combination of the conditional measurement
probabilities which are generated by the different tracking modes.

2 Principles of the condensation algorithm

The purpose of this algorithm is to describe the temporal propagation of con-
ditional densities, which can be decomposed into three temporal consecutive
steps, namely a deterministic drift, a stochastic diffusion and a reactive effect
of a measurement. This is also done e. g. by a Kalman filter, but the condensa-
tion algorithm has the advantage that it is simpler from a mathematical point of
view and therefore allows an uncomplicated combination of several measurement
modes, as will be shown later.

In the following text we denote the state of the modeled object at the discrete
time k as xk = x(tk) and its history as Xk = {x1,x2, . . . ,xk}. In an analogous
manner a set of image features is gathered in a measurement or observation
vector zk with the history Zk = {z1, z2, . . . , zk}. Using these symbols and Bayes’
rule the tracking problem can be formulated in terms of conditional probabilities:

p(xk|Zk) ∝ p(zk|xk)p(xk|Zk−1) (1)

The condensation algorithm uses a set of samples of the state vector to
approximate its conditional probability density function p(xk|Zk). This sample

set consists of N samples s
(n)
k , each weighted with the probability π

(n)
k which

is obtained from the measurement p(zk|xk = s
(n)
k ). Now the conditional state

density can be represented by the weighted sample set (s
(n)
k , π

(n)
k , n = 1 . . .N).

For a description of how this sample set can be obtained recursively from the
previous sample set and for further details see e. g. [2].

3 Computation of the conditional probabilities

The conditional probabilities π
(n)
k have to be acquired by a measurement within

the current image. Our approach is currently able to utilize three methods for
acquiring this measurement data, namely a P2DHMM, a skin finder, and a
motion detector.

The problem is now to evaluate a measurement vector zk which results from
one of the measurement modes (delivering e. g. a bounding box) in such a way
that we can compute the conditional probability of this measurement under the

condition of a given sample, expressed as p(zk|xk = s
(n)
k ). The relation between
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zk and xk is expressed by the measurement equation zk = H·xk+vk, where H is
the measurement matrix and vk is the measurement noise. If vk is white noise, it
is a reasonable assumption that the variable zk is a stochastic process that can be
characterized by a Gaussian distribution where Hxk can be considered as mean
value of the process. In this case the above mentioned Gaussian distribution
can be interpreted as the probability of the measurement vector zk under the

assumption that the sample s
(n)
k is the correct state vector, resulting in

p(zk|xk = s
(n)
k ) ∝ exp(−

1

2
(zk − Hxk)T

C(zk − Hxk)). (2)

In this function C denotes the covariance matrix which has to be chosen appro-
priately. The resulting probabilistic values are subsequently normalized so they
will sum up to 1.

The state vector x (and each sample vector s) consists of the components

x = [xc, yc, vx, vy, w, h]T , where xc and yc describe the center of a bounding box
with the width w, the height h and the velocity components vx and vy.

The functionality of this approach can be confirmed easily by the following
assumptions: If the current measurement vector zk is almost identical to Hxk,
then measurement and sample must be located very closely together (i. e. zk

confirms xk very well) and thus (2) will yield a very high probability for this
sample. It is therefore a suitable equation for the probabilistic interpretation of
the output zk of our various modes.

3.1 P2DHMM

The abbreviation P2DHMM stands for pseudo 2-dimensional hidden Markov
model. We will describe this method only very briefly here; for further details see
e. g. [4, 1, 3]. The model which we used consists of 20 states which are arranged
in 4 superstates (modeling columns) with each of them containing 5 normal
states. The model has been trained to several hundred images that each show
just one person surrounded by some arbitrary complex background. After this
training has been accomplished, an image containing a person can be presented
to the P2DHMM, and by means of the Viterbi algorithm the most probable state
sequence and assignment of states to image areas can be calculated. In this way
one obtains a segmentation of the image into person and background blocks.
From this segmentation a bounding box (the smallest rectangle with horizontal
and vertical edges that contains all pixels classified as person) and its center can
be extracted.

Furthermore, the velocity of this bounding box can be calculated as the
difference of the position of the center of the bounding box in the current frame
and its position in the previous frame. Because this value can be very volatile, we
smooth it by calculating a weighted mean value of the current velocity (70 %)
and the previous velocity (30 %). Thus the result of the measurement of the

P2DHMM will be a measurement vector of the form zP2D = [xc, yc, vx, vy, w, h]
T
,

and the appropriate measurement matrix is a unity matrix.
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3.2 Skin finder

As a second method for acquiring measurement data we use a simple implemen-
tation of a skin finder. The intention here was not to optimize this skin finder,
but to demonstrate how a second measurement can be integrated into our con-
densation based tracking approach. As will be shown later, this measurement
can have a strong positive influence on the tracking results, even if it is not
always very accurate.

The skin finder is based on an approach using color histograms and condi-
tional probabilities as it is described e. g. in [6]. The result of this measurement
will be a two dimensional vector which describes the center of gravity of the
skin colored pixels and has the form zskin = [xcog,skin, ycog,skin]

T
. Because this

point is expected to indicate the position of the face of a person, it will be po-
sitioned somewhat higher than the center of the bounding box by an amount
which can be estimated to be approximately 30% of the height of the bounding
box. Therefore, for the measurement matrix of the skin finder we use

Hskin =

[

1 0 0 0 0 0
0 1 0 0 0 −0.3

]

. (3)

3.3 Motion detector

As a third method for acquiring measurement data we use a motion detector.
Again here the intention was to demonstrate how another measurement can
be integrated into our condensation based tracking approach and thus improve
the tracking results. The motion detector bases on a calculation of differences d

between pixels i(x, y) in the current image and corresponding pixels in a reference
image according to

dk(x, y) = ‖ik(x, y) − iref(x, y)‖ (4)

and a subsequent thresholding. For those pixels with a difference exceeding the
threshold, a bounding box will be calculated, and its parameters (center, width,
height) are combined in a motion measurement vector with the components

zm = [xcobb,m, ycobb,m, wbb,m, hbb,m]
T

.

4 Combining multiple modes

A very interesting aspect of the condensation algorithm is the possibility to
rather efficiently integrate the data of several measurements. As mentioned in the
introduction, such a combination can make it possible to overcome disadvantages
of a single method and to combine the strong points of several methods.

The point where we merged our measurements into the condensation algo-

rithm is the calculation of the weights π
(n)
k for the sample vectors s

(n)
k . Thus, if

one has as for example two (normalized) measurement probabilities which are
obtained from (2), using different measurement vectors and appropriate mea-
surement matrices, the resulting sample weight is calculated by multiplying them
according to the equation

p(z1, z2|s
(n)
k ) = p(z1|s

(n)
k ) · p(z2|s

(n)
k ) (5)
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and a subsequent normalization. These modified sample weighting probabilities
will have a strong impact on the tracking result, which is now the result of a
multimodal fusion of different information channels.

5 Results

Some interesting results of our tracking algorithm are depicted in Fig. 1 and
Fig. 2, where the bold white bounding box indicates the expectation value of
the samples.

In Fig. 1 an indoor tracking scenario with a panning camera is depicted. Here
the major difficulty is that the legs of the person are partially occluded by the
desks in the foreground while the person is walking along behind them. Because
our P2DHMM was trained only to fully visible persons, it has some problems
in this case, and the tracker using only the measurement data of the P2DHMM
will fail after a while, as can be seen in the upper row. In the lower row however
we see the results after we combined the P2DHMM with a skin finder which is
calculating the center of the skin pixels in the upper part of the search region
(indicated by the large bounding box) which should be nearly the face of the
person. This measurement is indicated by a white cross. As can be seen, now
our tracker with combined resources is capable of tracking this sequence. If the
tracking process is solely based on the skin finder, it fails as well because this
measurement alone is quite unreliable. Thus, both modes support each other in
an optimal manner.

In Fig. 2 a typical outdoor surveillance scenario with a non moving back-
ground is depicted (data from PETS 2001). For this sequence we used a com-
bination of a P2DHMM and a motion detector. In the upper row we can see a
case where the system with the P2DHMM mode alone loses the track after a
while (see the third frame in this row), whereas in the lower row it can be seen
that after integration of the motion detector mode the system keeps the track.
In the last frame in the upper row a detailed result of the motion detector with
the detected motion area and its bounding box can be seen. Also here, the use of
the motion detector as single measurement mode will fail because other moving
objects (see the passing car in the second frame) are severely disturbing this
measurement.

6 Conclusion

In this paper we presented a novel approach for a multimodal tracking sys-
tem based mainly on a variant of the condensation algorithm and a P2DHMM.
The architecture of this system has been described and implemented, and some
exemplary results have been shown. The major innovation of our approach is
the computation of conditional probabilities from the measurement vectors and
the probabilistic mode fusion based on these values. Tests have shown that the
combination of several tracking modes is a suitable approach to increase the
performance of a tracking system in critical scenarios where a single approach
alone fails.
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Fig. 1. Tracking results on a difficult indoor sequence with partial occlusion of the
lower body. Upper row: Only P2DHMM. Lower row: P2DHMM combined with the
skin finder (indicated by a white cross). See text.

Fig. 2. Tracking results on a realistic outdoor surveillance sequence. Upper row: Only
P2DHMM. Lower row: P2DHMM combined with the motion detector (indicated by an
additional bounding box). See text.
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Abstract. ’Biological motion perception’ refers to the impressive abil-
ity of human observers to visually identify the motion of humans or an-
imals solely from the moving patterns of a small number of light points
attached to the body. Although the first experiments concerning the
perception of biological motion already took place in 1973 [1] the per-
ceptual mechanisms are still poorly understood. Based on experiments
with a novel biological motion stimulus Beintema and Lappe [2] recently
proposed that the perception of biological motion relies more on form
than on motion signals. We developed an ideal-observer-model which is
based on form information only. In various forced-choice experiments we
compared the model’s performance with that of human observers in psy-
chophysical studies. The model results showed striking similarities with
the data from human subjects. These findings lend additional support
to the idea that biological motion perception is based on an analysis of
sequential poses each derived from form signals.

1 Introduction

A walking human person produces a highly complex visual motion pattern. How-
ever, despite its non-rigidness and its many degrees of freedom this pattern can
be recognized by human observers in a fraction of a second. Johansson [1] re-
vealed that this is even true when the visible information is reduced to only a
few light points fixed on the joints of the walker. The information transmitted
by this ’point-light’ display, which is commonly presented as a computer ani-
mation [3], can be subdivided into motion and position signals (figure 1a). A
single frame of this animation provides form information via the joint positions.
A sequence of frames provides motion information via apparent motion signals
of the individual points. Since a single frame does not induce the percept of
biological motion in naive observers, many studies and models argued that the
rapid recognition of biological motion is based on motion signals [1, 4]. Interest-
ingly, however, some patients with lesions in the motion processing areas of the
brain are impaired in perception of general aspects of image motion but not in
the recognition of biological motion [5, 6].

Beintema and Lappe hypothesized upon these findings that the recognition
of biological motion is based on spatiotemporal integration of form information
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rather than directly on motion signals [2]. They created a new biological motion
stimulus by placing light points at random positions on the extremities rather
than on the joints, and then removed local motion signals by jumping points ran-
domly to new positions on the body for each animation frame. Psychophysical

position signal

motion signal

B:A:

Fig. 1. A: Subdivision of the signals from the walker into position and motion compo-
nents. B: The single-frame-lifetime (SFL) stimulus consisted of dots that changed their
position on the limbs randomly from frame to frame

studies with these ’single-frame-lifetime’ (SFL) stimuli showed that biological
motion was still perceived from this stimulus, and that two classical 2AFC tasks,
direction (SFL-Walker walking either to the right or to the left) and coherence
(upper and lower part of the SFL stimulus walking either in the same or in op-
posite direction) discrimination, could be performed reliably [2]. In the present
work, we developed an ideal-observer-model based on position signals in order
to obtain a quantitative grasp on the role of position information in the per-
ception of biological motion. We analyzed model behavior and compared it to
experimental data.

2 Methods

2.1 Experiments

For the classical biological motion stimulus, we used an algorithm adapted from
Cutting [3]. It computes the joint positions for a point-light display (classical
walker) giving the impression of a person walking on a treadmill. For the SFL
stimulus, the point-light positions were computed to be somewhere between the
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joints, the exact placement changing randomly from one frame to the next. The
walker subtended 5 by 11 degrees of visual angle and consisted of white dots.
Each animation frame was shown for 52ms. The entire stimulus lasted 2.1s. Ref.
[2] provides more detailed information on the stimulus.

In each experiment 2-6 observers participated. They watched the walker stim-
ulus on a dark monitor screen and performed one of several discrimination tasks.

2.2 Simulations

Experimental discrimination tasks were recreated in model simulations. The
model used an internal standard of a human walker. We recorded the limb
movements of 9 human walkers with a motion tracking system (Ascension Mo-
tionStar). A step cycle of the average of these walkers was subdivided into 100
temporally equidistant frames acting as the internal model of the limb configu-
rations of a human walker during a step cycle. For every stimulus frame in the
experiment simulation, the model computed the mean distances between the
dots in the stimulus frame and the limbs for each frame of the internal standard
(figure 2b). The decision for every stimulus frame was then based on the set of
standard frames with the minimum distance.

B:A:

Fig. 2. A: The internal standard consisted of a step cycle of an average human walker
subdivided into 100 frames, B: The model’s decision is based on linear distance mea-
surements between internal standard and stimulus

In the case of right/left discrimination the model’s internal standard con-
sisted of 100 frames of a walker facing and walking to the right and the same
number of frames for a walker moving to the left. After the entire stimulus se-
quence was analyzed, the single answers for each stimulus frame were averaged
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to yield an over-all decision. The same approach was taken in the case of coher-
ent/incoherent discrimination, the only difference being that the model’s internal
walker was subdivided into upper and lower part of the body, a left/right decision
was made for each part separately, and then the two decisions were compared
for coherence. In both tasks, the model’s decisions were therefore based entirely
on position information and did not include apparent motion signals between
frames.

In the model, we must take into consideration that because of visible per-
sistence [7] for frame durations smaller than 100 ms the number of point-lights
perceived at any moment in time is more then the number shown on the display.
For instance, for 52 ms frame duration the number of points perceived is about
twice the number of dots presented in one frame. To mimic the effect of visi-
ble persistence, the model always superimposed any individual frame with the
immediately preceding one.

3 Results

3.1 Influence of number of points

As a first quantitative determinant of form information we varied the number
of points per frame in several 2AFC tasks. In the direction task, model and
human observers had to judge whether the SFL-walker was facing to the right
or to the left. In the coherence task they had to discriminate between a coherent
and an incoherent walker. A step cycle of the stimulus consisted of 40 frames
with a duration of 52 ms (5 monitor refreshes) each. Figure 3a,b shows that the
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Fig. 3. Comparison of correct answers between model and psychophysical data for A:
right/left - , B: coherent/incoherent - and C: forward/backward discrimination

percentage of correct answers increased with rising number of points, both for the
model and for the human observers. The similarity between model and human
data is surprising as the model does not use any information about the local
motion of the points nor about the sequence of the frames. This suggests that
the major information used by human observers in the direction and coherence
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tasks is frame-by-frame position information, rather than motion signals derived
from an analysis of the frame sequence.

We next wished to study a task which cannot rely on form information alone,
but which requires sequence analysis. Therefore, we asked observers in a further
experiment to discriminate a forward moving display from a backwards moving
display. This required the analysis of temporal order over animation frames. The
model computed again the distance measures for individual frames but thereafter
took the temporal order of the frames into account. Again, performance strongly
depended on the number of points per frame (figure 3c). However, the slope was
not as steep as for the two previous tasks and performance did not reach 100
percent. Nevertheless, model and psychophysics were again strikingly similar.

3.2 Influence of point lifetime

Beintema and Lappe [2] investigated the potential contribution of local motion
signals by prolonging the time over which each light point stayed at one position
before jumping to another position (52, 104, 208, or 416 ms) in the direction
discrimination task. They argued that if local motion contributes to the percep-
tion of biological motion one would expect the percentage of correct answers to
increase with prolonged lifetime. But instead of an increase the performance re-
mained constant or showed even a slight decrease with longer lifetimes. Beintema
and Lappe speculated that perhaps the reduction in the number of independent
position samples that resulted from the increased lifetime led to the decrease in
performance.

Model simulations supported this hypothesis (figure 4) as they revealed the
same qualitative and quantitative behavior as psychophysical data. This confirms
that human observers do not take advantage of additional motion signals. Instead
the reduced position information leads to a decline in correct perception rate.
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Beintema and Lappe [8] also investigated the potential contribution of local
motion signals in the forward/backward discrimination task. In this task, too,
prolonged point lifetime did not aid performance. Model simulations showed
again similar behavior. No positive influence of prolonged lifetime on the correct
answers was observed. This strengthens the conclusion that motion signals do
not contribute to performance in this task.

4 Summary and discussion

We investigated the role of position signals in the perception of biological mo-
tion using a novel biological motion stimulus that allowed to vary the availability
of motion signals. We compared psychophysical studies with an ideal-observer-
model that relied only on position information. All experiments revealed striking
similarities between model and human data. This suggests that perception is pos-
sible from the analysis of form information alone. The model demonstrated that
two common psychophysical tasks, direction discrimination and coherence dis-
crimination, could be solved with the same accuracy as human observers without
using any motion information. A further task, the discrimination between for-
ward and backward display of a walking person, clearly involved a judgment of
motion direction. The model was able to solve this task with the same accuracy
as human observers by first analyzing static postures of single frames and then
the order of frames in the sequence. Thus, also in this case visual motion signals
were not needed.
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Abstract. A framework is outlined that can be employed to obtain gender and 
other characteristics of the agent from human motion patterns and subsequently 
use this information to synthesize motion with particular, well-defined 
biological and psychological attributes. The proposed model is based on the 
statistics of a data base of motion capture data. Based on linearization of the 
motion data, a motion space is defined which is spanned by the first few 
principal components obtained from the data base of input walkers. Using 
biological and psychological traits attributed to the input walkers, linear 
discriminant functions are computed which define vectors in the motion space 
that generalize the respective trait. These vectors are in turn used to generate 
walking patterns with the respective properties. 

1 Introduction 

Biological motion contains plenty of information about identity, personality traits and 
emotional state of the moving person. The human visual system is extremely sensitive 
to retrieve such information from motion patterns. We can recognize a familiar person 
by the way he or she walks and we can attribute gender and age as well as psycho-
logical attributes such as personality traits and emotions to an unfamiliar person with 
motion being the only source of information. We are also extremely sensitive in 
detecting deviations from natural behaviour. The high degree of perceived realism of 
modern computer graphics in animated movies and computer games is often disturbed 
by the fact that the animated movements are perceived to be unnatural. For modern 
atavars or in the case of virtual replacements of real actors (“virtual stunt men”) the 
observer is not supposed to even realize that the real actor is temporarily replaced by a 
digital character. To achieve the desired realism, there is considerable demand on 
methods to synthesize psychologically convincing biological motion. 
I want to outline a framework that can be employed to obtain parameterizations of 
biological or psychological attributes from human motion. Subsequently, I will use 
this information to synthesize motion with the respective attributes. Gender 
classification is used as the main example, but I also present examples of how the 
framework can be applied to other attributes. 
The data material to start with is raw motion capture data, i.e. the three-dimensional 
trajectories of discrete points on a persons body. The primary goal is to transform 
those data into a representation that would allow us to apply standard methods from 
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linear statistics and pattern recognition. Such representations have been termed 
“morphable models” [1-3] in the computer vision community, expressing the fact that 
the linear transition from one item to a second item of the data set represents a well 
defined, smooth metamorphosis. Another term that has been used for the same class 
of models in the context of human face recognition is “correspondence-based rep-
resentations” [4,5]. This term focuses on the fact that morphable models rely on 
establishing correspondence between features across the data set resulting in a 
separation of the overall information into range specific information on the one hand 
and domain specific information on the other hand [6]. 
The procedure developed in the present study contains elements of earlier work on 
parameterizations of animate motion patterns [1,7-10]. Unuma [7] showed that 
blending between different motions works much better in the frequency domain. At 
least for periodic motions, such as most locomotion patterns, Fourier decomposition 
can be used to achieve efficient, low-dimensional, linear decompositions. In fact, 
decomposing the time series of postures of a single walking person by means of 
principal component analysis reveals components, which are almost similar to Fourier 
components [10]. This demonstrates that Fourier decomposition of walking data is 
nearly optimal in terms of covering a maximum of variance with a minimum of 
components. 
The focus of the current study is to obtain a system that is sensitive enough to extract 
biologically and psychologically relevant attributes. Based on the linearization of the 
motion data, a motion space is defined which is spanned by the first few principal 
components obtained from a set of input walkers. Within this space, linear 
discriminant functions are computed that generalize the respective trait. Those vectors 
are in turn used to generate walking patterns with the respective properties in a psy-
chologically convincing manner. 

2 Linearization of motion capture data 

For the current study, twenty men and twenty women, most of them students and staff 
of the Psychology department of the Ruhr-University served as models to acquire 
motion data. A set of 38 retroreflective markers was attached to their body. 
Participants wore swimming suits and most of the markers were attached directly to 
the skin. Others, like the ones for the head, the ankles and the wrists were attached to 
elastic bands and the ones on the feet were taped onto the subjects’ shoes. 
Participants were then placed on a treadmill and were asked to walk. They could 
adjust the speed of the treadmill such that they felt most comfortable. To ensure that 
they did not feel too much under observation and that they did not “perform” in an 
unnatural manner, we let them walk for at least 5 minutes before we started to record 
20 steps (i.e. 10 full gait cycles) from each of them. 
Recording was done by means of a motion capture system (Vicon 512, Oxford 
Metrics). The system tracks the three-dimensional trajectories of the markers with 
spatial accuracy in the range of 1 mm and a temporal resolution of 120 Hz. 
Based on the trajectories of the 38 original markers, we computed the location of 
“virtual” markers positioned at major joints of the body. The 15 virtual markers used 
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for all the subsequent computations where located at the ankles, the knees, the hip 
joints, the wrists, the elbows the shoulder joints, at the center of the pelvis, on the 
clavicula and in the center of the head. 
The walk of an individual subject can be regarded as a time series of postures. Each 
posture can be described in terms of the position of the 15 markers. Since three 
coordinates are needed for each position the representation of a single posture is a 45 
dimensional vector p=(m1x, m1y, m1z, m2x ... m15z)

T . 
Linearization of the data was achieved in two steps. In the first step, the series of 
postures obtained from a single walker j was decomposed into a second order Fourier 
expansion: 

pj(t) = pj,0 + pj,1 sin( � jt) + pj,2 cos( � jt) + pj,3 sin(2 � jt) + pj,4 cos(2 � jt) + errj (1)

The power carried by the residual term err is less than 3% of the power of the input 
data and we discard it from all further computations. A particular subject’s walk is 
therefore approximated by specifying the average posture pj,0, the four characteristic 
postures pj,1, pj,2, pj,3, and pj,4, and the fundamental frequency � j. Since each of the 
components is a 45 dimensional vector, the dimensionality of the model at this stage 
is 226=5 � 45+1. 
Although this number already reflects a considerable reduction in dimensionality as 
compared to the raw motion capture data the number of effective degrees of freedom 
within the database is probably much smaller. For classification purposes it is 
necessary to reduce the dimensionality of the representation such that the number of 
dimensions becomes much smaller than the number of items represented in the 
resulting space. 
The advantage of the above representation is, that it provides the possiblity to 
successfully apply linear operations.  Linear combinations of existing walking 
patterns result in new walking patterns which meaningfully represent the transitions 
between the constituting patterns [7,10]. We can therefore treat the 226 dimensional 
vector describing the walk wj of walker j as a point in a linear space of the same 
dimension and apply linear methods. 
This makes it also possible to use principal components analysis in order to further 
reduce dimensionality. Applying PCA to the set of walkers W results in a 
decomposition of each walker into an average walker v0 and a weighted sum of 
Eigenwalkers vk.

wj = v0 + 
�

ki,jvi
(2)

or in Matrix notation: 

W = V0 + VK (3)

V0 denotes a matrix with the average walker v0 in each column. The matrix V contains 
the Eigenwalkers as column vectors vi. Matrix K contains the weights (or the scores) 
ki, j and is obtained by solving the linear equation system: 

VK = W - V0 (4)

The variance of the first 15 components sums up to 80% of the overall variance. 
Truncating the expansion (Eq. 2) after the 15th term thus means loosing 20% of the 
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overall variance. For all further computations we used a space spanned by just those 
first 15 Eigenwalkers. 

3 Gender discriminant function 

Given this relatively low-dimensional linear representation of human walking 
patterns, we can now construct a linear classifier c accounting for gender-specific 
differences in human walking. This is achieved by finding the best solution 
(according to a least-square criterium) of the overdetermined linear system 

cK = r (5)

r is the row vector containing 80 values rj accounting for the desired output of the 
classifier. rj equals 1 if walker j is male and -1 if the walker is female. K is the matrix 
containing the coefficients of each walker in the 15-dimensional Eigenwalker space. 
The resulting row vector c contains the coefficients of the linear discriminant function 
best accounting for the gender of the walkers. 
The invertibility of the representation can be used to visualize what is happening 
along this discriminant function by displaying walkers wc, �  corresponding to different 
points along this axis as point-light displays or stick figure animations: 

wc, � = w0 + � VcT (6)

As above, w0 denotes the average walker. The matrix V contains the first few 
Eigenwalkers - one in each column. As �  changes from negative to positive values 
the walker appears to change its gender. On our Web page (http://www.bml.psy.ruhr-
uni-bochum.de/Demos/WDP2002.html), such animations can be viewed and interac-
tively manipulated by changing the value of ���
We have therefore retrieved a vector c that generalizes the attribute “gender” in the 
obtained motion space. Adding or subtracting this vector from a given walker makes 
its appearance more male or more female, respectively. The same procedure can be 
used to extract vectors accounting for other attributes as well. For our database, we 
registered for every walker a number of easily available attributes such as sex, age 
and weight. In addition to being able to change the perceived gender of a walker, the 
above mentioned demonstration also visualizes a dimension obtained from using the 
weight of the walker to compute a respective discriminant function. Light and heavy 
walkers show clear differences which are easily extracted by our visual system. 
Other attributes, however, are not directly available but have to be determined 
through psychophysical experiments. In such experiments, observers are presented 
with displays of the 80 walkers and have to rate them on a 6 point scale with respect 
to the respective attribute. Here, we report the results of rating two different emotional 
attributes: happiness vs. sadness, and nervousness vs. relaxedness. 



�������� �� 
 � 
 � � 
 ��� � � ��
�� 
\� � � �7��� �� � 
 � �7��� ��� 
���� ��� � ��� ��� �5� � ���O� � � �

4 Psychophysical determination of emotional attributes 

The walking patterns were displayed on a computer monitor as point-light displays 
subtending 5 deg of visual angle. Each of the 15 markers that were used for the above 
computation was rendered as a white dot on a black background using orthographic 
projection from one of three different viewpoints (0 deg = frontal view; 30 deg; 90 
deg). The display therefore shows the positions of the major joints of the body 
changing over time. This results in a vivid percept of a walking human body without 
providing any information about the person except the one carried by the motion itself  
[11]. Point-light displays have been widely used in experimental psychology in order 
to isolate biological motion from other cues about identity, psychological and 
emotional attributes of a person [12-17, to mention just a few of the classic papers]. 
A single rating session consisted of 80 trials with each walker shown once for 7 s in a 
randomized order. All walkers within one session were shown from the same 
viewpoint. In order to indicate their rating observers had to hit one of 6 buttons dis-
played on the top of the screen above the point-light display by using the computer 
mouse. An intertrial interval of 3 s, during which a blank screen was shown, separated 
the trials. Six observers participated in the experiments. For three observers the most 
left and right buttons were labeled “happy” and “sad”, respectively. The other three 
observers were presented with the labels “nervous” and “relaxed”. Each observer 
carried out three sessions, one for each viewpoint, with short breaks between the 
sessions. The order of the three sessions was counterbalanced across observers. 
The average of the ratings (across the three observers in each group and across the 
three different viewpoints) was used to form a vector r which, in turn, was used to 
compute the respective discriminant function c according to Equation 5. The 
animation at http://www.bml.psy.ruhr-uni-bochum.de/Demos/WDP2002.html
visualizes the results. Animations both along the happy-sad axis as well as along the 
nervous-relaxed axis give a clear percept of a change in the respective emotions of the 
walker. 

5 Discussion 

Visualizing the respective discriminant functions shows that we have really captured 
the particular attribute and that the resulting walker vividly changes its characteristics 
in accordance with the intended characteristic. In all four cases examined so far, 
changes are a complex composite of structural and dynamic properties of the walker. 
For instance the exaggerated male walker has wider shoulders than hips whereas in 
the female walker this ratio reverses. Male walkers display considerable lateral body 
sway whereas this is not the case for female walkers. Hip motion in male walkers is 
180 phase shifted with respect to the hip motion in female walkers. The position of 
the elbows is very different in male and female walkers. Men tend to hold their 
elbows away from the body whereas women hold them close to the body. In general, 
the exaggerated man seems to attempt to occupy much more space than the 
exaggerated woman -- a display not unique to the human species. 
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The differences in walking between light and heavy walkers are much harder to 
describe. Heavy persons have a somewhat smaller gait frequency and vertical 
movement components seem to be more pronounced in light-weighted walkers as 
compared to heavy walkers. However, there remains a discrepancy between the clear 
percept of a change in weight and the ability to identify the sophisticated composite 
features that communicate this information. The power of the proposed method for 
generating characteristic motion, however, is that it is not necessary to specify the 
features that carry the impression of changing biological or emotional attributes 
explicitely. Instead, we can extract them in terms of the statistical features of a data 
base that contains variations along the dimensions of interest. 
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Abstract. We describe an approach for the autonomous detection of
skin-colored moving objects in man-machine-interaction scenarios. Based
on low-resolution video images from an optically and mechanically un-
calibrated low-quality camera, a simple image-processing algorithm ex-
tracts two visual cues from the scene: color and movement. By fusing
these cues in real time, an implementation of the approach detects and
tracks important scene-elements such as the moving hand or the face of
a human interaction partner. The system builds a substantial part of an
upcoming multimodal man-machine interaction system for mass-market
applications.

1 Man-machine-interaction for mass-market applications

Currently, keyboard, mouse and text-based output on the monitor are still the
most common means of communication between man and computer. However,
regarding the tremendous development in speech recognition, image processing
and virtual reality, it becomes obvious that in the future it will be possible to
interact with machines by means of more natural communication channels such
as speech, gestures and mimics. Although highly specialized solutions do already
exist, the real breakthrough will happen once the systems become cheap, stan-
dardized and robust enough to be integrated in mass-market devices available to
everyone (see Fig. 1). A major driver for this development will be the availability
of robust recognition techniques which put only low demands on the hardware
and processing power. These techniques should require only a minimum of cal-
ibration and adaptation by the user and no specific setup of the environment.
In this paper we describe such a robust recognition technique which is able to
track dynamic human hand movements based on ultra low-resolution video im-
ages from an optically and mechanically uncalibrated webcam. The aim is to
implement a means of specifying and selecting objects displayed on a computer
monitor just by pointing at them (see Fig. 1 and [2]).

2 An image-processing algorithm for extracting color and

movement

The basic idea of our approach is the following: dynamic hand gestures are
characterized by two basic features which correspond to so-called early visual
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Fig. 1. Possible application of multimodal man-machine-communication in a virtual

shop scenario: the user communicates with an artificial personal assistant on his tv-
set (here in the lower right corner of the screen) by means of speech, gaze, pointing-
and head-gestures using uncalibrated cheap devices like webcam and microphone. A
combination with a video-conferencing system for the simultaneous communication
with human partners (upper right) is planned.

cues in neurobiology (see also [1]): the object to track (i.e. the hand) has a
specific color (i.e. the color of skin) and it moves in the image with a characteristic
speed. Of course, there are many more high-level cues, such as the form, texture
or specific trajectory which characterize a moving hand [3]. However, in order to
be fast and robust, we stick with the simplest approach that still does the job. For
similar reasons we want to get along with video from a monocular webcam only.
As capture format we choose 80x60-RGB video images from a camera standing
at an arbitrary position besides or on top of the monitor. The only requirement
is that the hand is visible by the camera when it points to any position on the
screen.

In the following, we describe our detection algorithm in detail. At first, the
video stream is transformed from RGB to the Hue-Saturation-Intensity (HSV)
color model in which H defines the so-called color-angle independently of the
overall intensity (compare also with [4]). The full 360◦ color-angle is mapped
onto the interval H ∈ [0, 1]. Human skin has an empiric color angle around 0◦,
so we generate a binary image Iskin(t) in which all pixels s in a small range
cos(2πHs) > cskin around the skin-color angle are set to Iskin(rs) = 1 while all
other pixels k vanish (i.e. Iskin(rk) = 0). The vector ri denotes the position of
the corresponding pixel i in the image. From the definition of the HSV-color
model it follows that for low intensity and saturation, the color angle is not well
defined. In the sunlight with high intensity V , white colored objects tend to have
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a color angle similar to the human skin. Therefore, we ignore pixels that exceed
an empirically chosen constant range for S and V . Summarizing, we have:

Iskin(ri) :=

{

1 if (cos(2πHi) > cskin) and (Si > cS) and (cV1 < Vi < cV2)
0 otherwise

(1)

Next, we extract movement from the intensity-image V using a dynamics

İmean(t) = α (V(t) − Imean(t)) (2)

which, depending on α > 0, follows the temporal change of the intensity image
V(t) over a time scale τ = α−1. In the difference image Idiff(t) = |V(t)−Imean(t)|,
only those areas appear that change on a time scale faster than τ . Hence, the
image Idiff(t) represents movement and the static background is suppressed (see
Fig. 2, upper right panel).

Fig. 2. Original video (upper left) in 80x60 resolution RGB24 captured by a webcam
on top of the monitor. The skin-image Iskin (lower left) and the difference image Idiff

(upper right) are multiplied to obtain the fused image Ifuse (lower right). The position
of the maximum of the fused image is fed into the tracking dynamics and marked with
a cross in the original image (upper left).

We are interested in movement of skin-colored objects only. Therefore, we
fuse the color information with the movement cue. Based on the binary nature
of the skin-color image Iskin(t), this can simply be done by multiplying the cue-
images pixelwise:

Ifuse(t) = Iskin(t) ∗ Idiff(t). (3)

In this fused image only those pixels appear that move and are skin-colored. We
estimate the overall amount of movement in the fused image by calculating the
number S(t) =

∑

i
(Ifuse(ri, t) > Imin) of pixels which exceed a level Imin.
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Finally, we simply track the maximum of the fused image by feeding its
pixel-position rmax(t) = arg maxi Ifuse(ri, t) into a fixed-point dynamics:

ṙv(t) = λ
tanh(S(t) − Smin) + 1

2
(rmax(t) − rv(t)) (4)

Herein, Smin is a parameter which guarantees that the movement is only tracked,
if it exceeds a certain amount, i.e. if the number of active pixels in the fused
image exceeds a given threshold. The dynamics (4) ensures that only continuous,
smooth hand movements on the time scale λ−1 are tracked while spontaneous
jumps (e.g. due to sensor noise) are filtered out.

3 Cursor control by means of pointing gestures

By setting the parameters appropriately (for their concrete values see next sec-
tion), the algorithm can find and track any skin-colored moving object in the
video image. However, for man-machine-interaction tasks, the machine must
know the pointing direction in the current scene, i.e. in real world coordinates.
Therefore, a method must be found which transforms the video-image-based
coordinates rv(t) into normalized coordinates rs(t) on the computer screen.

An exact form of this transformation could be derived on the basis of the
relative position of the camera with respect to the screen and the distance be-
tween hand and camera. While the former requires a mechanical calibration of
the camera, the distance information can only be obtained by using complex
algorithms like optical flow analysis or by means of a stereo camera system.

However, for the applications we have in mind, neither a stereo camera nor
an exact mechanical calibration is possible: the system should work already after
just placing a webcam on top of the monitor. On the other hand, for the virtual
shop scenario no high precision cursor control is required as only objects which
cover large portions of the screen are to be selected by the pointing gesture.
Therefore, we implemented a very simple method similar to the classical mouse
control: we assume that all possible coordinates rv(t) cover roughly a rectangular
region in the video image and map this region onto the rectangular screen by
the following transformation:

rs(t) :=
rv(t) − rlo

rhi − rlo

(5)

The vectors rlo and rhi represent the lower left and the upper right corner of
the rectangle in the video image. These vectors are determined during an initial
calibration phase in which the user is asked to point to the lower left and upper
right corner of the monitor. The normalized screen coordinates rs(t) are used to
control the position of the mouse pointer of the operating system.

4 Experimental results

We have implemented the algorithm in the form of a small MATLAB program
(30 lines of code) using the vfm-capture plug in [5] and a Winnov PCMCIA-
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Camera on Microsoft Windows. Using a video-resolution of 80x60 pixels and
setting the parameter values cskin = 0.85, cS = 0.05, cV1 = 0.3, cV2 = 0.9, α =
0.9, Imin = 0.1, λ = 0.1 and Smin = 20, hand movements can be tracked robustly
independent of the user’s tone of skin, the actual lighting conditions, the back-
ground and the position of the camera: as long as the hand is in the camera’s
field of view and represents the only skin-colored moving object, its movement
is tracked (see Fig. 3). Due to the extreme simplicity of the algorithm, problems

Fig. 3. Robust hand-tracking in the presence of skin-colored but static distractors
(upper left), with different camera position (lower left), for different persons (upper
right) and with difficult lighting conditions (lower right).

arise when in addition to the hand another skin-colored object moves through
the field of view. In that case, the system may switch from the hand to tracking
the distractor. In practice this happens, for instance, when the user adjusts his
seating position and moves his face or when other people move behind the user.
However, as the user can observe the state of the tracker at any time, he can
attract the ”attention” of the system again by waving the hand anytime a track-
ing error is detected. In an interactive man-machine-communication scenario this
behavior appears to be quite natural.

The transformation from video image coordinates to screen coordinates works
relatively robust: in all experimental runs it was possible to use the screen co-
ordinates rs(t) for controlling the windows mouse cursor. By reducing the task
to the selection of one of nine rectangular areas on the screen, even naive users,
who were unfamiliar with the operation of the system, were immediately able to
select the corresponding regions by means of pointing gestures (see Fig. 4).
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Fig. 4. Selecting rectangular areas on the screen by means of pointing gestures (here,
the lower middle region was selected). The rectangle on the video image (upper left)
indicates the region (rhi, rlo) resulting from the calibration phase.

5 Conclusion and outlook

We have presented a simple algorithm for tracking skin-colored moving objects
based on the visual cues color and movement. The robustness against varying
lighting conditions, camera position and background allows non-experts to use
the algorithm in uncontrolled real world applications. The algorithm operates on
low level sensor information (images) only and can be implemented in a highly
parallel manner. The concept of cue-fusion by multiplication allows for a seamless
integration of additional information such as a detector which separates head-
from hand-movement.

Our work proves that high level behavior such as the robust visual tracking
of specific objects can be generated by the direct fusion of low level (i.e. early)
sensor information.

Future work will deal with the separation of head- from hand-gestures by
means of additional cues and the integration of the algorithm into a multimodal
man-machine-interaction scenario.
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Abstract. The results of single-unit recordings from area MST during the 
execution of smooth pursuit eye movements suggest that these neurons code for 
the target movement within an external frame of reference. We support this 
assumption by the results of electrical stimulations within area MST. 
Stimulation affects the ongoing pursuit in a predictive and consistent manner 
according to the preferred direction at a given site. We observed more 
pronounced effects of stimulation if the target was absent during stimulation.  

1 Introduction 

One important consequence of the processing of dynamic visual scenes is the 
execution of smooth pursuit eye movements (SPEM). The spatial resolution of our 
visual system declines dramatically with eccentricity. Therefore we are constantly 
performing saccades (up to five per second) to direct the fovea towards items of 
interest in our visual surround and to utilize the high spatial resolution of foveal 
vision. Whenever such an item moves, we execute SPEM to maintain the retinal 
image of this item on or near the fovea. It is well established that the neuronal activity 
in the middle superior temporal area (MST) in the posterior parietal cortex of non-
human primates is involved in the generation of SPEM (see Ilg 1997). Here, we 
address the question whether this area processes exclusively visual information or, 
alternatively, processes visual and extra-retinal information. 

2 Pursuit-related activity recorded from area MST 

Whenever neuronal responses are recorded during execution of SPEM, the origin of 
this activation has to be determined carefully. One possible source is self-induced 
retinal image motion if pursuit was performed across a visible background such as the 
borders of a computer monitor. To avoid this source, the pursuit experiments have to 
be executed in an absolutely dark laboratory equipped with a back-projection system 
onto a tangent screen for the visual stimuli. Another visual source is the retinal image 
motion of the target itself. Since SPEM can only be performed in the presence of a 
moving target, it is very diff icult to avoid retinal image motion of the target itself. We 
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decided to use an imaginary target defined by peripheral visual cues. We initially 
trained the monkeys to track the centre of an hour glass. The imaginary target 
consisted of the hour glass with a blanked central area. We previously reported that 
rhesus monkeys could be trained to direct their eyes towards an imaginary target (Ilg 
and Thier 1999). Figure 1 shows the spike rates of an individual neuron in area MST 
during pursuit of the real and imaginary targets. A statistical analysis revealed that the 
responses to both targets were not significantly different. Based on the results from 
passive visual stimulation, we were able to exclude the possibilit y that the response to 
the imaginary target was due to stimulation of peripheral parts of the receptive field. It 
is important to note that we did not observe this independence of discharge rate from 
type of pursuit target when we recorded from the middle temporal area (MT). As 
others (Newsome et al. 1988; Thier and Erickson 1992), we conclude that individual 
neurons in area MST encode target movement in space based on a combination of 
retinal image motion and eye movement related signals.  

 

 

Fig. 1.  Responses of a neuron recorded from Area MST during pursuit towards real (A) and 
imaginary target (B). The real target consisted of an hour glass (size 20°); in the case of the 
imaginary target, the central area (12°) was blanked. The upper row of raster display and the 
black spike density functions give the response during pursuit in the preferred direction; the 
lower row and the gray density functions the response in the non-preferred direction. 

3 Intracortical microstimulation within area MST 

To verify the above mentioned hypothesis, we applied intracortical microstimulation 
(ICMS) within area MST at sites with known preferred direction during  the execution 
of SPEM. The specific location of area MST was determined during the above-
mentioned single-unit study. We used ICMS in two different pursuit conditions. In 
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both conditions, a fixation target was presented in the centre of a tangent screen. 
Visual targets were back-projected onto this screen in absolute darkness; the borders 
of the projection screen were not visible for the monkey. After a fixation period of 
1000 ms, the pursuit target started to move at a constant velocity (10 °/s). Stimulation 
current ranged from 40 µA to 120 µA. Stimulation started 200 ms after the onset of 
target movement and lasted for 200 ms. In the first condition, the moving pursuit 
target was visible while we applied ICMS. In the second condition, the target was 
switched off during the ICMS period. To determine exactly the stimulation effect, we 
sampled eye movement data during identical control trials lacking ICMS. Each 
condition was measured ten times; trials of all conditions were presented in 
randomized order. The initiation of SPEM is accomplished by the time of the initial 
saccade. Post-saccadic enhancement guarantees that eye velocity matches target 
velocity after the initial saccade (Lisberger 1998). Since this saccade always appeared 
during ICMS (mean saccadic latency 394 +- 96 ms, n=11840), we decided to use the 
post-saccadic eye-velocity (50 ms time window) to quantify the effect of ICMS. We 
compared eye velocity from stimulated trials with eye velocity from non-stimulated 
trials to calculate a vector of stimulation effect (VSE) for each measured pursuit 
direction. Figure 2 shows a typical example of the effects of ICMS in area MST 
during execution of SPEM. Single trials were aligned to the end of the initial saccade 
and median eye velocity traces were calculated. As Figure 2A shows, ICMS 
influenced post-saccadic eye velocity. If the direction of pursuit was in the preferred 
direction of the stimulated site, the stimulation yielded an increase in post-saccadic 
eye velocity. This effect of ICSM was stronger if stimulation was applied when the 
pursuit target was switched off, but did not change its direction. 

 

 
Fig. 2. Mean eye velocities during execution of SPEM in the preferred direction at the 
stimulation site. Single trials were aligned to the end of the initial saccade. Bold eye velocity 
profiles represent the eye velocity obtained from stimulated trials; normal profiles represent 
control trials without ICMS. The occurrence of ICMS in the individual trial is indicated by the 
horizontal lines. In A, the pursuit target was visible throughout the entire trial; in B the target 
was switched off during ICMS. The gray rectangles mark post-saccadic velocity. 

Figure 3 shows the effects of ICMS of another site for pursuit in four different 
directions and the resulti ng VSE for each condition. The direction of the VSE was 
more or less independent of pursuit direction. By adding the four vectors, we 
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determined the mean effect of stimulation at this site. Note that the direction of the 
mean effect was very similar to the preferred direction of the stimulated site. We did 
not observe any effects of stimulation on the behavior of the monkey other than the 
reported modifications of eye movements. 

 

Fig. 3. Effect of ICMS for four different (left, up, right and down) pursuit directions. For details 
see Figure 2. Thin arrows show the direction and strength of the stimulation in the specific 
condition. The black arrow in the center represents the mean stimulation vector, the gray arrow 
gives the preferred direction at this stimulation site. Only eye velocity profiles obtained during 
stimulation in the absence of the pursuit target are shown. 

4 Mean effects of ICMS 

So far, we tested the effects of ICMS during SPEM in 74 stimulation sites in area 
MST of one rhesus monkey. Stimulation of 53 sites gave significant modulations in 
post-saccadic eye velocity. These sites were presumably all located within the 
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posterior bank and floor of the sulcus temporalis superior (STS) known as MST-l. We 
did not observe a significant difference in the preferred directions of these sites and 
the direction of the observed stimulation vector (t-test p = 0.068). The distribution of 
the angular difference between the two directions is shown in Figure 4. 
 

 

Fig. 4. Histogram of the angular difference between the preferred direction during execution of 
SPEM and the obtained mean stimulation vectors for 53 stimulation sites that had significant 
effects on the ongoing eye movements. 

For all 53 stimulation sites, the mean absolute value of the VSE was 32% larger when 
the target was switched off during stimulation than when the target was visible for the 
complete trial. This difference in stimulation effect was significant (ttest, p=0.003). 
In a previous study by Born and colleagues (2000), it was shown that area MT 
consisted of neurons with either wide-field or local field response properties. 
Stimulation of sites with wide field response properties resulted in a modulation in the 
opposite direction to the preferred direction of the stimulated site, whereas stimulation 
of sites with local motion characteristics resulted in a modulation in the preferred 
direction. For 42 out of the 53 sites, we determined the size tuning of the neuronal 
response observed at the given site to a moving stimulus during fixation. The vast 
majority of sites (37 out of 42) did not show an increase in the neuronal response with 
stimulus size. Conversely, these neurons gave a maximal response to a rather small 
stimulus, suggesting local motion characteristics. So our finding that the stimulation 
vector was in the same direction as the preferred direction of the individual 
stimulation parallels the earlier description for local motion sites (Born et al. 2000). 
The absence of wide field neurons might be for one of the following reasons: either 
our actual data sample is simply too small or area MST-l only contains local motion 
neurons. Nevertheless, in our present data sample, we did not observe the restriction 
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of the stimulation effect to an increase in eye velocity in ispisversive direction as 
reported by others (Komatsu and Wurtz 1989).  

 

Conclusions 

The conclusions of our results obtained from intracortical microstimulation in area 
MST are quite straight forward: smooth pursuit eye movements were accelerated in 
the preferred direction of the stimulation site. The effect was more pronounced if the 
pursuit target was invisible during stimulation. If the pursuit target was visible during 
ICMS, a combination of signals related to retinal image motion, eye movement, and 
artificial stimulation occurred. On the other hand, if the pursuit signal was switched 
off during ICMS, a combination of only eye movement related signals and artificial 
signals occurred. This observation further suggests the notion that the discharge rates 
of neurons in area MST represent target trajectory in space which is computed by a 
combination of retinal image motion of the target with eye and head movement 
related signals.  
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Abstract On the basis of two different motion stimuli, we were able to 
demonstrate that rhesus monkeys perceive these stimuli and are able to track 
these stimuli with their eyes. However, we did not observe directionally 
selective activation of neurons in area MT and MST, commonly believed to be 
important for visual motion processing. We conclude that both perception of 
motion as well as final sensorimotor processing are achieved in cortical areas 
beyond areas MT and MST. 

1 Introduction 

It is well established that the processing of visual motion in the middle temporal (MT) 
and middle superior temporal (MST) areas in the posterior parietal cortex of monkeys 
is closely related to the execution of smooth pursuit eye movements (SPEM) (for 
review see Ilg 1997 and chapter of Ilg and Schumann) as well as the perception of 
visual motion (e.g. Celebrini and Newsome 1994, 1995). The properties of individual 
neurons in these areas are very well suited for these tasks since they code for the 
direction as well as for the speed of a moving stimulus. 
It was suggested that perception and action might depend on separate visual 
mechanisms (Goodale and Milner 1992). In order to ask whether this dichotomy also 
holds true for the processing of motion underlying motion perception and generation 
of smooth pursuit eye movements, we combined psychophysical, eye movement and 
single-unit response studies in awake and behaving rhesus monkeys. Specifically, we 
investigated whether directionally selective single-unit activity in areas MT and MST 
indicating the direction of a moving object is a necessary condition for the execution 
of SPEM as well as for the perception of motion. In addition to a first-order (fourier) 
motion stimulus, we used two other types of motion stimuli: a paradoxical second-
order motion stimulus and a visual-auditory multimodal motion stimulus.  
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2 Types of motion stimuli 

The paradoxical second-order motion type used in our experiments was the theta 
motion as described by Zanker (1993). In this stimulus, a rectangular patch of random 
dots moves over a dynamically flickering random dot background; the dots within the 
rectangle move in the opposite direction as the rectangle itself. Therefore, the local 
motion (motion of the dots) and the global motion (motion of the object) components 
are moving in opposite directions. As a control, we used the first-order motion 
stimulus, which consisted of an identical rectangle of coherently moving dots. It is 
important to note that the raw motion signal (number and velocity of the moving dots) 
is identical in these two stimuli. Only the relationship between the direction of dot 
movement and object movement differs between the two stimuli. 
The visual-auditory multimodal motion was produced by a horizontal array of 48 
LED and loudspeaker elements (distance between two elements: 0.95°). To generate 
the percept of motion, we activated the elements sequentially for 25 ms with a 
temporal gap of 25 ms. We activated either only the LED elements (visual motion), 
only the loudspeakers (white noise, auditory motion) or both (multimodal motion). 
This presentation resulted in an apparent motion of the stimulus at the velocity of 
18,7 °/s.  

3 Motion perception of rhesus monkeys 

We trained three rhesus monkeys to a direction discrimination task of the various 
motion stimuli used here. The monkeys had to fixate a central fixation point. Af ter a 
randomized time period, the motion stimulus was displayed while the monkeys had to 
maintain fixation. Following an additional delay, the monkeys had to report the 
perceived direction of motion by a saccade directed towards one of the two 
simultaneously presented saccade targets. 
All monkeys learned to report correctly the direction (leftward vs. rightward) of the 
presented stimuli (85% correct responses for the first-order stimulus, 78% for the 
theta stimulus, 93% correct responses for the visual and visual-acoustic stimuli, 76% 
for the acoustic stimulus). 

4 Smooth pursuit eye movements 

Having shown that the monkeys were able to discriminate the motion direction of the 
theta stimulus, we asked whether monkeys are able to perform SPEM to the theta 
stimulus. This was previously demonstrated for human subjects (Butzer et al. 1997, 
Lindner & Ilg 2000). After fixation of a central stationary target for a random period 
of time, the monkeys had to track as precisely as possible the ramp-like movement of 
the stimulus (10°/s). After a brief period of training, the monkey performed SPEM to 
the first-order and theta-motion stimuli. However, the steady-state eye velocity gain in 
the case of theta-motion (average of 0.6 for 46 periods of measurement including 
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about 7000 trials) was significantly lower (p<0.001) than the gain obtained for SPEM 
to a first-order stimulus (average of 0.9 for 3 periods of measurement including about 
1000 trials) (see Fig. 1). Periods of slow eye movements were interrupted by catch-up 
saccades which compensate for the insuff icient eye velocity during the SPEM 
periods. 

 

Fig. 1. Horizontal eye position and de-saccaded eye velocity elicited by a first-order (upper 
row) and by a theta-motion stimulus (lower row) moving at a speed of 10°/s. The monkey was 
able to perform steady-state SPEM (black arrow) to the two stimuli, however the SPEM was 
less precise when the theta stimulus was presented. Note that during initiation of SPEM (open 
arrow), the eye movements were transiently in opposite direction in case of the theta stimulus. 

As indicated in Figure 1, the initiation of smooth pursuit eye movements directed 
towards a theta stimulus foll owed the movement of the individual dots, i.e. were 
opposite to the direction of the moving object. In a study of human pursuit, we 
quantified exactly the eye acceleration. Although the raw motion signal in fourier and 
theta motion was identical, the elicited acceleration was significantly smaller in the 
case of theta motion (Lindner and Ilg 2000).  
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5 Single-unit responses recorded from areas MT and MST 

We recorded 38 neurons from area MT and 68 neurons from area MST in both 
monkeys performing the direction discrimination task. We only included those 
neurons which gave a direction selective response to the first-order motion stimulus. 
The receptive fields of the neurons recorded from area MT were slightly but 
significantly smaller than the fields from area MST. Besides this difference, we did 
not observe any other significant differences in the response properties of neurons 
from the two areas. 

 

Fig. 2. Responses of a neuron from area MST to first-order and theta-motion stimuli shown as 
raster display and spike density function. The left column shows the responses elicited by 
leftward stimulus movement, the right column shows the responses elicited by rightward 
movement. The preferred direction of the neuron is apparently inverted for the theta-stimulus in 
comparison to the first-order stimulus. Despite this apparent inversion of preferred direction, 
the monkey reported correctly the direction of the moving stimuli.  

Figure 2 shows the response of a typical neuron recorded from area MST. In the case 
of the first-order motion stimulus, the neuron showed a massive response to leftward 
motion. During presentation of the theta stimulus, the neuron responded to rightward 
motion. We made this observation in all 106 neurons recorded from areas MT and 
MST. Obviously, the neuron responded to the movement of individual dots in the 
display, not to the movement of the entire object. However, when we analyzed the 
sharpness of the directional tuning of the responses to fourier and theta stimuli, we 
found that the sharpness of the response to theta motion was reduced compared to 
fourier motion. This finding parallels exactly our finding related to the pursuit 
initiation elicited by the fourier and the theta stimuli. 
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It is important to note that area MT and area MST are organized in a retinotopic 
fashion. The motion information related to the object motion of the theta stimulus is 
possibly provided by correlated activation of neighboring parts of these areas which 
can be read out by a subsequent processing stage. 
The other type of motion stimuli consisted of the apparent motion of visual, auditory 
and multimodal stimuli. As mentioned above, our monkeys were able to report 
correctly the direction of the stimuli. However, when we recorded the neuronal 
responses during this task, we only observed responses to the visual and visual-
auditory moving stimulus as shown in Figure 3.  

 

Fig. 3. Response of a typical neuron recorded from area MST to visual, auditory and 
visual/auditory motion shown as raster display and spike density function. Although there was 
no response to the auditory stimulus, the monkey reported correctly the direction of all moving 
stimuli.  

Thirty-two of the 96 neurons examined in the multimodal motion task gave 
significantly direction-selective responses to the apparent motion of the visual and the 
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visual-auditory stimuli. We did not find a single neuron that gave a response to the 
auditory movement. Despite this lack of neuronal activity, the monkeys reported 
correctly the direction of the moving auditory stimulus. 

Conclusions  

The smooth pursuit eye movements of human subjects and rhesus monkeys follow in 
their steady-state phase the direction of the perceived object motion. This indicates 
that the visual motion processing underlying perception and sensorimotor integration 
depends on a common mechanism. Furthermore, the similarity in initiation of smooth 
pursuit eye movements and neuronal responses recorded from areas MT and MST 
suggest that these areas are part of this mechanism. However, our results show that 
rhesus monkeys can perform steady-state SPEM as well as motion perception tasks in 
the absence of explicit coding of object motion in the activity of neurons recorded 
from areas MT and MST. So we conclude that the perception of a moving stimulus as 
well as the generation of smooth pursuit eye movements reflects the achievement of a 
motion area located higher than area MT and MST in the hierarchy of cortical visual 
information processing.  
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Abstract. This paper investigates whether a macroscopic analysis enables the 

identification of universal properties of adaptive behaviour in situated agent (robot) 

models. In contrast to microscopic analysis, macroscopic analysis focuses on averaged 

properties of systems. For our purpose, a macroscopic analysis of adaptive systems is 

performed. The adaptive systems studied are evolutionary optimised foraging agents. 

The analysis reveals that the step lengths of the most successful agents are distributed 

according to a Lévi-flight distribution. Such a distribution constitutes a universal 

property of foraging behaviour that is encountered in many natural species. Hence, in 

this domain macroscopic analysis clearly facilitates the discovery of universal 

properties of adaptive behaviour. Generalising this conclusion, we believe that 

macroscopic analysis is complementary to microscopic analysis in the study of 

adaptive behaviour. 
 

  
1 Introduction 
 

In-depth analysis of simple agent models reveals many new insights into the processes 

underlying adaptive behaviour and situated cognition [see, e.g., 2, 3, 4, 8]. So far, 

analysis is only done at the microscopic level, in which the focus is on the successful 

behaviour of single agents only. Although microscopic analysis can lead to explanatory 

insights and testable predictions at an individual level, due to this specificity, 

generalisation of results is difficult. In contrast, macroscopic analysis is more suitable 

for identifying universal properties, i.e., properties characteristic of a class of systems. 

Macroscopic analysis ignores individual differences by averaging over large quantities 

of data. The application of macroscopic analysis in statistical physics led to successful 

extraction of universal properties of, for instance, DNA sequences, heartbeat rates, and 

weather variations [6,10]. A recent example of macroscopic analysis of natural 

behaviour is the study by Beekman et al. [1], who analysed foraging behaviour of 

Pharaoh ants. They revealed collective foraging behaviour to exhibit a phase transition 

from disordered to ordered foraging when the size of the colony was increased. 

The research question addressed in this paper reads: Can macroscopic analysis extract 

universal properties of adaptive behaviour from situated agent (robot) models? To 

answer this research question we optimise the foraging behaviour of neural-network 

controlled agents using evolutionary-computation techniques. Next, we perform a 

macroscopic analysis on the foraging behaviour of the optimised agents. 

                                                           
1 An earlier version of this paper was published in the Proceedings of the Fourteenth Belgium-Netherlands 

Artificial Intelligence Conference (BNAIC) 2002. 
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The outline of the remainder of the paper is as follows. In section 2, the foraging 

experiment is outlined. Section 3 presents the results of the macroscopic analysis. In 

section 4, the results of the analysis are discussed and related to other findings. Finally, 

the conclusion given in section 5 reads that macroscopic analysis facilitates the 

identification of universal properties of adaptive behaviour in agent models. 

 

2 The foraging experiment 
  
The foraging experiment is outlined in terms of the environment (section 2.1), the agent 

(section 2.2), and the evolutionary-computation algorithm (section 2.3). 

 

2.1 The environment 
 

The environment is defined as a L×L square with periodic boundary conditions (i.e., the 

environment is defined on a torus) containing n food elements. Randomly distributed 

dots over the environment represent the food elements. An agent collects food by 

walking over the food elements. Whenever a food element is collected, it is removed 

from the environment and replaced by a new one at a random location. In this way, the 

number of food elements remains constant throughout the experiment. Figure 1 is an 

illustration of the environment with randomly distributed food elements (dots) and the 

agent (circle). 

  

 
  

Figure 1. Illustration of the experimental environment consisting of an agent (circle) and 

randomly distributed food elements (dots). The values on the x- and y-axes are spatial coordinates 

(0 ≤  x,y < L = 10000). 

 

2.2 The agent 
  
The agent performing the foraging task is controlled by a neural network and is defined 

in terms of sensor and brain. 
  
Sensor. The sensor of the agent detects the nearest food element within its circular field 

of view with radius r. The sensor processes the nearest food element within the field of 

view only and is orientation sensitive. Defining the orientation of the agent by �  and the 
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orientation of the nearest food element by � , the sensor activation I (i.e., the input) is 

given by the normalized one-dimensional Von Mises basis function [7]. 
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where k is a positive constant that is proportional to the width of the basis function. 

The Von Mises basis function is the spherical analogue of the Gaussian basis function. 

The normalisation constant ke ensures that the maximal value of the first right-hand side 

term equals 1 when �  = � . The second term is a Gaussian-noise term (zero mean, 

standard deviation sd), modelling the intrinsic noise of neural systems. A food element 

is collected when the distance between the food element and the agent equals 0.1r. 
 

Brain. The brain (or controller) of the agent is a recurrent neural network with a single 

input I, H hidden nodes, and two output nodes. The input is connected to the hidden and 

to the output nodes. The hidden nodes have recurrent adaptive connections. Each 

connection can be switched on or off during the evolutionary process, while retaining its 

weight value (cf. [9]). Initially, all weights are assigned random values symmetrically 

distributed around zero on the interval [-rw,rw], with rw > 0. The transfer function for 

the hidden nodes is the sigmoid tanh function that maps onto the interval 〈-1,1〉. The two 

output nodes control the agents� relative orientation and step size, respectively. The 

transfer functions for the output nodes are defined as follows. The output of the 

orientation node is multiplied by π. A modulo operation restricts the orientation to the 

interval 〈-π,π〉. The transfer function of the step-size output node is a semi-linear 

function l = f(u) that maps negative values to zero and positive values u to the interval 

〈0, uL/2〉, with L the width/heigth of the square environment. 

 

2.3 Evolutionary-computation algorithm 
  
The weights of the neural network controlling the agent are optimised for foraging 

efficiency using a standard evolutionary-computation algorithm. The fitness function F 

is defined as follows. 
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where t is an index for individual simulation steps (t ∈ {1,2,�T}) with T denoting 

the total number of steps, c(t) is a function that returns 1 if a food element is collected at 

step t and 0 otherwise, l(t)= f(u,t) is the step length of the agent at step t, and λ is a 

positive parameter. The first term between the brackets favours food collection. The 

second term punishes long steps. The balance between the two terms is set by λ. All 

simulations are based on an evolution of 100 generations with a population size of 1000 

agents. Evolution occurs using standard evolutionary optimisation techniques (see [9]). 
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A large series of experiments was performed to optimise the foraging behaviour of the 

agent. The simulations yielded various types of behaviour. Figure 2a and b show two 

typical examples of behaviours associated with high fitness values. The figures show the 

paths traced by the optimised agent. Although most optimised agents perform the 

random-walk behaviour shown in figure 2a, some agents exhibit the qualitatively 

different behaviour shown in figure 2b. A characteristic feature of these agents is that 

their local random-walk behaviour is occasionally interrupted by large jumps. As a 

result the area covered by these agents is much larger than the area covered by random-

walk agents. The sudden jumps are known as Lévi flights [5,11,12]; they will be 

discussed below. Foragers adopting a Lévy-flight strategy outperform the agents using a 

random-walk strategy. Apparently, the Lévy flights are more effective in terms of 

foraging efficiency than the random walks. 
 

               
a     b  � � � � � � � � � 
 	 � � � 

 Illustration of (a) random-walk foraging behaviour and (b) Lévy-flight foraging 

behaviour. Both paths consist of 10.000 steps. It should be noted that the area covered in figure (b) 

is much larger than the area covered in figure (a). The values on the x- and y-axes are spatial 

coordinates (0 ≤ x,y < L = 10000). 
 

Our macroscopic analysis focuses on the quantification of the difference between 

random walks and Lévy flights in terms of a single parameter µ. The parameter is 

extracted from the probability density function (pdf) from which the lengths of the steps 

taken during foraging are drawn [11]. Concentrating on the probability of large step 

lengths, the tail of the pdf scales according to (cf. [12]): 
 

Z

l
lP

µ−

=)( ,     (3) 

 

with P(l) representing the probability of a step of length l, and Z a normalising 

constant. The parameter µ is proportional to the rate of decay of the pdf with length l. 

For a Gaussian pdf that generates random-walk behaviour, the parameter µ is larger than 

3.0. Lévy-flight behaviour is associated with 1.0 < µ ≤ 3.0. These values of µ yield 

�fatter� tails, leading to infinite variance and an undefined average of the pdf. In our 

agent, the pdf is generated from the step lengths produced by the output node. To 

perform our macroscopic analysis we created step-length histograms by running series 

of foraging simulations using optimised agents of both the random-walk and Lévy-flight 
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types. Figure 3a shows an example of a histogram so obtained. Subsequently, we 

analysed the (smoothed) tails of the histograms by fitting a linear regression line through 

the data points. The slope of the line is an estimate of the value of µ that underlies the 

behaviour of the two types of agents. Figure 3b displays the regression line for an agent 

that exhibits the Lévy-flight behaviour shown in figure 2b. The slope of the regression 

line is approximately equal to �2 (i.e., µ = 2). In terms of equation (3) this corresponds 

to P(l) = l
-2

/ Z. 
 

  
                       a                    b        c 

Figure 3. (a) Histogram of step lengths. (b) Log-log plot of the tail (l >> 0) of the histogram. The 

slope of the regression line is ≈ -2. (c) The fitness F as a function of the step-size distribution 

parameter µ for the 281 fittest foragers. 
 

We performed a series of experiments with the parameter values: H = 2, r = 1, L = 

10000, number of food elements = 100, rw = 0.5, k = 20, sd = 0.5, T = 10000, and λ = 

0.00001. The experiments yielded a population of 1000 optimised foragers. Of these 

foragers, the 281 fittest ones performed a range of random-walk and Lévy-flight 

behaviours. The remaining 719 foragers employed various sub-optimal strategies such 

as foraging along straight lines. For each of the 281 fittest foragers a histogram (such as 

shown in figure 3(a)) was created from several runs of T steps each. A log-log plot of 

the tail of the histogram is shown in figure 3(b). Subsequently, the value of µ was 

determined for each histogram. The values of µ ranged from µ ≈ 3.5 to µ ≈ 2.0. Figure 

3(c) plots the fitness of the 281 fittest foragers as a function of µ. Interestingly, the fittest 

foragers are associated with values closer to µ ≈ 2.0. Evidently, optimal fitness values 

are found near µ = 2, which is associated with Lévy-flight foraging behaviour. 

 

4 Discussion 
 

The macroscopic analysis of our model of foraging behaviour led to the extraction of a 

universal property of efficient foraging, i.e., Lévi flights as characterised by the 

universal exponent µ. A range of animals exhibits efficient foraging behaviour that is 

characterised by Lévi flights with µ ≈ 2: albatrosses, foraging bumblebees, deer, and 

amoebas [11, 12].  

Microscopic analyses of agent models of adaptive behaviour explain behaviour on an 

individual level. For instance, such an analysis can reveal the dynamical processes 

underlying catching and avoiding behaviour in individual agents (see [4]). 

Generalisation to other types of agents and situations is difficult because of the 

idiosyncrasy of the agent-environment interaction. Since macroscopic analysis averages 

over many interactions, it obscures the details of the interaction, but uncovers generic 
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properties. The value of the exponent µ cannot be determined from the study of a single 

agent, but instead requires the averaging over many interactions and environments. 

However, once the macroscopic analysis revealed the value of µ and related it to Lévy 

flights, the characteristic foraging behaviour is readily recognised in the microscopic 

behaviour of the individual agent (see, e.g., figure 2b). Macroscopic analysis is therefore 

complementary to microscopic analysis. Agent models of adaptive behaviour have to be 

analysed at both levels to gain a complete understanding of the behaviour. 

 

5 Conclusion 
 

Using macroscopic analysis we extracted a universal property of foraging behaviour in 

artificially evolved agents, i.e., Lévy flights as characterised by µ = 2. By doing so, we 

have shown that macroscopic analyses of agent models can identify universal properties 

of adaptive behaviour. Given this finding, and the successes of macroscopic analyses in 

statistical physics and other disciplines, we expect macroscopic analyses to generate 

novel insights into the universal properties of adaptive behaviour in artificial and natural 

agents. 
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Panoramic View Based Monte Carlo Self-localization for
Mobile Robots Operating in Real-world Environments
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Abstract. Wepresentanovel panoramicview basedrobotlocalizationapproach
whichutilizestheMonteCarloLocalization(MCL) [1], aBayesianfiltering tech-
niquebasedon a discretedensityrepresentationby meansof particles.We show
how omidirectionalimagingcanbecombinedwith theMCL-algorithmto glob-
ally localizeandtracka mobile robotgivena taughtgraph-basedrepresentation
of theoperationarea.To demonstratethereliability of our approach,we present
promisingexperimentalresultsin thecontext of a challengingroboticsapplica-
tion, theself-localizationof amobileservicerobotactingasshoppingassistantin
avery regularly structured,maze-likeandcrowdedenvironment,ahomestore.

1 Introduction and motivation

Self-localizationis thetaskof estimatingthepose(positionandorientation)of amobile
robotgivenamapof theenvironmentandahistoryof sensorreadingsandexecutedac-
tions.Thisincludesboththeability of globallylocalizingtherobotfrom scratch,aswell
astrackingtherobot’s positiononceits locationis known. Thelocalizationproblemis
oneof the fundamentalproblemsin mobile robotnavigationandmany solutionshave
beenpresentedin thepastincludingapproachesemploying Kalmanfiltering,grid-based
Markov localization,or MonteCarloMethods[3]. Thecurrentstate-of-the-artlocaliza-
tion methodsoften uselaserrangefindersor sonar, but thesesensormodalitiestend
to be easilyconfusedin environmentswith very regular topology, e.g.a supermarket
or a homestorewith a greatnumberof hallwaysof equalwidth, lengthandgeomet-
rical structure.Becauseof this maze-like topology, self-localizationmethodsbasedon
laseror sonarcanproducenumerousambiguitiescomplicatingor preventinga quick
self-localizationor re-localizationin caseof acompletelossof positioning.In contrast,
vision-basedsystemsdonotshow theselimitations,but supplyamuchgreaterwealthof
informationaboutthe3D-structureof thehallwaysandracks.For example,thefilling of
thegoodsracksgivesthehallwaysa characteristicappearance,especiallywith respect
to color or texture. Becauseof this, we expectedto defusethe localizationproblem
drasticallyby developmentof an approachfor view-basedlocalizationthat combines
omnidirectionalimagingwith theprobabilisticMonteCarloLocalization(MCL) [1].

2 Omnivision-based MCL

TheMonteCarloLocalization(MCL) methodunderlyingour omnivision-basedlocal-
ization approachis a versionof Markov localization[6], a family of probabilisticap-
proachesfor approximatingamulti-modaldensitydistributioncodingtherobot’sbelief
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Monte Carlo Localization
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Figure 1. Generalideaof ouromniview-basedMonteCarloLocalization.Theapproachis based
on a graph-basedrepresentationof the operationarea.The nodesof the grapharelabeledwith
bothview-basedvisualfeaturesandmetricinformationabouttheposeof therobot(positionand
headingdirectionin aworld-centeredreferenceframe)at themomentof thenodeinsertion.

Bel(xt) for being in statext = (x, y, ϕ)t in its statespace.x andy are the robot’s
positioncoordinatesin aworld-centeredCartesianreferenceframe,andϕ is therobot’s
headingdirection.Thekey ideaof MCL is to representthebelief Bel(xt) by a setSt

of N weightedsamplesdistributed accordingto Bel(xt): St = {x
(i)
t , w

(i)
t }i=1..N .

Hereeachx(i)
t is a sample,andthew

(i)
t arenon-negative numericalweightingfactors

calledimportancefactors.Becausethesamplesetconstitutesa discreteapproximation
of thecontinuousdensitydistribution, theMCL approachis computationallyefficient,
it placescomputationjust “whereneeded”.

Thegeneralideaof ourview-basedMonteCarloLocalizationis illustratedin Fig.1.
In our approach,we usea graph-basedrepresentationof the operationareaby a set
of visualreferencevectorsr(x, y, ϕ) extractedfrom therespective panoramicviews at
positionsx, y in headingdirectionϕ (Fig.1,bottomright).Thegraphis constructedon-
the-fly whenmanuallyjoy-stickingtherobotthroughthehallwaysof thestore.During
this training,omnidirectionalimagesarecapturedfrom theenvironmentandassociated
with the correspondinglocations.For this purpose,in addition to the featurevectors
extractedfrom the omnidirectionalimages,the nodesof the graphare labeledwith
metric information aboutthe posex = (x, y, ϕ) of the robot at the momentof the
nodeinsertion.A new node(referencepoint) with importancefor the representation
is inserted,eitherif theEuclidianpositiondistanceto otherreferencepointsin a local
Ω-vicinity or if theEuclidianfeaturedistancebetweenthecurrentfeaturevectorf input

t

andthefeaturevectorsrΩ(x, y, ϕ) of thesereferencepointsarelargerthangivenvalues.
However, thelabelingof thegraphnodeswith odometricdataabouttheposeof therobot
necessitatesan efficient correctionof odometrybecauseof the increasingerror over
time, especiallyconcerningtheorientationangle.To attenuatethis effect, we utilize a
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Figure 2. Topologicalmapof theoperationareain thehomestore.Thesizeof theareais 50×45

meters,thegraphconsistsof 2007referencepoints(markedasdots)labeledwith visual feature
vectorsandodometricdataaboutthepose(positionandorientation)of therobotat themoment
of nodeinsertion.Thetotal distancetravelledto learnthismapwasabout1000meters.

specificfeatureof our market floor thatshows a very regularstructurecausedby tiles
thatareuniquelyorientedacrossthewholemarketarea.For detailsof ourvision-based
odometrycorrectionsee[2]. We utilized this odometrycorrectionmethodfor learning
a large-scalegraphrepresentationof theoperationareaasshown in Fig. 2 andachieved
averysmallabsolutepositionerrorof about60cm aftera totaldistanceof 1000meters.

Feature extraction: Bothduringmap-building andself-localization,theomnidirec-
tional imageis transformedinto a panoramicimage(seeFig. 1, top). Eachpanoramic
imageis first partitionedinto a fixednumberof non-overlappingsectors(typ. 10) each
coveringapartof thepanoramicfield of view. Thefollowing criteriadeterminedthese-
lectionof appropriatefeaturesto describethepresentscene:1) To allow for anon-line
localization,thecalculationof thefeaturesshouldbeaseasyandefficient aspossible.
2) Thefeaturesshouldincludetheorientationof therobotasprerequisiteto estimatethe
headingdirectionof therobot.3) Thefeaturedescriptionshouldallow for aneasygen-
erationof expectedobservationsfor unknown positionsandorientationsof therobot.4)
Thefeaturesshouldbelargely insensitive againstpartialocclusionof theenvironment,
suchascausedby peoplein the vicinity of the robot. Consideringthesecriteria and
therequirementsof otheromnivision-basedlocalizationapproachespublishedrecently,
e.g. [4, 5], we decidedto implementthe simplestfeatureextractionmethodpossible.
Thereto,for eachsectorof the panoramicimage,the meanRGB-color value is de-
termined.This way, for eachnodein the grapha referencefeaturevectorr(x, y, ϕ)
consistingof asmallnumberof meanRGB-valueshasto belearned.

The localization algorithm: In analogyto theMCL algorithmpresentedin [1], our
omniview-basedMCL proceedsin two phases:In thePrediction phase (robot motion),
the samplesetcomputedin the previous iteration(or during randominitialization) is
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movedaccordingto thelastmovementof therobotut−1 (Fig.1, left). Themotion model
p(xt|xt−1, ut−1) describeshow thepositionof thesampleschangesusinginformation
ut−1 from odometry. This way, MCL generatesN new samplesthat approximatethe
expecteddensitydistributionof therobot’sposeafterthemovementut−1. To determine
theexpectedobservationsf (i)

t of themovedsamples,our approachrequiresinterpola-
tionsbothin stateandfeaturespacebecauseof thecoarsegraphrepresentationandthe
chosenfeaturecoding.For eachsamples(i), we first interpolatelinearly betweenthe
referencefeaturevectorsr(x, y, ϕ) of thetwo referencenodesclosestto therespective
samplepositionx

(i)
t . After this, theresultingfeaturevectoris rotatedaccordingto the

expectednew orientationϕ
(i)
t of the samples(i). Sincethe featurevectoronly hasa

discretenumberof components,we utilize a linear interpolationbetweenthe features
of adjacentsegments.This way, we obtaina setof N new featurevectorsf (i)

t (x, y, ϕ)

describingtheexpectedobservationsof themovedsamplesin thenew statesx(i)
t .

In theUpdate phase (new observation), theactualpanoramicview at thenew robot
positionhasto betakeninto accountin orderto correctthesamplesetSt. For this, the
importancefactorw(i)

t of eachsamples(i) is computed.It describestheprobabilitythat
therobotis locatedin thestatex(i)

t of thesample.Wedeterminethesimilarity E
(i)
t be-

tweenthecurrentinput featurevectorf input
t extractedfrom thepanoramicview at the

new robotpositionandtheexpectedfeaturevectorf (i)
t of eachsamples(i) simply by

computingtheanglebetweenbothnormalizedvectorsapplyingasimpleGaussian-like
observation model. Now w

(i)
t = 1− αE

(i)
t canbedetermined,whereα is anormaliza-

tion constantthatenforces
∑N

j=1 w
(j)
t = 1. Thefinal samplesetSt for thenext iteration

is obtainedby re-sampling from this weightedset.There-samplingselectsthosesam-
pleswith higherprobabilitythathave a high importancefactorw(i)

t . Sampleswith low
importancefactorsareremovedandrandomlyplacedin thestate-neighborhoodof sam-
pleswith high factors.After that,bothphasesarerepeatedrecursively.

3 Experimental results

All experimentswerecarriedout in the‘toom’ homestoreErfurt with ourexperimental
platformPERSES,astandardB21robotadditionallyequippedwith anomnidirectional
imagingsystemfor vision-basednavigationandhuman-robotinteraction.Theexperi-
mentswereperformedasoff-line cross-validationtestson differentsequencesof im-
agesacquiredin thehomestore.All imageswerelabeledwith thecorrespondingcorrect
poseof therobot.Oneof thesequencesis usedastrainingdatato build thegraphwhile
the otheronesareusedas testdata(5000pose-labeledimages)to determinethe lo-
calizationerror. Every localizationexperimenthasa typical lengthof 190movements,
this correspondsto a path lengthof about130 meters.Perexperiment,the meanab-
solutelocalizationerror is determined.Every experimentwasrepeated20 times,and
the localizationerrorswere averaged.It is to note that, in all cases,we studiedthe
worst-casescenario:our robot hadno prior informationaboutits initial pose- this is
a typical global localizationproblem.All testscanbejudgedasbeingvery successful,
as our localizationsystemwas able to find and continually track the position of the
robot.Fig. 3 illustratesthetypical courseof aview-basedself-localizationandposition
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Figure 3. Self-localizationandtrackingexperimentexecutedin alargesection(50×45m
2) of the

homestore.Thesequencedepictsthe temporalcondensationdynamicsof about4.000samples
(initial distribution,after3 steps,and9 steps).In thebeginning,therobotis globallyuncertain,the
particlesarespreaduniformly throughoutthefreespace.Thevarianceof the10%of thesamples
with thehighestimportancefactorsis markedascircle. Alreadyafter9 movements(about5,50
m),MCL hasdisambiguatedtherobot’sposition- themajorityof samplesis now centeredtightly
aroundthecorrectposition,thevarianceis drasticallyreduced.

trackingexperimentexecutedin a largesectionof thestore(50 × 45m2). Despitethe
geometricaluniformity of the selectedhallwaysandthe coarsegraph-structure(2007
nodes),our omniview-basedMCL yieldsvery preciselocalizationresultsalreadyafter
a few robotmovements.For example,after9 movementsandobservations,which cor-
respondsto a travelleddistanceof about5,50meters,thedifferencebetweenestimated
andcorrectpositionof therobotwaslower than40 cm.Themeanlocalizationerrorof
our testsetis evensmallerthan25 cm.Thetime requiredfor computationof theMCL
algorithmdirectly dependson the total numberof samples.With thecurrenton-board
equipment(1500MHz AMD Athlon), our algorithmrequiresabout50 ms for 4.000
samples.The time for imagetransformationandfeatureextractiontakesabout25 ms
per image.Therefore,our localizationsystemenablesreal-timelocalizationleaving a
goodamountof processingtime for othernavigationmodules.

Dealing with occlusions: It is clear that we have to copewith occlusionsin the
scene,suchas,for example,peoplewalking by or objectsbeingmovedaroundin the
environment.However, dueto its wide visual field, occlusionof the entirepanoramic
view becomesveryunlikely. For example,in Fig. 4 thetwo peoplestandingascloseas
possibleto therobotoccludenomorethan10%of thevisualfield.To testtherobustness
of the localizationalgorithm,the testimageswereoccludedby artificial gray-colored
segments.The impactof occlusioneffectswasgraduallycontrolledby thepercentage
of imagecontentcoveredby the artificial image.Fig. 4 (bottom) depictsthe results
w.r.t. localizationaccuracy and variousdegreesof occlusion.For 0% occlusion,the
meanpositionerror is 25 cm andcoversa rangebetween15 and30 cm.Themeanpo-
sitionerrorremainsrelatively low until 15%occlusion.Thereafter, theerrorvigorously
increasessincetheimageis affectedby severeocclusions.However, dueto thegeome-
try of robotandvisionsystem,it is notpossibleto placemorethanthreeor four people
directlyaroundtherobot.Therefore,themaximumocclusionby peoplecannotbelarger
than15-20%.Moreover, the internalparticledynamicsof theMCL-algorithmrealizes
a kind of temporalself-stabilizationof theestimationresult,therefore,theinfluenceof
heavy but shortocclusionscanbelargelyneglected.
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Figure 4. (Top) Occlusionexample:two peoplearestandingascloseaspossibleto therobotand
occludeabout10%of thevisualfield. (Bottom) Resultof experimentsinvestigatingtheinfluence
of localocclusionson thepositionerror(left) andandtheorientationestimation(right).

4 Conclusions and future work

In this paper, we have shown that particle filters in combinationwith a graph-based
representationof theoperationareaby local panoramicviews canbeusedto perform
anomniview-basedself-localizationof a mobile robot in a challengingreal-world ap-
plication.Our localizationsystemusescolor omni-vision,works in real-time,andcan
easilybetrainedin new operationareasby joy-sticking.Theresultsof theexecutedex-
perimentsconfirmtheaccuracy androbustnessof ouromniview-basedself-localization
method.

Currently, theoreticalandexperimentalstudiesarecarriedout to further improve
our omniview-basedMCL-system.For example,we areinvestigatingtheimpactof the
motionandobservationmodelsontheposeestimationandarestudyingtheinfluenceof
a new mechanismadaptively controlling thesamplerateon-the-flyon the localization
accuracy. Otherrunningexperimentsaredealingwith the impactof appearancevari-
ationsat the referencepoints in the learnedgraph,e.g.as resultof a changedfilling
of the goodsracksor modificationsin the market topology. Moreover, our algorithm
hasto demonstrateits capabilitiesscalingup to the whole market areawith a sizeof
100 × 60m2 overa longerperiodof operation.
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Abstract. The present contribution studies the rapid adaptation process of the 
visuomotor system to optical transformations (here: shifting the image horizon-
tally via prism goggles). It is generally believed that this adaptation consists 
primarily of recalibrating the transformation between visual and proprioceptive 
perception. According to such a purely perceptual account of adaptation, the 
exact path used to reach the object should not be important. If, however, it is the 
transformation from perception to action that is being altered, then the adapta-
tion should depend on the motion trajectory. In experiments with a variety of 
different motion trajectories we show that visuomotor adaptation is not merely 
a perceptual recalibration. The structure of the motion (starting position, trajec-
tory, end position) plays a central role, and even the weight load seems to be 
important. These results have strong implications for all models of visuomotor 
adaptation. 

1 Introduction 

In order to pick up an object, its visual location must be converted into the appropriate 
motor commands. Introducing an optical transformation (e.g., shifting the image hori-
zontally via prism goggles) initially impairs this ability. The visuomotor system rap-
idly adapts to the discrepancy, however, returning performance to near normal. 

von Helmholtz (1867), who was among the first to describe prism adaptation, re-
ported that if one hand was active during adaptation, the other hand would also show 
an adaptation effect. It has by now often been demonstrated that intermanual transfer 
of adaptation is either very small or non-existent1. It is really quite striking that both 
hands have to adapt independently from each other. Consequently, prism adaptation 
can not be fully explained by “recalibrating” only visual perception so as to represent 
the seen location of an object correctly in spite of the prism goggles. However, this 
does not rule out a purely perceptual account of adaptation: the recalibration could 

                                                           
1 Some studies (e.g. Choe and Welch, 1974) report intermanual transfer of adaptation. It is not 

clear, however, in how far this might be due to cognitive strategies. If participants are either 
ignorant of the effect of the goggles or repeatedly instructed to base their actions on their ac-
tual perception and not on cognitive strategies, intermanual transfer of adaptation is generally 
absent. 
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affect the proprioceptive perception of spatial location, i.e. the felt position of the arm. 
The proprioception of the active limb would have adapted while the proprioception of 
the passive limb would show no adaptation effects. 

This notion of “perceptual learning” (e.g. Bedford, 1999) is seductive. As long as it 
is only the perceptual input that is recalibrated it is conceivable that spatial knowledge 
is represented centrally, in a kind of master data base, with all sensory systems pro-
viding calibrated spatial information. This data base would then in turn serve to pro-
vide the motor scripts with coordinate information of the objects that are to be dealt 
with. The performance difference for the active and the passive limb would be due to 
the different calibration status of the proprioceptive input to the central spatial repre-
sentation from these limbs. 

A central representation of spatial knowledge agrees well with the introspectively 
felt unity of phenomenal experience. However, it has been shown that phenomenal 
experience is not prerequisite for correct visuomotor behavior. Stratton (1897) has 
shown that wearing inverting goggles (turning the image 180°) perfect visuomotor 
coordination could be obtained within a few days. Phenomenally, however, the world 
was still upside down. It is still a matter of debate whether after a week or two phe-
nomenal experience would also adapt; the important point here is that there is evi-
dence for a dissociation between visuomotor and phenomenal adaptation. Comparable 
results were reported by Kohler (1951). On a similar line of thought evidence from 
blindsight cases (Pöppel et al., 1973) put into question the relevance of phenomenal 
experience for visuomotor functioning. 

If visuomotor adaptation depends not only on the (active versus passive) limb but 
also on the exact motor trajectory, then a central representation of spatial knowledge 
would be less tenable. Instead, spatial knowledge would then be more easily and 
parsimoniously explained as distributed knowledge, closely related to a variety of 
possible motor scripts. Some initial evidence for such a dependency comes from Mar-
tin et al. (1996) who demonstrated that there was no transfer of adaptation from un-
derhand to overhand throwing. Here, we examine this effect with the well-studied 
pointing task, as well as with types of movements that are more closely related than 
underhand and overhand throwing. 

2 Experiment 1: Reaching Below/Above a Bar 

Instead of measuring the adaptation effect directly, it has become common practice to 
measure the Negative Aftereffect (NAE), comparing motor performance before and 
after adaptation to prism goggles. It represents an excellent measure of adaptation as 
it compares two absolutely identical situations (unaltered vision) so that all observable 
changes in motor performance can only be due to the adaptation to the prism goggles 
that occurred in the meantime. 

In Experiment 1 we measured the NAE for two different types of trajectories: Par-
ticipants (N=72) had to touch a cross presented at eye level on a touch screen 30 cm 
in front of them. Two different trajectories were possible: reaching to the cross from 
below or (swinging the arm backwards) from above the horizontally extending bar 
that served as chin rest (Fig. 1). Location performance without feedback was deter-
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mined for both trajectories of both hands before and after adaptation of a single trajec-
tory of one hand to prism goggles (17° horizontal displacement). Testing was done on 
centrally located targets, while adaptation took place at horizontally displaced targets. 

 

a) b) 

Fig. 1. a) Setup for Experiment 1. A thin black cotton sheet was hung in front of the touch 
screen, and the room light was shut off, with a dim slot lamp illuminating the hand while touch-
ing the screen. This procedure prevented additional visual cues whilst not hampering touching 
the screen or seeing the bright cross. b) The horizontally extending bar that served as chin rest 
was reduced in size for Experiments 2 to 6 so as to support the chin without hampering the 
more sweeping motions of those experiments. The top bar was used in Experiment 2. 

The NAE was compatible with zero for both trajectories of the unadapted hand. 
This confirms the well-known finding that there is no intermanual transfer. More 
importantly, the NAE was significantly different for the adapted trajectory (46mm, 
8.7°) as compared to the other trajectory of the same hand (26mm, p<0.01). That is, 
despite the fact that the starting positions were identical and end positions very simi-
lar, there was only partial intramanual transfer. The fact that there was partial trans-
fer, rather than the complete absence of transfer found with overhand versus under-
hand throwing, reflects the greater similarity of the motions used here. 

3 Experiment 2: Pointing from Different Starting Positions 

While in Experiment 1 the starting position was identical for both types of trajecto-
ries, the end positions were slightly different. In order to exclude the possibility that 
this caused the weak intramanual transfer, Experiment 2 was run using different start-
ing positions and identical end positions. The setup differed from that of Experiment 
1 in that the chin rest did not extend horizontally, and there was a horizontal bar 
mounted 90 cm above the table, with two additional keys mounted beneath that bar. 
Participants (N=21) performed a total of 45 sessions, starting the pointing movement 
either at a low (desktop key) or a high position (key mounted beneath top bar). Loca-
tion performance without feedback was determined for both starting positions before 
and after adaptation to a single starting position while wearing prism goggles. – The 
NAE was again significantly different for the adapted starting position (80 mm) as 
compared to the other starting position (51 mm, p<0.01). 
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4 Experiment 3: Interposing Inward/Outward Circles 

In Experiments 1 and 2, either the starting positions or the end positions differed. In 
Experiment 3, participants (N=14, performing a total of 32 sessions) started the point-
ing movement at the same position (at the key on the desk top), and ended it with the 
same end position. Instead of moving their hand directly from the key to the cross, 
they had to interpose an inward or outward circular movement. They were instructed 
to circumscribe a region “the size of a head”, like writing a kind of “O” in the air, 
after releasing the key, and before touching the screen. Location performance without 
feedback was determined for both trajectories before and after adaptation to a single 
trajectory while wearing prism goggles. – Even with identical starting and end posi-
tions, the NAE was significantly different for the adapted trajectory (59 mm) as com-
pared to the other trajectory (49 mm, p<0.01). The difference is, however, smaller 
than in Experiments 1 and 2: The NAE for the two trajectories differed by 17%, 
whereas the difference was around 40% in the other two experiments. 

5 Experiment 4: Pointing with/without a Weighted Wristband 

In Experiments 1 to 3, trajectories differed. In Experiment 4, transfer of adaptation 
was studied for exactly the same trajectory, varying this time the load of the moving 
arm by applying a weighted wrist band (440 g) in some of the trials. Participants 
(N=11) performed a total of 36 sessions. Again, location performance without feed-
back was determined for both conditions before and after adaptation to a single condi-
tion while wearing prism goggles. – Varying only the load of the moving arm, the 
NAE was again significantly different for the adapted condition (55 mm) as compared 
to the other condition (44 mm, p<0.05). The NAEs differed by about 22%. 

6 Experiment 5: Generalization to Vertically Distributed Targets 

In Experiments 1 to 4, we made use of the fact that adaptation generalizes horizon-
tally: Participants adapted to targets that were to the side of the centrally located tar-
gets used in the pre- and post-tests (see methods of Experiment 1). Generalization of 
adaptation horizontally to other targets has been demonstrated before (Bedford, 
1993). As prism goggles displace the image horizontally, this is not too surprising. By 
the same token, it is not necessarily clear that adaptation will generalization vertically. 
In Experiment 5, participants (N=14, performing 20 sessions) adapted to a high target 
position, or to a low position, or alternately to both these positions. Their location 
performance before and after adaptation was tested at a high, a medium and a low 
target position. In order to obtain a good separation (30 cm, corresponding to 53° 
visual angle) between high and low target positions, the monitor was rotated 90°. 

Figure 2 shows the results. When adapting to the high target position, this condi-
tion showed the largest NAE, with a gradual decrease of the NAE as the tested posi-
tion departs from the adapted one. The differences between testing the high target 



�Z� ���"���W��		��
���
����4	S��	�� �����S
4� �'���\
4���� �%�����W��	�� ���C	�
S���b���		��
�� � �6�

position and the other two target positions is significant (p<0.05). The same trend is 
present when adapting to the lower target position, although this trend did not reach 
significance. When adapting alternately to both high and low target positions, no 
significant differences are to be found.  

 

Fig. 2. Results of Experiment 5. NAE as a function of adapted and tested target position. 

As can be seen in Fig. 2, generalization for vertically distributed targets is not per-
fect. The effect is, however, too small to be evaluated well within the distances that 
can be realized on a rotated touch screen. Future experiments will include target posi-
tions outside the touch screen area. 

7 Experiment 6: Effect of Terminal/Full Feedback 

In a final experiment we assessed the effect of feedback and the speed of adaptation. 
In the previous experiments, adaptation took place under “full feedback”, i.e. the 
participants could watch their hand as it moved towards the target. Under full feed-
back, participants usually produce only small location errors, correcting errors of the 
ballistic part of the motion while approaching the screen. These data do not allow 
analysis of the dynamics of the adaptation process. In Experiment 6, participants 
(N=19, performing 28 sessions) adapted either alternately under full feedback and 
under no feedback (with the no-feedback trials yielding information on the state of the 
adaptation), or under “terminal feedback”: In this condition, the lamp went off when 
the participant released the key, and went on again when the screen was touched. We 
reasoned that under terminal feedback the participant would realize the true mistake 
of the ballistic movement which would be obscured under full feedback due to the 
possibility to correct the movement “on the fly”. We expected that terminal feedback 
would induce a stronger adaptation effect. – Figure 3 reveals that indeed terminal 
feedback induces a stronger NAE than full feedback (p<0.01). The initial adaptation 
speed seems not to be affected, but the final adaptation level is greater after terminal 
feedback.  
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Fig. 3. Results of Experiment 6. Location error during adaptation session as a function of trial 
number and feedback condition. 

Conclusion 

Our data demonstrate that, in a variety of cases, spatial adaptation is motor specific: 
Knowing where is knowing how to (see also the reinterpretation of the what and where 
systems by Milner and Goodale, 1995). While spatial knowledge seems to be distrib-
uted, we nonetheless phenomenally experience it as a unitary entity. Even if “left arm 
knowledge” differs from “ri ght arm knowledge” (due, e.g., to adaptation of one arm), 
we do not perceive any ambiguity when seeing an object. The cause of this dissocia-
tion might be elucidated by considering the purpose served by the experienced unity 
of spatial knowledge. Phenomenal experience is a late product of evolution, enabling 
the individual to plan coherent sequences of actions (and anticipate their conse-
quences), as has e.g. been demonstrated with rats (Tolman, 1948). For such a purpose 
it would probably be cumbersome to be aware of the fragmentation of spatial knowl-
edge, including possible inconsistencies. Simple aim-directed reactions to visual input 
(as in pointing or grasping) have developed earlier and are apparently implemented 
independently at a level closely related to motor performance. 
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Abstract. An important prerequisite for the natural interaction of humans with
a mobile robot is the robot’s capability to detect potential communication part-
ners. In this paper we present an approach which uses a combination of person
recognition and tracking with sound source localization realized in a multi-modal
anchoring framework. As in open environments several potential communication
partners can be present simultaneously we developed a rule-based method for
selecting one specific person as the current communication partner.

1 Introduction

A prerequisite for the widespread use of mobile service robots in home and office en-
vironments is the development of systems with natural human-robot-interaction. While
much research focuses on the communication process itself, it is also necessary to ex-
plore how robots can automatically recognize when and how long a user’s attention is
directed towards the robot for communication.

For this purpose some fundamental abilities of the robot are required. It must be able
to detect persons in its vicinity and to track their movements over time. Additionally,
as speech is the most important means of communication for humans, the detection and
localization of sound sources is of great importance.

This paper is organized as follows: At first we discuss approaches that are related
to the detection of communication partners in section 2. Then, in section 3 multi-modal
anchoring is described. This is the basis of our approach for the detection of communi-
cation partners explained in section 4. The paper concludes with a short summary.

2 Related Work

As long as artificial systems interact with humans in static setups the detection of com-
munication partners (CPs) can be achieved rather easily. For the interaction with an
information kiosk the potential user has to enter a well defined space in front of the
device (cf. e.g. [1]). In intelligent rooms usually the configuration of the sensors allows
to monitor all persons involved in a meeting simultaneously (cf. e.g. [2]).

�
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In contrast to these scenarios a mobile robot does not act in a closed or even con-
trolled environment. A prototypical application of such a system is its use as a tour
guide in scientific laboratories or museums (cf. e.g. [3]). All humans approaching or
passing the robot have to be considered to be potential CPs. In order to circumvent the
problem of detecting humans in an unstructured and potentially changing environment
in [3] a button on the robot itself has to be pushed to start the interaction.

The humanoid robots SIG [4] and ROBITA [5] currently demonstrate their capa-
bilities in research labs. Both use a combination of visual face recognition and sound
source localization for the detection of potential CPs. SIG’s focus of attention is di-
rected towards the person currently speaking that is either approaching the robot or
standing close to it. In addition to the detection of talking people ROBITA is also able to
determine the addressee of spoken utterances. Thus it can distinguish speech directed
towards itself from utterances spoken to another person. Both robots, SIG and ROBITA,
can give feedback which person is currently considered to be the CP. SIG always turns
its complete body towards the CP. ROBITA can use several combinations of body ori-
entation, head orientation, and eye gaze to express different states of communication.

3 Anchoring

Person tracking with a mobile robot is a highly dynamic task. Due to motions of the
tracked persons and of the robot itself the sensory perception of the persons is constantly
changing. In order to control the robots behavior, connections between processes that
work on the level of abstract representations of objects in the world (symbolic level)
and processes that are responsible for the physical observation of these objects (sensory
level) need to be established. These connections, called anchors, must be dynamic, since
the same symbol must be connected to new percepts every time a new observation of
the corresponding object is acquired.

We follow the definition of anchoring proposed in [6]: At every time step
�
, the

anchor contains three elements: a symbol, which is used to denote an object, a percept
of the same object, generated in the perceptual system, and a signature, meant to provide
the estimate of the values of the observable properties of the object. If the anchor is
grounded at time

�
, it contains the percept perceived at

�
as well as the updated signature.

If the object is not observable at
�

and therefore the anchor is ungrounded, then no
percept is stored in the anchor but the signature still contains the best available estimate.

3.1 Multi-Modal Anchoring

Anchoring as defined in [6] only considers the special case of connecting one symbol
to the percepts acquired from one sensor. However, complex objects cannot be captured
completely by a single sensor system alone. If more than one sensor is used, the sym-
bolic description of an object has to be linked to different types of percepts, originating
from different perceptual systems.

For this purpose we propose an approach for multi-modal anchoring [7]. It allows
distributed anchoring of individual percepts from multiple modalities and copes with
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different spatio-temporal properties of the individual percepts. Every part of the com-
plex object which is captured by one sensor is anchored by a single component anchor-
ing process. The composition of all component anchors is realized by a composite an-
choring process which establishes the connection between the symbolic description of
the complex object and the percepts from the individual sensors. In addition to standard
anchoring, the composite anchoring module requires a composition model, a motion
model, and a fusion model:

– The composition model defines the spatial relationships of the components with
respect to the composite object. It is used in the component anchoring processes to
anchor only those percepts that satisfy the composition model.

– The motion model describes the type of motion of the complex object, and there-
fore allows to predict its position. Using the spatial relationships of the composition
model, the position of percepts can be predicted, too. This information is used by
the component anchoring processes in two ways: 1. If multiple percepts were gen-
erated from one perceptual system the component anchoring process selects the
percept which is closest to the predicted position. 2. If the corresponding percep-
tual system receives its data from a movable sensor with a limited field of view (e.g.
pan-tilt camera), it turns the sensor into the direction of the predicted position.

– The fusion model defines how the perceptual data from the component anchors
has to be combined. It is important to note, that the processing time of the differ-
ent perceptual systems may differ significantly. In this case the perceptual data is
not received by the composition anchoring process in chronological order. For this
purpose the composite anchor provides a chronologically sorted list of the fused
perceptual data. New data from the component anchors is inserted in the list, and
all subsequent entries are updated.

Signature
list

legs

person

face

voice

Anchoring

Anchoring

Anchoring

. . .

FusionMotionComposition

...name, height,
t-2t0 t-1

Anchor

position, etc.

Anchoring of composite object

Person models

Symbols

Anchoring of component objects

Percepts

Laser legs

Face region

Sound source

Fig. 1. Multi-modal anchoring of persons.

The detection of CPs from a mobile robot requires to track all persons in the vicinity
of the robot. For this purpose we apply multi-modal anchoring. Our mobile robot is
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equipped with a laser range finder, a pan-tilt camera, and stereo microphones. Every
sensor forms the basis for one perceptual system:

– The laser range finder covers a ������� field of view at a height of approximately
30cm. In range readings human pairs of legs result in a characteristic pattern that
can be easily detected [7]. From a legs-percept distance and angle of the person
relative to the robot are extracted.

– The camera is mounted on top of the robot at a height of 140cm. We developed a
face detection method which copes with changing lighting conditions [8]. From a
face-percept the distance, angle, height and identity of the person are extracted.

– Stereo microphones are applied to locate speakers using a method based on cross-
powerspectrum phase analysis [9]. From a voice-percept the angle relative to the
robot can be extracted.

The anchoring of a person is illustrated in Fig. 1. It is based on anchoring the three
components legs, face, and voice.

3.2 Anchoring Multiple Persons

For the detection of CPs from a mobile robot usually more than one person has to be
tracked at the same time. Then, several anchoring processes have to be run in parallel.
In this case, multi-modal anchoring as described in the previous section may lead to the
following conflicts between the individual composite anchoring processes:

1. A percept is selected by more than one anchoring process.
2. The anchoring processes try to control the pan-tilt unit of the camera in a contra-

dictory way.

To resolve these problems a supervising module is required, which controls the selection
of percepts and the access to the pan-tilt camera.

To handle the first problem, the supervising module restricts the access to the pan-
tilt unit of the camera to only one composite anchoring process at a time. How access is
granted to the processes depends on the intended application. An example is given for
the detection of CPs in the following section.

In order to avoid the second problem, the selection of percepts is implemented as
follows. Instead of selecting a specific percept deterministically every component an-
choring process assigns scores to all percepts rating the proximity to the predicted po-
sition. Subsequently, the supervising module computes the optimal non-contradictory
assignment of percepts to component anchors. Percepts that are not assigned to any of
the existing anchoring processes are used to establish new anchors. Additionally, an an-
chor that was not updated for a certain period of time will be removed by the supervising
module.

4 Detection of Communication Partners

For the detection of CPs from a mobile system we apply multi-modal anchoring of
persons, as described in the previous sections. Every person in the vicinity of the robot
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is anchored by one anchoring process. From the anchoring processes the following
attributes can be extracted: standing: The last positions of a person are known; it can
therefore be decided, whether a person is walking or standing still. speaking: From
the microphones it is known, whether a person is speaking or is silent. facing: The face
anchoring process provides information, whether a person is facing the robot or looking
in a different direction.

Note, that due to the limited field of view of the camera the attribute facing can not
be computed for all persons simultaneously. The control of the access to the pan-tilt unit
of the camera by the supervising module has an important relevance for this application.

For CP detection we propose the following set of heuristic rules, that are based on
the three above mentioned attributes standing, speaking, and facing:

– A person that is not standing but walking is considered as a passer-by, and is there-
fore definitely no CP (rule 1).

– Whether a person standing still that is also speaking is classified as CP depends on
the orientation of the head:

� A person facing the robot is classified as CP (rule 2).
� A person not facing the robot is assumed to be talking to someone else than the

robot (e.g. another person) and therefore is definitely no CP (rule 3).
� If no information from the camera is available, no classification is possible, so

the person is a potential CP (rule 4).

The remaining three configurations of attributes (standing, not speaking, and any state
of facing) leave the person’s state unchanged (rule 5). This means that a person which
was previously recognized as CP will be still considered as CP.

The rules for the detection of CPs are now used to define the behavior of the robot.
On the one hand, the robot should direct its attention towards the person which was
recognized as CP. This is done by turning the front of the robot into the direction of
the CP, standing face-to-face. The anchoring process corresponding to that person gets
access to the pan-tilt camera and keeps the person in the center of the field of view. On
the other hand, the robot must be able to recognize a new CP, when the current CP is
not speaking (rule 5). Only a person that is speaking can take over the role of the CP.
If a person speaking is in the field of view of the camera one of the rules 2 or 3 can be
applied and a decision is possible. If a person speaking is not in the field of the camera
it is considered as a potential CP (rule 4). Then, the corresponding anchoring process
gets access to the pan-tilt camera in order to focus the potential CP. Now a decision can
be made according to rules 2 and 3. If the person is facing the robot it becomes the new
CP, otherwise the anchoring process of the old CP again gets back access to the pan-tilt
camera. Note, that while the camera is used to check the state of other persons the front
of the robot is still directed towards the current CP, thus signaling that this person is the
current CP. A sample behavior of the robot is depicted in Fig. 2.

5 Summary

We presented an approach for the detection of communication partners (CPs) from a
mobile robot. The detection requires to simultaneously track persons in the vicinity of
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A(CP)

B(pot.)

R

(1)

A

(3)(2) (4) (5)

B(CP) B(CP)

A

R

A(CP)

R

B

R

A(CP)

B

R

Fig. 2. Sample behavior with two persons standing near the robot R. In (1) person A is the CP,
thus the robot directs its attention towards A. Then A stops speaking but remains the CP (2). In
(3) person B begins to speak. Unless B’s head is not in the camera’s field of view, B is a potential
CP. Therefore the robot turns the camera into the direction of B, still showing A its attention (4).
Since person B is facing the robot, B becomes the new CP, and the robot turns towards B in (5).

the robot. This is achieved by multi-modal anchoring based on three types of sensors:
pan-tilt camera, laser range finder, and stereo microphones. The anchoring processes
provide three person attributes: standing, speaking, facing. We developed a set of heuris-
tic rules which define if a person is considered as a CP. In addition, the competing access
of the anchoring processes to the pan-tilt unit of the camera is described.
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Abstract. The interpretation of image patterns is preceded by the de-
tection and localization of local image features, such as line elements,
intersections of line elements, and image motion. Noise in the image
formation and processing, however, causes a serious problem for the esti-
mation of features; in particular, it causes bias. As a result the location of
features often is estimated erroneously. The amount of bias depends on
the texture, for certain patterns it is strongly pronounced. This provides
an explanation for many well-known geometrical optical illusions, such
as the café wall, the Zöllner, the Poggendorff illusion and other recently
discovered illusions of movement.

1 Introduction

We have found a general principle in the statistics of visual processes. Visual
computations are formulated as estimation processes. Because of noise – which
always is present, but very difficult to estimate accurately since visual processes
involve many unknowns – these estimation processes are biased, and thus the
parameters to be estimated are obtained with errors. Here we address low level
estimation processes, that is edge detection, feature extraction and optical flow
estimation. We argue that the bias in these low level processes is a major cause
for most geometrical optical illusions.

In the past, a number of authors have discussed uncertainty in image mea-
surements. In early studies eye movements have been advanced as a causative
factor [8] in illusions. Our theory also proposes that eye movements do play a
major role because they are a relevant source of noise. More recently [1, 3–5]
optical or neural blur has been discussed as a cause of illusions and models of
band-pass filtering or smoothing have been proposed to account for a small set of
illusions [6]. In intuitive terms these studies invoked the concept explained here.
Band-pass filtering constitutes a model of edge detection in noisy gray-level im-
ages. The theme of this paper is that smoothing is a special case of a more
general principle – namely, uncertainty or noise causes bias in the estimation of
image features – and this principle accounts for a large number of illusions that
previously have been considered unrelated.
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2 Errors in intensity values

Consider viewing a static scene such as the pattern in Figure 2. Let the irradiance
signal coming from the scene parameterized by image position (x, y) be I(x, y).
The image received on the retina can be thought of as a noisy version of the ideal
signal. Consider noise in the spatial location which has a Gaussian probability
distribution. The expected value of the image then is obtained by smoothing,
that is convolving the ideal signal with a Gaussian kernel g(x, y, σp) with σp the
standard deviation of the positional noise, that is the intensity at an image point
amounts to I(x, y) ? g(x, y, σp) .

Edge detection mathematically amounts to localizing the extrema of the first-
order derivatives or the zero crossings of second-order derivatives (the Laplacian)
of the image intensity function. The change of location of straight edges under
smoothing is illustrated in Figure 1. There are three cases to be considered:
Edges between a dark and a bright region do not change location under scale
space smoothing (Figure 1a). The two edges at the boundaries of a bright line,
or bar, in a dark region (or, equivalently, a dark line in a bright region) drift
apart (Figure 1b). Finally, the two edges of a line of medium brightness next to
a bright and a dark region move toward each other.

(a) (b) (c)

Fig. 1. A schematic description of the behavior of edge movement when smoothing:
(a) no movement, (b) drifting apart, (c) getting closer.

These observations suffice to explain a number of illusions, for example the
one in Figure 2a. In this pattern next to the white squares in the corners of
the black squares short bars are created. The edges of these bars drift apart
under smoothing and the other edges—between the black and white tiles of the
checkerboard—stay in place. The result is that the edges near the locations of
the white squares are bumped outward toward the white checkerboard tiles as
is illustrated in Figure 2b.

3 Errors in line elements

The perceptual effect at intersecting lines is illustrated in Figure 3a. To un-
derstand the behavior in more detail, consider the input to be edge elements.
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(a) (b) (c)

Fig. 2. (a) Illusory pattern: “waves.” (b) The result of smoothing and edge detection
on a part of the pattern. (c) The instantaneous velocity of edge points in the smoothed
image – the so called drift velocity.
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Fig. 3. (a)From [8]. The fine line as
shown in A appears to be bent in the
vicinity of the broader black line, as in-
dicated in exaggeration in B. (b) The
data in the model are edgels parameter-
ized by their center (x0i

, y0i
) and their

direction (the unitized image gradient)
(Ixi

, Iyi
).

(a) (b)

Fig. 4. (a) Zöllner pattern. (b) Estima-
tion of edges in Zöllner pattern. The line
elements are found by connecting two
consecutive intersection points, result-
ing from the intersection of edges of two
consecutive bars with the edge of the
vertical bar (one in an obtuse and one
in an acute angle).
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A straight line is represented by a large number of edge elements (Figure 3b).
These are noisy; of importance is noise in the direction. The intersection point
is found by intersecting all the straight lines passing through the edge elements.

Consider additive, independently identically distributed (i.i.d.) zero-mean
noise in the parameters. Let unprimed letters denote estimates and primed letters
denote actual values. Each measurement i provides one equation

Ixi
x + Iyi

y = Ixi
x0i

+ Iyi
y0i

(1)

and from n measurements we obtain a system of equations which are represented
in matrix form as, Isx = C, where Is is the n-by-2 matrix which incorporates
the data in the Ixi

and Iyi
, and C is the n-dimensional vector with components

Ixi
x0i

+ Iyi
y0i

. The vector x denotes the intersection point whose components
are x and y. The solution to the intersection point using standard least square
(LS) estimation is given by

x = (It
sIs)

−1It
sC (2)

It is well known [2] that the LS solution to a linear system with errors in the
measurement matrix is biased. The expected value of x is found by developing
(2) into a second-order Taylor expansion at zero noise. It converges in probability
to

x = x
′ + nM ′−1

(x̄0 − x
′)σ2

s (3)

where M ′ = Is
′tIs

′ , x
′ is the actual intersection point, x̄0 is the mean of the x0i

,
and σ2

s is the variance of the noise in the spatial derivatives of I. This expression
allows for an interpretation of the bias and it allows to predict parametric influ-
ences on the strength of illusions. Some important characteristic features of the
intersection of two straight lines in an acute angle are: as shown before in Figure
3 the estimated intersection is between the lines, the size of the bias decreases as
the angle increases and the component of the bias in the direction perpendicular
to a line decreases as the number of edgels along the line increases.

Figure 4a shows a version of the Zöllner illusion. The vertical bands are all
parallel, but they look convergent or divergent. The biases in the intersection
points of the edges of the bands with the edges of the short line segments cause
the edge elements along the long edges between intersection points to be tilted,
as illustrated in Figure 4b. A full account of the perception of tilted lines re-
quires also an explanation of the linking of the local elements into longer lines.
Our hypothesis is that this integration is computationally an approximation of
the longer lines using as input the positions and orientations of the short line
elements; this will give rise to tilted lines.

The model also predicts the findings of parametric studies that the illusory
effect decreases with an increase in the acute angle between the main line and the
obliques and that the illusion is stronger when rotated by 45 degrees, because it
has been found that there is more response from the cortex to lines in horizontal
and vertical than oblique orientations —translated to our model, more response
means more edgels.
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4 Errors in Motion

The basic image representation of movement is the optical flow which is derived
in a two-stage process. First, from local spatio-temporal measurements at a point
the velocity component at a point perpendicular to linear features (the normal
flow) is computed. Second, normal flow measurements from features in different
directions within a small neighborhood are combined to estimate the optical
flow, but this estimate is biased.

We consider a gradient-based approach to deriving the normal flow. Denoting
the derivatives of the image gray level I(x, y, t) by Ix, Iy, It, and the optical
flow of an image point in the x- and y-directions by u = (u, v), the following
constraint is obtained:

Ixu + Iyv + It = 0 (4)

We assume the optical flow to be constant within a region and thus obtain
an over-determined system of equations whose least-squares solution amounts to

u = −(It
sIs)

−1It
sIt. (5)

The expected value of the flow converges to

u = u
′
− nσ2

sM ′−1
u
′. (6)

Equation (6) shows the bias depends on the gradient distribution (that is,
the texture) in the region with the flow always underestimated in length.

Figure 4a shows a variant of a pattern created by the graphics artist Ouchi.
It consists of two rectangular checkerboard patterns oriented in orthogonal di-
rections – a background orientation surrounding an inner ring. Small retinal
motions, or slight movements of the paper, cause a segmentation of the inset
pattern, and motion of the inset relative to the surround.

The tiles used to make up the pattern are longer than they are wide leading
to a gradient distribution in a small region with many more normal flow mea-
surements in one direction than the other. Since the tiles in the two regions of
the figure have different orientations, the estimated regional optical flow vectors
are different. The difference between the bias in the inset and the bias in the
surrounding is interpreted as motion of the ring.

Another impressive illusory pattern is shown in Figure 6 (from [7]). If fixating
on the center and moving the page back and forth along the line of sight the
inner circle appears to rotate. This can be accounted for by different biases in
the inner and outer ring; the difference in the motion vectors is tangential to the
circles giving rise to the perception of a rotational motion.

5 Concluding remarks

In this paper we have discussed a major hurdle that vision systems have to deal
with. Noise in the image data—that is, the image gray level and its derivatives—
causes a serious problem for early visual processes and unavoidably leads to bias.
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Fig. 5. A slight jiggling of the paper pro-
duces two motions.

Fig. 6. Fixation at the center and move-
ment of the figure along the line of sight
causes the inner circle to rotate.

An artifact of the bias is illusory perceptions involving patterns where the bias
is highly pronounced. Noise is present in any visual data. It is due to the sens-
ing process, and in particular the spatial and temporal integration of data that
moving systems are confronted with, and due to the operations involved in com-
puting derivatives, or in estimating and locating certain frequency components
of the signal. The problem is that the noise parameters usually cannot be esti-
mated well, as they change with the lighting and viewing conditions, often too
rapidly to allow enough data to be collected.
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Abstract. A novel single-scale neural architecture is proposed which
both reproduces brightness illusions and successfully deals with natu-
ral images. Our architecture builds upon the premise that early vision
should facilitate object recognition. Specifically, the visual input is segre-
gated into three categories, namely texture (small-scale even symmetric
features), surfaces (small-scale odd symmetric features) and gradients
(large-scale even and odd symmetric features). The model also proposes
a solution to anchoring brightness by means of a novel multiplexed reti-
nal code. In this way a single-scale architecture is sufficient to recover
absolute luminance levels.

1 Introduction

Our proposed architecture for brightness processing aims to unify two seemingly
diverging goals, that is image processing and brightness perception. A successful
unification has not been achieved so far, since models which predict brightness
phenomena only rarely produce meaningful results when processing real-world
images (although some results have been demonstrated, e.g. [1]). On the other
hand, models for image processing tasks (typically coding or denoising), which
often claim to provide some account to early vision, fail to predict phenomena
associated with brightness perception. Usually, both model classes compute their
output by superimposing processed filter outputs over various scales and orienta-
tions, whereby filter outputs are processed in order to fulfill a certain pre-defined
goal (coding, denoising, predicting psychophysical results, etc.). None of these
models has achieved any segregation of the visual input in way compatible with
object recognition; rather, these models create only an internal (or cortical) rep-
resentation of the visual input, thus deferring segregation to higher level cortical
processing.
Furthermore, there is no model available for processing two-dimensional lumi-
nance patterns which comes up with a neurophysiological plausible solution to

? ? ? This research is supported by the German-Spanish Academic Research Collabora-
tion Program (DAAD, acciones integradas Hispano- Alemanes 2002/03, Proyecto
No.HA2001-0087

† Corresponding author
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Fig. 1. Sketch of the proposed architecture. Dotted lines denote stages which were
not implemented yet. Specifically, suitable interactions between the three subsystems
may be defined to improve the segregation process.

the anchoring problem (although a one-dimensional solution was suggested by
[2]). This problem is commonly solved by employing an additional “luminance
channel” in the form of a low-passed filtered (or large-scale band-passed, e.g. [1])
version of the visual input, e.g. [3–7]. Yet, evidence supporting the existence of
such a channel is still lacking.
Here we present a novel architecture for foveal brightness perception in agree-

ment with known neurophysiological data (see figure 1). We propose that cortical
simple cells of different symmetries (even, odd) and scales extract different as-
pects from the visual input, which are (i) texture (here defined as small-scale
even symmetric features, such as lines and points), (ii) surfaces (corresponding
to small-scale odd symmetric features for building cortical surface representa-
tions), and (iii) luminance gradients (corresponding to large-scale even and odd
symmetric features, for example out-of-focus lines or edges). Simulations show
how this segregation process renders cortical representations of object surfaces
invariant to noise and illumination gradients.
Also, we suggest a neurophysiologically plausible solution to the anchoring prob-
lem by proposing a “multiplexed” retinal code which at the same time represents
information about contrast and brightness (ON-cell) and contrast and darkness
(OFF-cell) of a visual input.

2 A new model for brightness perception

Our architecture builds upon filling-in theory [8]. It consists of a retinal stage,
and three cortical stages. Each cortical stage consists of two layers, where activity
in one layer is thought to correspond to brightness, and activity in the other
layer is thought to correspond to darkness. The perceptual activity (or perceived
luminance) is essentially computed by subtracting darkness from, and adding
brightness to, an Eigengrau value [9, 10]. A brief description of the individual
model stages is given below.

Retinal Processing. [11, 12] found evidence that in addition to the cen-
ter/surround receptive field of retinal ganglion cells there exists a disin-
hibitory region or outer surround. This region corresponds to an annulus
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illusion
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contrast
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Fig. 2. Results for the surface system. Left: Simulation results for brightness
illusions. Right: The filled-in result of a real-world image is juxtaposed with gated
multiplexed activity which corresponds to the initial state of the brightness map (de-
noted by brighter colors) and the darkness map (darker colors).

around a ganglion cell’s center/surround receptive field. In our model we
employ an outer surround as a measure of local luminance, which is used to
modulate response amplitudes of retinal ganglion cells such that an ON-cell
(OFF-cell) contains both information about contrast and local brightness
(darkness). In this way a multiplexed retinal code is created. Notice that in
this way we are able to convey information about absolute luminance levels
with one single scale (in fact, we model only foveal vision, that is we use
the smallest possible receptive fields), whereas usually large filter scales are
employed for this purpose (the center corresponds to the visual input, the
surround to its four nearest neighbors, and the outer surround to a Gaussian
with a spatial constant σ = 4 pixels). The multiplexed retinal code provides
a solution to the anchoring problem.

Surface system. Odd-symmetric contrast configurations in the visual input
(typically edges) trigger the gating of multiplexed retinal activity into sur-
face layers. Surface representations are built by means of a novel diffu-
sion paradigm which fills-in the gated multiplexed activity in corresponding
filling-in domains. Filling-in domains are defined by odd symmetric con-
trast borders, which eventually correspond to surface representations. In-
stead of heat diffusion as filling-in mechanism [8], we propose a novel dif-
fusion paradigm which converges in shorter time to homogeneously filled-in
surface representations, and which discounts large scale activity gradients.
The new diffusion equations for brightness activity s◦ij and darkness activity
s•ij are given by

ds◦ij(t)

dt
= γww•

ij (Ein − s◦ij) + K
◦
ε,∞s◦ij + δ(t − t0)m̃

⊕
ij

ds•ij(t)

dt
= γww◦

ij (Ein − s•ij) + K
•
ε,∞s•ij + δ(t − t0)m̃

ª
ij (1)

where γw is a constant synaptic weight, w•
ij and w◦

ij are two sets of odd
symmetric boundaries, Ein is a inhibitory reversal potential (i.e. boundaries
hyperpolarize the membrane potential of surface cells), K◦

ε,∞ and K•
ε,∞ are

nonlinear diffusion operators (which include mutual inhibition of brightness
and darkness activity), δ(t − t0) is Dirac’s delta function, and finally m̃⊕

ij
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and m̃ª
ij are multiplexed retinal activities (filling-in of multiplexed retinal

activities instantaneously recovers absolute luminance values).
Many brightness illusions (such as White’s effect, grating induction, Benary
cross, simultaneous brightness contrast) are reproduced by the surface sys-
tem (figure 2). Specifically, the surface system provides a new account to
White’s effect and the Benary cross; these illusions occur as a consequence
of the multiplexed retinal code and the novel diffusion paradigm.

gradient system

0luminance 50 100 500time = 

sine wave

triangular wave

checkerboard

(linear gradient)

(nonlinear gradient)

Fig. 3. Results for the gradient system. Snapshots at different time steps (see
numbers) show the evolution of the perceptual activity in the gradient maps. The
input (“luminance”) is shown in the left image of each row. The first row shows the
generation of a luminance gradient with linear slope, where Mach-like bands were
generated in the output. In the second row it is shown that with a nonlinear luminance
gradient (here a sine wave grating), no explicit generation of a gradient is observed,
since the state of the gradient system remains approximately stationary. The example
in the last row illustrates that surfaces are suppressed, but gradients are represented
in the gradient system.

Gradient system. Gradients may contain valuable information about 3-D
surface structure (structure from shading, e.g. [13]) and therefore provide
additional information for object recognition. Gradients are defined as large-
scale even and odd symmetric features. Since our model only employs a single
scale, we have to recover large-scale gradients by means of clamped diffusion
(see figure 3). This process works in a way that in the brightness layer ON-
activity serves as tonic (or “clamped”) source, and the OFF-activity as tonic
sink (vice versa for the gradient darkness layer).
The gradient system successfully accounts for the inverted-U behavior of
the perceived strength of Mach bands vs. the slope (or spatial frequency) of
the luminance ramp (i.e. there exists a ramp slope where Mach bands are
perceived with maximum strength) [14].
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texture system

luminance texture luminance texture

Fig. 4. Results for the texture system. Left: speckled noise was added to a lumi-
nance pyramid, where each pixel received noise with probability p = 0.1 (“luminance”).
The output of the texture system shows a successful segregation of even-symmetric fea-
tures from surfaces (“texture”). Right: output of the texture system (“texture”) to a
real-world texture image (“luminance”). The last examples show that both lines and
points are represented in the texture system.

Texture system. Texture is defined here as small-scale even symmetric con-
trast configurations. We distinguish two further subtypes: lines and points.
Both subtypes are usually superimposed on surfaces (figure 4). Often, points
are generated by noise. Therefore, by suitable interactions between the tex-
ture system and the surface system, noise may be discounted from object
surface representations. The strength of this interaction may be modulated
by an attentional system, since occasionally it may happen that points actu-
ally correspond to structure information. Nevertheless, no additional filtering
(like a median filter) is required to achieve denoising, which is of particular
interest for image processing. Above, we have briefly described the subsys-
tems of our computational model. For image processing tasks, we now need
to combine the output of all three subsystems. To do so, the output of the
texture system is “printed” on the combined surface/gradient output. How-
ever, if we are interested in denoising tasks, we could eliminate the points,
since the latter typically correspond to noise.
In order to combine the output of the surface system with the gradient sys-
tem, preliminary simulations suggest that gradients should be built upon
filled-in surface representations. These computational mechanisms, however,
are subject of ongoing investigation.

3 Summary and Conclusions

Our model provides a novel view on early vision, since it emphasizes that the
visual input should be interpreted by three subsystems accomplishing a segrega-
tion into surface, texture and gradient maps. In particular, with this segregation
process we propose a new interpretation regarding the role of cortical simple
cells in early vision, and their contribution to generate distributed representa-
tions of surface layout [15, 16]. We believe that this segregation facilitates object
recognition, since it leads to separate intrinsic feature representations that are
precursory to the generation of object surface representations. The gradient and
texture system may provide additional information to higher visual areas. Un-
like a simple coding approach that decomposes the visual input (e.g. [17]), we
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propose a more richer representation that allows to semantically relate specific
image content to underlying surface properties. Mechanisms which underly such
a surface related processing necessitate more complex interactions in order to
disambiguate and combine information from several maps.
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Orientation only Orientation and Luminance Orientation and Optic Flow Orientation and Colour
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a) orientation only (∆o=−4π/8)
−50

0
50

−50
0

50
0

10

20

b) orientation (∆o=−3π/8)
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c) orientation (∆o=−π/4)
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d) orientation (∆o=−π/8)
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e) orientation (∆o=0)
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f) orientation (∆o=π/8)
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g) orientation (∆o=π/4)
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h) orientation (∆o=3π/8)���������
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a) orientation (∆o=0)
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b) ori. (∆o=0) + phase
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c) ori. (∆o=0) + flow
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d) ori. (∆o=0) + color
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e) ori. (∆o=0) + phase + flow
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f) ori. (∆o=0) + phase + color
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g) ori. (∆o=0) + flow + color
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h) ori. (∆o=0) + phase + flow + color���������
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Abstract. We present the extension of the perceptual grouping tech-
nique known as Tensor voting to the application to grey-level images.
The image data is encoded by a tensorial representation of the local ori-
entation which is computed from a set of Gabor filters. The resulting
dense tensor maps are refined by means of newly introduced inhibitory
voting fields. Subsequent grouping with excitatory voting fields yields
saliency maps for contours and junctions.

1 Overview

We present a perceptual grouping approach applicable to images with the aim
to facilitate a transition from local low-level features to more global high-level
information. The method allows the inference of salient contours and junctions
from images based on the principles of good continuation and proximity, which
according to psychological studies [4, 5] play a special role among the set of
Gestalt laws.

By the computation of local orientation tensors from a set of Gabor filters,
our approach extends the tensor voting (TV) technique developed by [9] to the
application to grey-level images. Using second order tensors as input and output
tokens, we simultaneously encode information about orientation and orientation
uncertainty – in contrast to other vector-based grouping methods which can only
represent direction (e. g. [1, 3, 10–14]). Other advantages of the method are the
exclusive use of local operations and its linearity. Moreover, due to the similarity
to a convolution operation, computation does not involve iterative processing as
required in other optimization-like approaches.

While inputs formerly consisted of binary images or sparse edgel maps, our
extension yields oriented input tokens and the locations of junctions as input to
the perceptual grouping. In order to handle dense input maps, the tensor voting
framework is extended by the introduction of grouping fields with inhibitory
regions.

? We gratefully acknowledge partial funding of this work by the Deutsche Forschungs-
gemeinschaft under grant Me1289/7-1 “KomForm”.
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2 Tensor Voting

For a brief review of the TV framework, we restrict our explanations to the
2D-case where a second order symmetric tensor over R

2 can be denoted by a
symmetric 2 × 2 matrix T = λ1e1e

>

1 + λ2e2e
>

2 with two perpendicular eigen-
vectors e1, e2 and two corresponding real eigenvalues λ1 > λ2. Basically, the
tensor represents the second order moments of the local orientation for each
image location and can be visualized by an ellipse.

The definition of saliency measures is deducted from the decomposition of a
tensor into

T = (λ1 − λ2)e1e
>

1 + λ2(e1e
>

1 + e2e
>

2 ) . (1)

In (1), the weighting factor (λ1−λ2) represents an orientation certainty in the
direction of the eigenvector e1 and thus will be called curve- or stick-saliency.
The second weight λ2 is applied to a circle, thus we call it junction- or ball-

saliency because it indicates a high orientation uncertainty which is equivalent
to the confidence in the presence of a junction.

Figure 1a illustrates that the tensor addition of similarly oriented tensors
yields an increased stick-saliency whereas differently oriented tensors yield a
high ball-saliency.

(a) (b) (c)

Fig. 1. (a) Tensor addition: The tensors are depicted by λ1e1 ⊥ λ2e2. (b) Excitatory
stick-voting field for a horizontally oriented input token P at the center. (c) Inhibitory
stick-voting field.

Grouping is achieved by the interaction of input tokens according to their
stick-saliency or ball-saliency, respectively. In the case of oriented input tokens,
stick-voting is applied: For each token the stick-voting-field (Fig. 1b) is aligned
to its eigenvector e1 and weighted with λ1 − λ2 and all fields are combined in a
convolution-like manner by tensor addition. The layout of this field encodes the
connection of neighboring tokens which fulfill the minimal curvature constraint.
Hence, it allows to strengthen locally collinear or co-circular structures, including
virtual contours across gaps in the image data.
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3 From Local Orientation to Tensor Tokens

In order to apply the TV technique to grey-level images, we transform the image
data into a tensor description. This is achieved by the computation of the local
orientation and orientation certainty from a set of quadrature filters. We use
two-dimensional Gabor filters for their known optimality with regards to the
time-bandwidth product:

g(k) = K exp

(

−
1

2
(k − k0)

>D(k − k0)

)

(2)

where k denotes the frequency, K a normalization constant and D a 2 × 2
covariance matrix. The kernel consists of a two-dimensional Gaussian centered
around k0 with variances σ2

1 , σ2
2 as the eigenvalues of D. A similar approach, but

with different filter kernels, has been used by [2].
The response gi(x) of Gabor filter i, with the center frequency k0,i at image

position x, is a measure for orientation certainty in the direction of that filter.
Therefore, we introduce the orientation tensor Ti = eie

>

i , which represents an
ideal orientation in the direction of the unit vector ei perpendicular to k0,i.
Then, the weighted tensor sum

T (x) =
n

∑

i=1

gi(x)Ti (3)

over all filter orientations i gives an estimate for the local orientation and orien-
tation uncertainty at image position x. Figure 2 shows the tensors which result
from applying this procedure to the image of a circle. Note that the locations
along the contour with higher orientation uncertainty correspond to alias effects.
They are caused by the discretization of the image and detected in dependence
of the parametrization of the Gabor filters.

In order to facilitate the inference of image features larger than the Gabor
kernel size, the voting field size σv is a function of the Gabor kernel size σg: The
relation σv/σg = 6 is derived from results of psychophysical experiments [1].

4 Inhibitory Voting Fields

Initially, TV has been designed to group sparse input maps by means of a densi-
fication in order to identify m-D structures in n-D input space with m < n (i. e.
lines and points in 2-D space). However, due to the localization uncertainty of
Gabor filters, the Gabor transform yields for 0-D or 1-D image structures input
tensors which extend over regions. In order to compensate for this blurring effect
and to fit the input tokens better to the model of the voting field design, we have
proposed to apply a non-maximum suppression method to the local orientation
tensors prior to the grouping process. This thinning step has been embedded
into the TV framework by the introduction of inhibitory voting fields, please
refer to [7] for additional details of the algorithm.
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(a) (e) (f)

· · ·

(b) (c) (d)

Fig. 2. From local orientation to tensors. (a) Input image. (b)-(d) Filter responses
g0(x), g1(x), . . . , g4(x). (e) Tensor map T (x). (f) Upper right quarter of (e) zoomed by
a factor of 4.

The inhibitory voting field is designed to operate on areas complementary to
the excitatory voting field: The excitatory stick-voting field proposed by [9] (Fig-
ure 1b) only covers the region F+ and leaves out the region F− with π

4
≤ θ ≤ 3

4
π.

The region F− is excluded from excitatory grouping because the assumed circular
connection with an oriented input token at P does not fulfill the minimal total
curvature constraint (an elliptic connection would yield lower total curvature).

The inhibitory voting field (Fig. 1c) covers exactly these complementary po-
sitions F−, which have previously been excluded from the grouping process. This
newly defined field achieves edge thinning by suppressing orientations which are
approximately parallel to an oriented input token P and have lower saliencies
sal(Q) < sal(P ). Because non-maxima locations are assumed to lie perpendicu-
lar to the orientation of P , inhibition should be strongest at angles θ ≈ π

2
where

Q ‖ P and decrease to zero towards the two extremal cases along the circle θ ≈ π
4

and θ ≈ 3

4
π where Q ⊥ P .

The strength of the inhibition is defined as

F−(r, θ) =







sal(P ) ·

(

e
−

1

2

r
2

σ
2

1 − e
−

1

2

r
2

σ
2

2

)

· cos8(θ) if π
4
≤ |θ| ≤ 3

4
π

0 else
(4)

which is an adaptation of the formula by [3] overlaid with a difference of Gaus-
sians (with σ1 > σ2 to model an off-surround behavior, while the on-center part
consists of the excitatory field). The orientations e(r, θ) of the field tokens are
defined by the normalized tangent vectors of the circles cotangent to P and
encoded as stick-tensors T = F−(r, θ) · ee

>.
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5 Results

Figure 3 gives an example of an image where the application of Gabor filters
is not sufficient to extract salient structures. In order to bridge gaps and to
compensate for considerably high noise, grouping is needed to infer structures
beyond the size of a Gabor kernel.

Salient contours (Figure 3e) are extracted from saliency maps by the applica-
tion of an adapted marching squares algorithm which traces the contours along
maximal saliencies and yields a subpixel-accurate vectorial representation of the
curve. By means of this method, it becomes possible to compute the positional
precision of contours and junctions which is subject to ongoing research.

In contrast to [6], our approach infers salient structures based on local oper-
ations compared to global connections between all image features. Grouping is
based on the principles of good continuation and proximity and does not require
further assumptions about the objects’ geometry. Moreover, the computation of
local orientation tensors doesn’t hypothesize step-edges, which isn’t valid at cor-
ners, but rather represents them as locations with high orientation uncertainty.
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(a) (b)

(c) (d)

(e)

Fig. 3. Results on an natural scene: (a) Input image from [6]. (b) Stick-saliency of Ga-
bor responses. (c) Stick-saliency with excitatory voting only, as in [8]. (d) Stick-saliency
from combination of inhibitory and excitatory voting. (e) Salient curves extracted from
(d) by application of a marching squares algorithm.
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Abstract. The operations in early vision can be seen as result of an optimal
adaptation to the statistical redundancies of natural scenes. This hypothesis is
mainly supported by the analysis and simulation of the statistical properties of
single neurons, whereas the evidence is less clear on the behavioral level. Here
we show that basic visual functions, like the discrimination of two images, do
only work properly for natural images, whereas they suffer a complete break-
down for non-natural images (i.e., for images that lack any of the characteristic
statistical redundancies of the natural ones, like random images or images with
artificial redundancies). Since it can be formally proven that almost all possible
images belong to this latter group, this implies that the visual system is special-
ized for the processing of a tiny fraction of the possible images, whereas it is
functionally “blind” to almost all possible images.

1 Introduction

The hypothesis of an optimal adaptation of the early visual processing stages to the
statistical redundancies of natural scenes has recently received increasing attention (for
review see, e.g., [1]). Most arguments in support of this hypothesis have been derived
from an analysis of the processing properties of individual neurons in the retina or in
the visual cortex. Regarding behavioral properties, the situation is more complicated.
Here the straight-forward prediction from the adaptation hypothesis would be that
visual perception should work best within the class of natural images, whereas perfor-
mance should be substantially reduced for the class of non-natural images (Fig. 1).

Fig. 1.Schematic illustration of the predicted visual discrimination capabilities (the “granular-
ity” of the just noticeable differences). Fine discriminations should only be possible for natural
images, whereas non-natural images should only allow for coarse discriminations

natural
images

non-natural
images

all
images
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Recent investigations of this prediction employed manipulations of the statistical sec-
ond-order properties. The analysis became complicated because for the class of natural
images there is both evidence for a maximum sensitivity, but also for a greater robust-
ness against changes (i.e. for a reduced sensitivity), depending on the experimental
technique [2][3]. This prompted us to search for a simple and straightforward behav-
ioral test of the adaptation hypothesis. Surprisingly, there exists a very simple test, that
can provide considerable insight, but has not yet received the attention it deserves.

2 Perception of Random Images

In comparing the perceptual performance for natural vs. non-natural images, it seems
not immediately obvious how the non-natural images should be designed. However, a
prototypical design results from the basic property that characterizes natural images in
terms of information theory: their high degree of structural regularity, or statistical
redundancy. The prototypical non-natural images are thusrandom images, since these
lack any of the statistical regularities of the natural ones. The behavioral test then
becomes a simple issue (Fig.2).

The observable complete break-down of visual discrimination (and thereby of any
higher visual function, such as pattern recognition or classification) within the class of
random images is a massive and well known effect, but for some reason it is usually
not considered very relevant. This is a mistake, however, as will be shown in the fol-
lowing. The underestimation of the theoretical importance of the effect is presumably
a direct consequence of our perceptual properties. We have the strong subjective
impression of a high similarity and homogeneity of the random images, as opposed to
the complexity and wide diversity of natural images, and we tend hence to believe that
there must exist many more different natural images than different random images.
However, in both cases we are fooled by our perceptual system. The physical differ-
ence of two random images is typically just as large as the difference between two
arbitrary natural images. In fact, the state space vectors of two sample random images
are in almost all cases close to orthogonal (Fig.3). Even more dramatic is our percep-
tual misguidance with respect to the large number of images that we expect to find in
the natural set, as opposed to those in the random set.

To understand this, we have to take a look at the theoretical approaches to random-
ness. From a probabilistic perspective, a sequence can be declared random if it is a

Fig. 2. Natural images can be easily distinguished, random images not
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“typical” outcome and passes all conceivable tests of randomness. For example, it has
to be Borel normal, i.e. all letters and blocks of letters should appear with approxi-
mately equal frequency. This can be formalized as universal Martin-Löf test [4].

How many of all the possible different sequences are then random? Surprisingly
many, because, simply speaking, the number of typical sequences, i.e. of possible com-
binations with approximately equidistributed letters, increases rapidly with increasing
size of the sequences (Fig.4). Formally, the set of random infinite sequences has uni-
form measure one [4].

That almost all possible sequences are random can also be deduced from the differ-
ent perspective of algorithmic complexity [5][6], which defines randomness as incom-
pressibility: the shortest program that can describe a random string is not allowed to be
significantly shorter than the string itself. Consider a simple counting analysis for
binary strings: There are 2n different strings of length n. A string is declared random if
its shortest description has length greater m, with m only by a negligible fraction
smaller than n. There exist 2m different descriptions of length m, 2m-1 of length m-1,
..., 2 descriptions of length 1. Hence there exist in total 2m+1-2 different descriptions
with length no longer than m, and therefore at most a fraction of (2m+1-2)/2n≈ 1/2n-m-1

of all strings of size n can be not random. Let us declare a binary image of size
n=512x512 as random if its shortest description is longer than 0.9999⋅n. This implies
that 99.99999% of all images of this size are random.

In conclusion, whatever perspective on randomness we take, it can be proven that
almost all images of the entire set of possible images arerandom. Natural images,
being clearly non-random, can thus only constitute a subset of vanishing size (Fig.5).

Fig. 3. Random images are as different from one another as are natural images. The dissimilarity
of the images, as measured in terms of Euclidean distance, is indicated by the vectors diagrams

74.3 104.5

Fig. 4. The typical binary sequences can be defined by a constraint on the admissible deviation
of the empirical distribution of 0’s and 1’s from equidistribution. The plots show the distribution
of the number of different sequences in dependence of the number of 1’s they contain. Sequence
length is 50, 200, and 250.000 (the number of pixels in a typical image). The vertical lines illus-
trate a possible criterion for typicality (here about 50%+/-5%). It is obvious that for long
sequences the criterion can be made arbitrarily tight, and almost all sequences will be typical
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The observed breakdown of perceptual discriminatory performance for random images
has thus the clear implication thatwe are "functionally blind" for almost all possible
images.Stated this way, the seemingly unimportant perceptual equivalence of all ran-
dom images should rather be seen as strong evidence for the adaptation hypothesis.
Obviously, our visual system is not at all suited for an equally good processing of all
kinds of images, but is rather highly specialized for the efficient processing of a very
tiny subset: the subset that contains the natural images. This is certainly strong evi-
dence in favor of the adaptation hypothesis.

However, there exists an interesting generalization of the adaptation hypothesis
which could also be consistent with the above observations. The crucial factor might
not be seen in thespecific regularities of the natural environment but rather in the mere
fact that thereare substantial statistical redundancies in the natural environment. The
visual system may thus be specialized for specific images, but in a more general sense:
it may work as auniversal structure detection system.

How can we test this generic variant of the adaptation hypothesis? If the system
would really be a universal structure detection system, then it should be able to distin-
guish between two images from any set which contains the same or lessamount of sta-
tistical regularities as the set of natural images, but a differenttype of regularities. We
hence considered different possibilities of constructing such quantitatively equivalent
random processes. Furthermore, we constructed an artificial test set that is so simple
that any reasonable universal structure detection system should be able to process it.
Examples for these tests are shown in Figure 6. In all cases we get the same basic
result: the images in these artificial test sets are almost impossible to distinguish.

Actually, a further related test is provided by what we usually employ as “random”
numbers. In comparison to the typical size of an image any random number generator
does only represent a very short description. Thus the “random” images it produces are
certainly not really random. Nevertheless, they all appear visually as random, and can-
not be distinguished. (By the way, the “random” images of Fig. 1 are simply two dif-
ferent subsequences of digits ofπ.) The generic version of the adaptation hypothesis,
which assumes that the visual system could be a universal structure detection system,
is therefore definitely falsified.

A last point to mention concerns the obviously limited complexity of all realistic
information processing systems, which includes the visual system. It might be argued
that, by definition, all those systems cannot adequately deal with signals of nearly
unlimited complexity, like random images, and that the inability to discriminate such
images is hence a trivial result. This conception is misleading, however. In order to

Fig. 5. Almost all possible images are random images

non-natural
imagesall

images
random images

natural images non-random images
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discriminate two random images it is not necessary to capture their full information
content, but it is entirely sufficient to have a crude, low-complexity representation (as
long as this representation is different for the two images). This is the case for a multi -

Fig. 6. Test of the hypothesis that the visual system is a universal structure detection system. In
terms of the multivariate pdf  a simple equivalent class to the class of natural images is
given by , where A can be any orthonormal transform. Since such transforms
represent mere rotations and reflections in state space, they leave theshape of the pdf, i.e., the
amount of structure, and basic associated measures, like the information content (entropy),
intact . (Of course, most k-order statistics measured with respect to the coor-
dinate system will change). (a) A simple example are permutations. Clearly, a pdfp(x2,x3,x1) is
in the above sense equivalent top(x1,x2,x3). We can hence construct an artificial test set by a
pseudo-random permutation (a low-complexity deterministic transform) of the state-space coor-
dinates (i.e., the pixel positions) of natural images. Shown are the permuted versions of the two
natural images of Fig. 1. (Since stationarity is destroyed, a strictly fair test would require to
show several realizations to the system, but the other realizations look basically like the two
shown). (b) If we consider stationarity crucial (the visual system may be a universal structure
detection system only for stationary signals) we can first use a Fourier transform (an orthonor-
mal transform), apply a permutation in the frequency domain, and perform then the inverse Fou-
rier transform. Altogether, we obtain again an orthonormal transform, and the resulting signals
should be stationary. We show again two examples from this artificial test set. (Note that the
spectrum here is not white. The spectral permutation was pseudo-random, but with a constraint
which avoids the occurrence of isolated high-amplitude peaks at low spatial frequencies.)
(c) Finally, a critical test can be obtained by the provision of artificial images with extreme regu-
larity (high redundancy). Each image of this set consists of 1024 patterns of size 16x16, ran-
domly selected from an alphabet of 16 “basis” patterns. The information content is thus 512
Byte/image. The simple statistical structure can be easily detected by standard algorithms like
KLT or Lempel-Ziv (each pattern is repeated about 64 times in each image). Of course, any uni-
versal structure detection system should be able to recognize the structure of such simple signals

p x( )

p y( ) p Ax( )=

H y( ) H x( )=( )

(a) (b) (c)
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channel, wavelet-like filter decomposition, the standard model of the visual system,
and closely related to current image coding schemes (note that these have their quanti-
zation rules adapted to the statistics of typical images). Put random images into JPEG,
and the probability that the coded images do not differ tends to zero.

3 Conclusion

Recent investigations indicate that the visual system is adapted to the statistical regu-
larities of natural images. Here we examined whether this results in a behavioral dif-
ference in the perception of natural vs. non-natural images. First, we reconsidered the
well known fact that human observers cannot distinguish random images, whereas
they can easily distinguish natural images. We then asked how many images from the
state space of possible images are random, and how many are natural. The answer
from both a probabilistic perspective and from algorithmic complexity theory is that
almost all images are random. Discrimination being a basic prerequisite for higher-
level visual functions, the clear implication is that the visual system is functionally
"blind" to almost all possible images. However, it works obviously quite well for the
vanishingly small subset of natural images. This specialization cannot be attributed to
a universal structure detection strategy, but seems to be crucially dependent on the
"naturalness" of the structural constraints, since discrimination fails also for several
non-random test images with non-natural statistical redundancies, even for very simple
ones. Likewise, the discrimination failure cannot be attributed to a general complexity-
constraint, since basic coding systems, like wavelet coders, yield clearly different rep-
resentations for different random images. Together, these results can be regarded as
strong behavioral evidence for the hypothesis that the processing structures of early
vision are the result of an optimized adaptation to the specific statistical redundancies
of natural images.

Acknowledgment: Study supported by DFG (SFB 462, GRK 267). I thank U. Nuding
for intense discussions, and G. Hauske and I. Rentschler for helpful comments.
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Abstract. In this paper we explore the independent component decom-
position for face detection. The minimization of the Kullback - Leibler
divergence and the maximization of the entropy are two methods em-
ployed to decompose an original image into its independent components.
We built nearest neighbor classifiers based on their resulting independent
components and compare their ability to detect faces to that of support
vector machines.

1 Introduction

There are many applications in which human face detection plays a very impor-
tant role. For example, it can be used in content-based image database index-
ing/searching, surveillance systems, and human-centered computer interfaces. It
also constitutes the first step in a fully automatic face recognition system. A
comprehensive survey on face detection methods is given in [1]. A face detection
technique based on independent component decomposition is developed in this
paper. The principal components matrix of the original face and non-face pat-
terns is assumed to represent a mixture of independent image sources which are
retrieved by using independent component analysis (ICA) through an unmix-
ing matrix. We can reconstruct the original images by combining linearly these
sources. The matrix which contains the coefficients of those combinations is fur-
ther use as the first input of the two nearest neighbor classifiers employed in the
paper. The second input is a combination of the test image with principal com-
ponents matrix and the unmixing matrix. The classification is then performed
according to the nearest neighbor rule. Testing this approach against support
vector machines (SVMs), we found the latter is outperformed by the proposed
method in the face detection task.

2 Spatial independent component analysis

The goal of is to decompose a set of observations into a basis whose components
are statistically independent or, at least, are as independent as possible. ICA

? This work was supported by the European Union Research Training Network “Multi-
modal Human-Computer Interaction (HPRN-CT-2000-00111).
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originally applied to blind source separation [2]. Two ICA representations of
facial patterns have been proposed in [3] for face recognition. The discriminating
ability of ICA alone or when combined with other discriminant criteria, such as
Bayesian framework or Fisher’s linear discriminant, was analyzed in [4].

In our analysis we follow the model proposed in [3]. Consider a matrix X

whose rows contain vectors formed by scanning lexicographically face and non-
face patterns (i.e., image regions). We assume that X contains a mixture of the
original independent sources U. The matrix is decomposed into a family of Y

independent sources passing it through an unmixing matrix D in the attempt to
recover U. Each source (row of Y) is an image whose pixel values are independent
of those in every other image. Accordingly, these images are said to be spatially
independent. We refer to this model as the spatial ICA. Having a number of n
face and non-face images, the number of independent components will be n as
well. In order to have a control on the number of independent components, we
choose m linear combinations of face and non-face patterns, namely the principal
component vectors of the image set. Let PT

m denote the matrix that is formed
by the m principal components in its rows. The objective of ICA applied onto
PT

m is to find the matrix Y whose rows are the statistically independent sources
by appropriately determining the unmixing matrix D. The relationship between
the three aforementioned matrices is given by [3]:

Y = DPT
m. (1)

Frequently, a whitening process applied to PT
m is necessary to decorrelate and

normalize the data. If the row means are substracted from PT
m and the resulting

matrix is passed through a zero-phase whitening filter which is twice the inverse
square root, the whitening transformation is written as W = 2(PT

mPm)−
1

2 .
Therefore, the zero - mean input matrix can be computed as the product of the
unmixing matrix and the whitening matrix Dw = DW. Eq. (1) is rewritten as
follows:

Y = DwPT
m =⇒ PT

m = D−1
w Y. (2)

The reconstructed image by ICA is:

XrecICA = (XPmD−1
w )Y = CtrainY. (3)

The matrix Ctrain contains the coefficients of the linear combination of spatial
independent sources Y. Each row of Y comprises the independent component
representation of the face images. Once we have finished training and obtained
Y, a test image can be presented as:

ctest = D−1
w Pmxtest. (4)

2.1 Entropy maximization

Given PT
m, the component in (1) which is responsible for obtaining the inde-

pendent sources is the unmixing matrix D that must be updated in order to
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obtain sources that are as independent as possible. Different approaches exist
for this purpose. One way is the so called maximum entropy method which has
been developed in [5]. The matrix Y is transformed into a matrix Z by passing
it through a component-wise nonlinearity denoted by G[·]. As ICA is applied
on the columns of PT

m, a realization pj is a combination of the original sources
uj via a mixing matrix A, pj = Auj . Therefore, the sources can be restored
through the unmixing matrix D as yj = Dpj ≈ uj . For simplicity we omit the
index j from now on. Passing the sources y through G yields:

z = G(y) = G(Dp) = G(DAu). (5)

Therefore:
u = A−1D−1G−1(z) = Ψ(z). (6)

The entropy is given by:

h(z) = −E[log(fZ(z))] = −E

[
log

(
fU(u)

| det(J(u))|

)]
, (7)

where fZ(z) and fU(u) are the probability density functions of Z and the sources
U, and J is the Jacobian matrix J = ∂z/∂y. Using the chain rule, the determi-
nant of J can be evaluated as:

| det(J(u)) |=

∣∣∣∣ det

(
∂z

∂y

)∣∣∣∣ = | det(DA)|
m∏

i=1

∂zi

∂yi

. (8)

Maximizing the entropy h(z) requires to maximize the expectation of the de-
nominator term log | det(J(u))| with respect to the matrix D:

∂

∂D
(log | det(J(u))|) = [D−1]T +

m∑

i=1

∂

∂D
log

(
∂zi

∂yi

)
. (9)

If zi = g(yi) = 1/(1 + e−yi) is a component-wise nonlinearity applied to all
elements of matrix Y, and taking into account that:

∂zi

∂si

= zi(1 − zi), (10)

and y = G−1(z), (9) becomes:

∂

∂D
(log | det(J(s))|) = [D−1]T + (1 − 2z)pT . (11)

Using the gradient ascent algorithm, the change of the unmixing matrix D is [5]:

∆D = η(D−T + (1 − 2z)pT ). (12)

It is more convenient to use the natural gradient instead of the actual one to
avoid inverting D at each step, therefore, the formula for unmixing matrix change
becomes:

Dk+1 = η[I + (1 − 2z)yT ]Dk. (13)
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2.2 Minimization of the Kullback-Leibler divergence

Another way to obtain independent sources is equivalent with minimizing the
Kullback-Leibler divergence between the probability density function fS(s;D)
parameterized by D and the corresponding factorial distribution defined by [6]:

f̂Y(y;D) =
m∏

i=1

f̂Y(yi;D). (14)

The Kullback-Leibler divergence is given by:

D
f‖f̂

(D) = −h(y) +
m∑

i=1

ĥ(yi), (15)

where h(y) is the entropy of the random vector y at the output of the unmixer

and ĥ(yi) is the marginal entropy of the ith element of y. The minimization
can be implemented using the method of gradient descent. Following [6], the
unmiximg matrix will be updated at each iteration k as follows:

Dk+1 = Dk + η[I − θ(yk)yT
k ]D−T

k , (16)

where I is the identity matrix and the analytical form of the activation function

θ(y) is also given by [6].

3 ICA performance evaluation

The ability of ICA for face detection was evaluated using face patterns derived
from the AT&T face database. A description of the data is given in [7]. A number
of 294 non-face patterns was collected and added to 306 face patterns, achieving
a total data base of 600 patterns. 80 of them were used to form the training
set. Each row of the training matrix contains a 238 - dimensional vector. This
matrix was updated according to (13) and (16) for the first and second method
respectively, for 1000 iterations. The learning rate η was set to 10−6. The evalu-
ation of the ICA performance was assessed by means of two classifiers. The first
one is based on the nearest neighbor rule and measures the angle between a test
vector and a training one. Let us denote the class of face feature vectors by L1

and those of the non-face feature vectors by L−1 . Let c+1 be a row vector of
Ctrain matrix that corresponds to the nearest face pattern. Let us denote the
nearest non-face neighbor of ctest by c−1. Then we compute the quantities:

df =
cT

testc+1

‖ctest‖‖c+1‖
and dnf =

cT
testc−1

‖ctest‖‖c−1‖
, (17)

where df and dnf are the cosines of the angle between a test feature vector and
the nearest training one. We assign ctest to L1 if df > dnf , otherwise ctest ∈ L−1.
Notice that the labels for the training set are preserved, therefore we know the
labels corresponding to Ctrain.
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The second classifier is the a minimum Euclidean distance classifier. The
Euclidean distance from ctest to ck, where k ∈ {±1} is expressed as

‖ctest − ck‖
2 = −2[cT

k ctest −
1

2
cT

k ck] + cT
testctest

= −2hk(ctest) + cT
testctest, (18)

where hk(ctest) is a linear discriminant function of ctest. A test pattern is classi-
fied by this classifier (also known as ”maximum correlation classifier”) by com-
puting two linear discriminant function h+1(ctest) and h−1(ctest) and assigning
ctest to the class corresponding to the maximum discriminant function.

We have investigated the performance of the two previously mentioned clas-
sifiers (17) and (18) by varying the number of principal components extracted
from the training set. The results are depicted in Figure 1. A minimum error of
5.2% was achieved using 20 principal components in the case of the second clas-
sifier. However, the performance of this classifier seems to be almost insensitive
to the number of the principal components used. On the contrary, for the nearest
neighbor rule, the classification error decreases as the number of principal com-
ponents involved increases. A minimum 3.9% classification error is achieved by
keeping 70 linear combinations of 80 training vectors. For comparison, support
vector machines (SVMs) with different kernels [8] were applied to discriminate
between the face and the non-face patterns. The error rates for different SVMs
are included the Table 1, in the same experiment for comparison purposes.
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Fig. 1. Classification error (false acceptance rate plus false rejection rate) versus the
number of principal components for both classifiers.
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Table 1. Number of errors (%) for several classifiers.

Face detection methods Errors (%)

ICA-based classifier 1 3.9

ICA-based classifier 2 5.2

linear SVM 6.1

polynomial SVM with degree equals 2 6.3

polynomial SVM with degree equals 3 11.1

radial basis function SVM 5.5

exponential radial basis function SVM 6.1

4 Conclusions

We have exploited the ability of ICA to provide useful features in order to
conduct a face detection task. The combination of ICA with nearest neighbor
classifiers seems to provide a reliable face detector that can outperform SVMs.
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Abstract. We generalize a one-dimensional model of Häussler and von
der Malsburg which describes the generation of retinotopic projections
between two cell sheets. Our generalized model is independent of the
special geometry of the cell array and describes the temporal evolution of
the connection strengths between cells on different manifolds. Linearizing
the equations of evolution around the stationary homogeneous state and
using of the methods of synergetics leads to order parameter equations
near the instability which contain only the unstable modes. We show
that our general model contains as a special case the description of cell
sheets of Häussler and von der Malsburg, and that it allows a detailed
treatment of cell arrays distributed on spherical shells.

1 Introduction

In the course of ontogenesis of vertebrate animals well-ordered neural connec-
tions are established between retina and tectum, a part of the brain which plays
an important role in processing optical information. As a result of this selforga-
nization process neighbouring retinal cells project onto neighbouring cells of the
tectum. Such a projection is called retinotopic. This conservation of neighbour-
hood relations is realized in many neural connections between different sheets of
cells.

A detailed analytical treatment of development of ordered projections be-
tween different sheets of nerve cells was already presented by Häussler and
von der Malsburg [1]. In that paper retina and tectum were treated as one-
dimensional discrete arrays of cells. The case of continuously distributed cells on
a spherical shell was discussed partially in [2].

2 Our Model

Here we generalize the approach by developing a model which is independent

of the special geometry of the problem. To that end retina and tectum are
represented by general manifolds Mt and Mr, respectively. We define a measure
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for the magnitudes of the manifolds by

|Mt| =

∫

∑

t

1 , |Mr| =

∫

∑

r

1 . (1)

The symbol
∫

∑

stands for a summation over all elements of Mt, Mr, if the manifolds are dis-
crete, and for an integration if the manifolds are continuous. As we restrict our
investigations to manifolds of identical topology, we have

|Mt| = |Mr| := M . (2)

Every ordered pair (t, r) with t ∈ Mt, r ∈ Mr is connected by a connection

strength w(t, r). The equations of evolution of these connections are assumed to
be given by a generalization of the Häussler equations [1]:

ẇ(t, r) = α+ w(t, r)

∫

∑

t′

∫

∑

r′

cT (t, t′)cR(r, r′)w(t′, r′)

−
w(t, r)

2M

[

∫

∑

t′

{

α+ w(t′, r)

∫

∑

t′′

∫

∑

r′

cT (t′, t′′)cR(r, r′)w(t′′, r′)

}

+

∫

∑

r′

{

α+ w(t, r′)

∫

∑

t′

∫

∑

r′′

cT (t, t′)cR(r′, r′′)w(t′, r′′)

}]

. (3)

Here α denotes the homogeneous growth-rate of new synapses onto the tectum,
and the positive coefficients cT (t, t′), cR(r, r′) represent measures for coopera-
tivity within each manifold, which are larger when the points t, t

′ and r, r
′ are

closer to each other, and fulfill the normalization condition
∫

∑

t′

cT (t, t′) = 1 ,

∫

∑

r′

cR(r, r′) = 1 . (4)

3 Orthonormal System

Furthermore we assume spatial homogeneity and isotropy of the manifolds, i.e.,
no point is preferred to another, and no direction is preferred to another. As
mentioned above the strength of cooperation depends on the distance between
two points of the manifold. This requires a measure of distance, i.e. a metric,
which turns out to be the stationary Robertson–Walker metric of general rela-
tivity [3]. With the help of the metric we define the Laplace–Beltrami operators
∆Mt

, ∆Mr
on the manifolds and use their eigenvalue problems

∆Mt
ψmT

λT
(t) = λTψ

mT

λT
(t) , (5)

∆Mr
ψmR

λR
(r) = λRψ

mR

λR
(r) , (6)
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to define a complete orthonormal system with the eigenfunctions ψmT

λT
(t) and

ψmR

λR
(r). By construction, they fulfill the orthonormality relations

∫

∑

t

ψmT

λT
(t)ψ

m
′

T
∗

λ′

T

(t) = δλT λ′

T
δmT m′

T
, (7)

∫

∑

r

ψmR

λR
(r)ψ

m
′

R
∗

λ′

R

(r) = δλRλ′

R
δmRm′

R
, (8)

and the completeness relations

∫

∑

λT

∫

∑

mT

ψmT

λT
(t)ψmT ∗

λT
(t′) = δ(t − t

′) , (9)

∫

∑

λR

∫

∑

mR

ψmR

λR
(r)ψmR∗

λR
(r′) = δ(r − r

′) . (10)

Here the indices mT , mR denote the degeneracy of the eigenspaces belonging to
the eigenvalues λT , λR. The cooperativity coefficients can be expanded in terms
of these functions according to

cT (t, t′) =

∫

∑

λT

∫

∑

λ′

T

∫

∑

mT

∫

∑

m′

T

F
mT m

′

T

λT λ′

T

ψmT

λT
(t)ψ

m
′

T
∗

λ′

T

(t′) , (11)

cR(r, r′) =

∫

∑

λR

∫

∑

λ′

R

∫

∑

mR

∫

∑

m′

R

F
mRm

′

R

λRλ′

R

ψmR

λR
(r)ψ

m
′

R
∗

λ′

R

(r′) , (12)

where we assume for the sake of simplicity

F
mT m

′

T

λT λ′

T

= fmT

λT
δλT λ′

T
δmT m′

T
, (13)

F
mRm

′

R

λRλ′

R

= fmR

λR
δλRλ′

R
δmRm′

R
, (14)

with expansion coefficients fmT

λT
, fmR

λR
. The forms (13), (14) are essential assump-

tions, and thus ingredients, of our description. We then have

cT (t, t′) =

∫

∑

λT

∫

∑

mT

fmT

λT
ψmT

λT
(t)ψmT ∗

λT
(t′) , (15)

cR(r, r′) =

∫

∑

λR

∫

∑

mR

fmR

λR
ψmR

λR
(r)ψmR∗

λR
(r′) . (16)

Note that the normalization of the cooperation coefficients (4) fixes

fmT

0
= fmR

0
= 1 . (17)
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4 Linear Stability Analysis

Using the methods of synergetics [4, 5] the system is investigated around the
stationary homogeneous solution w(t, r) = 1. A linearization of the generalized
Häussler equations (3) with respect to the deviation

v(t, r) = w(t, r) − 1 (18)

leads to the eigenvalue problem

L(t, r, v(t, r)) = Λv(t, r) (19)

with a linear operator L. The eigenfunctions v(t, r) turn out to be

v(t, r) = ψmT

λT
(t)ψmR

λR
(r) , (20)

with the eigenvalues Λ given by

ΛmT mR

λT λR
=







−α− 1 λT = λR = 0
−α+ 1

2
(fmT

λT
fmR

λR
− 1) λT = 0, λR 6= 0;λR = 0, λT 6= 0

−α+ fmT

λT
fmR

λR
otherwise .

(21)

5 Nonlinear Analysis

By changing the control parameter α in the generalized Häussler equations (3)
in a suitable way the real parts of some eigenvalues become positive, therefore
the system can be driven to the neighbourhood of an instability point. If we
assume that the expansion coefficients fmT

λT
, fmR

λR
are monotonous with respect

to λT , λR,

1 = fmT

0
≥ fmT

1
≥ fmT

2
≥ · · · ≥ 0 , (22)

1 = fmR

0
≥ fmR

1
≥ fmR

2
≥ · · · ≥ 0 , (23)

then the maximum eigenvalue is given by ΛmT mR

11
.The linear stability analysis

reveals in (21) that the neighbourhood of the instability point is characterized
by

<(ΛmT mR

11
) ≈ 0 , (24)

<(ΛmT mR

λT λR
) < 0 , (λT , λR) 6= (1, 1) . (25)

Thus the amounts of the real parts of the unstable modes (λT , λR) = (1, 1) are
much smaller than those of the stable modes (λT , λR) 6= (1, 1):

|<(ΛmT mR

11
)| � |<(ΛmT mR

λT λR
)| , (λT , λR) 6= (1, 1) . (26)

This result motivates decomposing the connection strength according to

w(t, r, t) = 1 + U(t, r, t) + S(t, r, t) , (27)
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where
U(t, r, t) =

∑

mT mR

UmT mR

11
(t)ψmT

1
(t)ψmR

1
(r) (28)

denotes the contribution of the unstable modes and

S(t, r, t) =

∫

λT λR

∑

′
∑

mT mR

SmT mR

λT λR
(t)ψmT

λT
(t)ψmR

λR
(r) (29)

denotes the contribution of the stable modes. The symbol

∫

λT λR

∑

′

means the summation/integration over all eigenvalues λT and λR except for
(λT , λR) = (1, 1).

Relation (26) leads to the time-scale hierarchy, i.e. the stable modes evolve
on a faster time-scale than the unstable modes,

τu = [<(ΛmT mR

11
)]−1 � τs = [<(ΛmT mR

λT λR
)]−1 . (30)

Due to this time-scale hierarchy the dynamics of the stable modes quasi-instan-
taneously follow the dynamics of the unstable modes:

S(t, r, t) = h(U(t, r, t)) . (31)

This is the well-known slaving principle of synergetics: the stable modes are
enslaved by the unstable modes. The center manifold h(U(t, r, t)) is calculated
by eliminating the stable modes. Thus it is possible to reduce the original high-
dimensional system to a low-dimensional one which only contains the unstable
amplitudes. The general form of these order parameter equations is independent
of the geometry of the problem and reads

U̇mT mR

11
(t) = ΛmT mR

11
UmT mR

11
(t) +

∑

m′

T
m′

R

∑

m′′

T
m′′

R

A
mRm

′

R
m

′′

R

mT m′

T
m′′

T

U
m

′

T
m

′

R

11
(t)U

m
′′

T
m

′′

R

11
(t)

+
∑

m′

T
m′

R

∑

m′′

T
m′′

R

∑

m′′′

T
m′′′

R

B
mRm

′

R
m

′′

R
m

′′′

R

mT m′

T
m′′

T
m′′′

T

U
m

′

T
m

′

R

11
(t)U

m
′′

T
m

′′

R

11
(t)U

m
′′′

T
m

′′′

R

11
(t) , (32)

where the coefficients A
mRm

′

R
m

′′

R

mT m′

T
m′′

T

, B
mRm

′

R
m

′′

R
m

′′′

R

mT m′

T
m′′

T
m′′′

T

can be expressed in terms of the

eigenfunctions ψmT

λT
(t), ψmR

λR
(r) and the expansion coefficients fmT

λT
, fmR

λR
[6]. As is

usual in synergetics, the coefficients B
mRm

′

R
m

′′

R
m

′′′

R

mT m′

T
m′′

T
m′′′

T

in general consist of two parts,

one stemming from the order parameters themselves and the other representing
the influence of the center manifold. Equations (32) are a central new result of
this paper, and serve as a starting point of the analysis of selforganization in cell
arrays of different geometries.
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6 Examples

Specifying the geometry means inserting the corresponding eigenfunctions of the
Laplacian into the order parameter equations (32). For the linear chain these
eigenfunctions are given by periodic exponential functions, and we regain the
results presented in [1]. For the case of spherical shells the eigenfunctions are
given by spherical harmonics:

Ylm(ϑ, ϕ) , l = 0, 1, 2, . . . ; m = −l,−l + 1, . . . , l − 1, l . (33)

The calculation of the order parameter equations (32) for the spherical shell
shows that the quadratic term vanishes, by analogy with the linear chain. The
cubic part contains only terms which fulfill the conditions

m′

T +m′′

T +m′′′

T = mT , (34)

m′

R +m′′

R +m′′′

R = mR . (35)

It turns out that the dynamics of the order parameters for the spherical shell
can be described by a potential V , which was also the case for the linear chain
[1]. Because the coefficients of (32) are quite complicated expressions we have to
refer the reader to [6] for a detailed presentation of the order parameter equations
and the potential V .

7 Outlook

The Robertson–Walker metric describes manifolds with constant curvature. In
[6] we revisit the linear chain, which represents a Euclidean manifold with cur-
vature 0, and we treat the spherical shell, which represents a curved manifold
with curvature +1. There remains the interesting task of investigating the case
of a non-Euclidean manifold with negative curvature, namely the pseudosphere

(curvature –1) [3].
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Patterns by General Local Linear Maps
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Abstract. The extension of dynamic link matching by introducing local
linear maps (LLMs) has been proposed to render the matching adaptable
to larger deformations. However, investigations in the literature so far
have been restricted to local rotations, i.e. the Jacobian J of the map is
a simple 2-d rotation matrix. Here we will describe the generalization of
this approach. We make use of the theorem that every Jacobian in two
dimensions can be decomposed into a rotation by some angle γ1, followed
by stretchings λ1, λ2 in both directions, and another rotation by an angle
γ2. While in the previous model only one parameter for the rotation was
needed, the general LLM has to include the full set of parameters γ1, γ2,
λ1, λ2. The decomposition allows for a natural classification of LLMs in
generic subclasses. As an example of a generic two-parameter map we
discuss conformal local linear maps.

1 Introduction

Dynamic Link Matching (DLM) (e.g. [1]) is a well-known pattern matching
model tolerant of small deformations. Local features are extracted from the
data pattern and are matched to similar counterparts in a template pattern.
The matching process fails when due to strong deformations extracted features
of corresponding points are no longer similar. To increase the model’s tolerance
to deformations the introduction of Local Linear Maps (LLMs) was suggested
[2]. LLMs approximate the local deformation of the data pattern. By this, ex-
tracted features become invariant under all deformations within the range of the
LLM applied. The LLM modifies the filters used for feature extraction in the
same manner as the data pattern is distorted. Thus appropriately transformed
Gabor type filters can extract features in the data pattern similar to those in
the template pattern. Moreover, LLMs of neighbouring data points are required
to have smoothly varying characteristics, which enforces topological constraints.
(In a different context, LLMs were used in combination with error minimization
to describe cascade neural network architectures [3]).

An essential ingredient of the method is the differential Df of the continuous
nonlinear map f linking the patterns. So far, only models with LLMs limited to
rotations, i.e. detDf = 1, have been examined in the literature. Here we extend
the model’s scope to arbitrary deformations by making use of the most general
form the differential can assume. In the following, we describe this generalization
and discuss, as a first specific extension, the case of conformal local maps (local
rotations and stretchings).
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2 Local Linear Maps and Matching of Data Patterns

Following Aonishi and Kurata [2] we define deformations of data patterns as
transformations produced by continuous nonlinear maps: Given an original pat-
tern I1(x), x ∈ D1 ⊂ Rn, it is assumed that there exists a function f :
D1 7→ D2 ⊂ Rn such that the deformed image I2(y), y ∈ D2, is obtained
by I2(f(x)) = I1(x).

The key idea of local linear maps (LLMs) is to replace the global map f

in (overlapping) neigbourhoods Ui of points xi with its linear approximation,
f(x′ − xi) = (Df)|xi

(x′ − xi), and thus to describe the manifold defined by
f by the piecewise continuous composition of its tangential hyperplanes at the
points xi.

The comparison of the original and the image pattern involves checking the
similarity of mutual feature vectors extracted by folding the patterns with suit-
able kernels ψ(x), e.g. Gabor filters. Let J1(x) =

∫

x′∈D1

I1(x
′)ψ(x − x′) dnx′

quantify a feature with the help of ψ in the original pattern in the neigbourhood
of x. It is easy to show, using the linear approximation for f , that the feature
associated with the neigbourhood of its image point y = f(x),

J2(y) =

∫

y′∈D2

I2(y
′)ψ(y − y′) dny′ , (1)

is related to the original data pattern through the modified kernel ψ((Df)|x (x−
x′)) det((Df)|x′), viz.

J2(y) =

∫

x′∈D1

I1(x
′)ψ((Df)|x (x − x′)) det((Df)|x′) dnx′ . (2)

In other words, the filter has to be transformed according to the local linear map
Df taken at the original point x whose image is y.

Given some pattern I2(y), we can compute feature vectors Jk
2
(yi) from (1)

using filters ψk. The problem of deciding whether or not I2 is the deformed image
of an original pattern I1(x) then amounts to the problem of finding a map f ,
with its local linear maps Df , such that Jk

2
(yi) can equivalently be computed,

for every k and i, from the original pattern I1 using the filters transformed
according to (2).

3 Theory

3.1 Diagonalisation of the Jacobian in 2-d

From now on we shall restrict ourselves to two-dimensional data patterns. In
components and cartesian coordinates, f = (f1(x, y), f2(x, y))

T
, the differential

Df is represented by the Jacobian matrix

J =

(
f1x(x, y) f1y(x, y)
f2x(x, y) f2y(x, y)

)

, (3)
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where, as usual, the index denotes the partial derivative with respect to the
coordinate x or y. A novel aspect in our approach is that we make use of the
fact that at every point the Jacobian in two dimensions can be brought into
diagonal form,

R−1 (γ2) J R (γ1) = Λ =

(
λ1 0
0 λ2

)

, (4)

with two appropriate rotations by angles γ1 and γ2, and two stretchings by
factors λ1 and λ2. All four parameters are of course functions of position.

To prove this, consider orthonormal basis vectors û1, v̂1 defining a cartesian
coordinate system at a given point P (x, y), rotated by an angle γ1 with respect
to the (x, y) coordinate system. The Jacobian maps û1, v̂1 on two, in general,
non-orthonormal vectors u2,v2 located at the image of P ; however, for a special
choice of γ1 these two vectors can be made orthogonal, with the corresponding
coordinate axes rotated with respect to the image (x, y) system by γ2.

Then evidently û1 = R(γ1) êx, and u2 = λ1R(γ2) êx, with λ1 = ‖u2‖. Since
u2 = Jû1, we have λ1R(γ2) êx = J û1 = JR(γ1) êx, hence R−1(γ2) J R(γ1) êx

= λ1êx. Similarly, R−1(γ2) J R(γ1) êy = λ2êy, with λ2 = ‖v2‖. Thus êx and
êy are eigenvectors of R−1(γ2) J R(γ1), with eigenvalues λ1, λ2, which proves
(4). The values of γ1, γ2, λ1, λ2 can be determined in a straightforward way by
setting up R(γ1), R(γ2) as 2-d rotation matrices and requiring the off-diagonal
matrix elements of R−1(γ2) J R(γ1) to be zero.

3.2 Most General Form of Local Linear Maps

The most general form of a local linear map can now be gained by solving (4)
for the Jacobian, J = R (γ2) Λ R (−γ1), and decomposing Λ in the form

Λ =
√

λ1λ2

(√

λ1/λ2 0

0
√

λ2/λ1

)

= λ̄

(
κ 0
0 κ−1

)

, (5)

with λ̄ =
√
λ1λ2 , κ =

√

λ1/λ2. We can then write for the Jacobian

J = R (γ2)

(
κ 0
0 κ−1

)

︸ ︷︷ ︸

A

· λ̄R (−γ1)

︸ ︷︷ ︸

C

. (6)

From this we see that in two dimensions J is the product of a conformal, i.e. angle

preserving, map C (rotational stretching: each infinitesimal shape is uniformly
blown up by λ̄ and rotated by −γ1, and an area preserving map A (rotational
squashing: each infinitesimal shape is squashed by κ, with its area maintained,
and rotated by γ2). The decomposition (6) suggests in a natural way the following
classification of local linear maps.

3.3 Generic Local Linear Maps

Four-Parameter Maps This comprises the most general case discussed above
of two rotations and two anisotropic stretchings, or, alternatively, a conformal
followed by an area preserving map.
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Three-Parameter Maps This is the combination of one rotation (e.g. γ2 = 0)
plus anisotropic stretchings, which can also be considered as a conformal map
followed by an area preserving squashing.

Two-Parameter Maps

a) Conformal Maps: κ = 1, λ̄ 6= 1 (i.e. λ1 = λ2 = λ̄), J = λ̄ R(γ2−γ1) = λ̄ R(θ)
(angle preserving rotation and isotropic scaling). The components f1 and f2
must satisfy f1x = f2y, f1y = −f2x (Cauchy-Riemann equations). We note
that every analytic function in the complex plane induces a mapping of this
type.

b) Area-Preserving Maps: γ1 = 0 , λ̄ = 1 (i.e. λ2 = 1/λ1), and κ = λ1 (rota-
tion plus area preserving squashing). For f1 and f2 we have the constraints
f1xf1y + f2xf2y = 0 and det J = f1xf2y − f1yf2x = 1.

c) Anisotropic Stretchings: γ1 = γ2 = 0, and λ1 6= λ2.

One-Parameter Maps

a) Rotations: These can be regarded as conformal mappings without stretch-
ings, λ1 = λ2 = 1; at every point J has the form of a rotation matrix, that
is f1, f2 fulfill the Cauchy-Riemann equations and det J = 1.

b) Isotropic Stretchings: This is the simple case of no rotations, γ1 = γ2 = 0,
and λ1 = λ2 at every point.

4 Method of Solution

Only the case of rotations has been discussed in the literature so far (Aonishi and
Kurata [2]). An analysis of dynamic link matching in the context of local linear
maps for all other generic cases is still lacking. However, the general procedure
for determining the map f by matching local feature vectors J1(x, y) in the
original and J2(x

′, y′) in the deformed data pattern can be adopted from [2]:

1) Consider estimator functions [4] f̂(x, y) = (f̂1(x, y), f̂2(x, y))
T.

2) Choose the type of generic local linear map which is to represent the differ-
ential Df̂ ; in the most general case it will depend on four parameters (6),
(Df̂)(x, y) = A(γ2(x, y), κ(x, y))C(γ1(x, y), λ̄(x, y)).

3) To produce a topographic transformation between two data patterns I1, I2,
formulate an appropriate cost function Ctotal[f̂ , Df̂ ,∇γ1,∇γ2,∇κ,∇λ̄].

4) Find the global minimum of the cost function by solving the time evolution

equations df̂1(x, y)/dt, df̂2(x, y)/dt, dγ1(x, y)/dt, dγ2(x, y)/dt, dκ(x, y)/dt,
dλ̄(x, y)/dt that result from a steepest gradient descent of the cost function.



� � �$� � � ��� � � � �-��� � � ����� � � �J� �>� �A�K� � � � � � � �b� � ����J�A��� � � ��� �

Fig. 1. Distortion of data patterns described by local linear maps. Example: conformal
local linear maps (rotations and isotropic stretchings). The figure shows the effect of
a conformal local linear map on an amorphous (left) and a well-structured (right)
data pattern. Top: original data pattern (ε = 0 in (7)), middle: ε = 0.0001, bottom:
ε = 0.005. Note the smooth variation of the local rotation angles and stretching factors.
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The choice of the cost function is crucial to finding the “best” global map f̂

and, with it, the “best” local linear maps. The cost function terms given in [2]
can serve as a useful guide for the other generic cases. Obviously, the detailed
discussion is beyond the scope of this presentation.

5 Example: Local Linear Maps as Conformal Maps

We will now consider the application of two-parameter maps, viz. conformal
maps. To obtain the best local conformal map linking a given pair of data
patterns, the cost function has to be minimized including the constraint that
accounts for the Cauchy-Riemann equations. The implementation of this pro-
cedure is in progress, and detailed results will be published elsewhere. Here we
will restrict ourselves to the illustration of the effects of conformal maps on the
deformation of given data patterns. As an example, we show in Figure 1 the
effects of the conformal mapping

(
f1(x, y)
f2(x, y)

)

=

(
x
y

)

+ ε

(
x2 − y2

2xy

)

(7)

on two data patterns. The smoothly varying local rotation angles and stretching
factors can clearly be recognized from the deformation of the rectangular grid.
In actual implementations, the best conformal local map must be determined
from the original and the deformed data pattern using the procedure described
in Section 4.

Acknowledgements. We thank G. Hornig for pointing out the diagonalization of
the Jacobian.

References
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Abstract. To investigate viewpoint dependence in dynamic faces an avatar was 

animated using actors� movements. In Experiment 1 subjects were shown a full-

face animation. They were then asked to judge which of two rotated moving 

avatars matched the first. Test view, orientation and the type of motion were 

manipulated. In a second experiment subjects were shown two views of the 

same facial animation and were asked which of the two avatars was the same as 

the initial animation. Initial views could be rotated to 15 �  and 45 �  or 45 �  and 

75 �  while test views were presented at 30 �  or 60 � . Learnt view, test view, 

orientation and type of movement (rigid + non-rigid vs non-rigid) were 

manipulated. Both experiments and movement conditions produced an 

advantage for upright over inverted matching demonstrating subjects were 

encoding facial information. Non-rigid movement alone showed no effect of 

view for both experiments demonstrating viewpoint invariance. Rigid and non-

rigid movement presented together produced a decline in performance for larger 

test rotations in Experiment 1, while Experiment 2 produced a differential 

advantage for 30 �  test rotation when initially viewed upright faces were rotated 

to 15 �  and 45 �  however no difference was found in the 45 �  and 75 �  condition or 

with inverted faces. These experiments suggest that non-rigid facial movement 

is represented in a viewpoint invariant manner whereas the addition of rigid 

head movements encourages a more viewpoint dependent encoding when the 

initial orientation of the head is not rotated further than the half profile (45 � ). 

 

What role does motion play in the recognition of faces? Two types of motion, rigid 

transformations of the head and non-rigid deformations that occur during speech and 

changes in expression, are available to the viewer during social interaction. Research 

to date suggests that rigid motion of a head does provide beneficial information for 

the viewer. Pike et al. [1] have shown that this additional motion information 

presented at learning can enhance recognition. It is suggested that this advantage is 

affected by the ability to build up or access a 3-dimensional representation. The extra 

structural information provided by the rigid transformational motion of the head 

offers more opportunity to encode or access this information. However it is rare that 

when we are introduced to a person we see their face moving in the highly controlled 

way that was adopted by Pike et al. [1]. During most social interaction we will also be 

exposed to the face moving in a non-rigid manner.  

The advantages of non-rigid motion for recognition have been the subject of 

debate. It has been shown that a degraded representation of a face will benefit from 
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the addition of non-rigid motion particularly for faces the viewer is familiar with. 

Knight and Johnston [2] have demonstrated that recognition of degraded famous faces 

will be significantly enhanced by the addition of non-rigid motion. Lander, Christie 

and Bruce [3] have demonstrated the same advantage with degraded famous faces. 

Christie and Bruce [4] have studied the effects of presenting non-rigid motion at 

training and at test with unfamiliar faces. They found no advantages for presenting 

motion at training or at test and suggest that non-rigid motion may only be beneficial 

when accessing existing representations. 

Recently Thornton and Kourtzi [5] have used a sequential matching task rather 

than a recognition task in the study of non-rigid facial motion. They demonstrate that 

presentation of a short video sequence aided matching when the face differed in 

expression or viewpoint between prime and test images. The demonstration of an 

advantage in sequential matching of unfamiliar faces after presentation of a face 

moving non-rigidly in this study is interpreted with the view that mechanisms 

responsible for representing change over time are established and maintained in 

working memory and show little transference to long term memory over the course of 

the study. 

All of the above studies have presented spatial layout cues alongside motion cues 

and have therefore not studied the role of facial motion alone. The question of 

whether facial motion can be represented independently of spatial cues remains open. 

However, Hill and Johnston [6] have shown that both rigid head movements and non-

rigid head movements in the absence of spatial cues provide sufficient information to 

allow observers to categorize faces on the basis of both identity and gender. On the 

basis of differences between accuracy of categorization depending on the type of 

motion, Hill and Johnston [6] suggest that rigid movements are idiosyncratic and 

provide the basis for performance in identity categorization while non-rigid 

movements provide independent cues to speech and expression. These results would 

appear to complement the findings discussed above in that a more permanent 

representation is possibly mediated by encoding rigid motion while speech and 

expression are both encoded in a more transient manner. 

The recognition of static faces has typically been found to be viewpoint dependent. 

Results of studies such as that by Hill, Schyns and Akamatsu [7] suggest that when a 

single view is presented during a learning stage, recognition of the same face from 

other views is impaired. They also found that the addition of cues that do not vary 

over view, such as facial colouring, greatly enhanced the accuracy of the results to the 

extent that learning presentation times need to be reduced. Recognition for the 

reduced presentation time was also found to be view dependent for conditions except 

in the case of the ¾ learnt views. These results suggest that generalized prior 

knowledge of the 3-dimensional structure of faces does not allow a view invariant 

representation of a face to be accessed when generalizing from a single static view.  

As non-rigid facial motion is specifically a property of the object in motion it 

cannot be mimicked by movement of the viewer in the same way that rigid 

transformations can. Since this non-rigid motion is a change in the intrinsic shape of 

an object, it would make sense for the visual system to encode the motion in a 

viewpoint independent way if possible.  
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The first experiment was designed to assess view dependence when matching non-

rigid facial movement as opposed to both rigid and non-rigid movement together from 

a full-face view. 

Stimuli for both experiments reported consisted of a total of 64 animations based 

on motion capture recordings of 8 males and 8 females, each telling 4 question and 

answer type jokes.  Recordings were made with an eight camera Oxford Metrics' 

Vicon motion capture system with the cameras placed in a semicircle at different 

heights in front of the head.  Forty markers were used to capture facial movement and 

a headband with 4 markers was used to capture rigid movements. The resulting 

motion information was used to animate an average 3-dimensional facial 

model created from 100 male and 100 female faces [8]. Animation of the 3d 

model was achieved in Famous Animator where �areas of influence� around each 

marker placed on the face inherit the movement of the marker (see also [6]).   As no 

eye movements were captured the eyes were made to "look at" a point straight ahead 

of the face.  The three-dimensional head model was texture mapped with a 

corresponding average texture and the resulting animated sequences rendered using 

3DS Max.  Two versions of each sequence were rendered; one with just non-rigid 

facial movements and the other with both types of movements combined. 

Two groups of 20 subjects were presented with animations containing only non-

rigid motion or rigid and non-rigid together. During one trial participants were first 

shown a learning animation sequence oriented at 0 �  (where 0 �  is a full face and 90 �  a 

profile). This was followed by a target and distracter animation presented sequentially 

at an orientation in depth of 0 � , 15 � , 30 � , 45 � , 60 � , 75 �  or 90 � . Participants were asked 

to indicate which animation was shown in the learning stage. The target animation 

was the same sequence as the learning animation while the distracter was randomly 

chosen with the constraint that it contains an actor telling the same joke as the target 

stimulus. Both target and distracter animations were shortened such that the video 

sequence would start at a random point within the first half of the animation and run 

for half the length of the full animation. Shortening the animation was required in 

order to lower performance from ceiling. Each animation could only be viewed once 

and all animations were required to have been viewed before response. Subjects 

controlled the speed of presentation. 

Faces were also presented upside down as a control in order to assess the 

likelihood that subjects were utilizing extraneous cues in order to carry out the task. It 

has been shown previously that presenting inverted facial motion reduces the 

accuracy of gender and identity judgments suggesting that upright facial motion is 

represented in a object-motion encoding system specialized for faces [6]. Inversion 

constituted a within-subjects condition. During the upright condition all faces were 

presented upright. During the inverted condition all faces were presented upside 

down. Initial orientation was randomized. Each condition contained 64 trials. 

A within subjects analysis was carried out for each type of motion. Data are shown 

in Table 1. The effect of test viewpoint for non-rigid motion was not found to be 

statistically significant, f(6,114)=2.163, p>0.05 although a significant overall effect of 

inversion was found, f(1,19)=5.834, p=0.03. Rigid and non-rigid motion together 

displayed a significant effect of test rotation f(6,114)=2.311, p=0.04 which was found 

to produce a linear trend, f(1,19)= 14.468, p<0.01. An effect of inversion was also 

found, f(1,19)=5.819, p=0.03. 
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A Neural Mechanism for

Viewing-Distance-Invariance

Rüdiger Kupper and Reinhard Eckhorn

Philipps-University Marburg, Neurophysics Group, D-35037 Marburg, Germany

Abstract. We present a neural network mechanism allowing for distance-
invariant recognition of visual objects. The term distance-invariance refers
to the toleration of changes in retinal image size that are due to varying
view distances, as opposed to varying real-world object size. We propose a
biologically plausible network setup, based on the recently demonstrated
spike-rate modulations by viewing distance, affecting large numbers of
neurons in striate and extra-striate visual cortex. In this context, we
introduce the concept of distance complex cells. We successfully imple-
ment the model in a computer simulation and investigate its response to
changing view distances.

1 Introduction

Invariant object recognition means the ability of the human visual system to
recognize familiar objects appearing in varying poses in the visual field, such as
varying position, size, or three-dimensional view. It can be argued that positional
invariance may mostly be achieved by fixational eye movements. Nonetheless,
some sort of neural computation must be performed along the ventral pathway,
to achieve invariance to size, view, or other transformations involving a change
in retinal projection. Among these, transformation of size plays a special role,
as it is characterized by changes in extent, but not in shape.

1.1 Size-Invariance vs. Distance-Invariance

Size-invariant object recognition demands closer investigation, regarding the pos-
sible causes that make a familiar shape appear in different sizes on the retina.

Viewing Distance. One reason for visual objects having varying retinal image
size is, that the same or identical objects appear at different viewing distances. A
possible source for this type of size variation is self-motion. The resulting images
are perceived as being instances of the very same object even if there are huge
differences in the extent of their retinal projections. We will refer to this type of
invariant recognition as distance-invariance. It is unconsciously perceived.
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Real-world Object Size. Another reason for varying retinal image extent can
be that the observer is facing different objects of the same shape, but of different
physical size, measured in real-world coordinates (e.g. a car and its toy model).
These are perceived as being different objects, though possibly belonging to a
common class.

Under normal viewing conditions, the two types of size variation can percep-
tually be well distinguished. The retinal image of a nearby toy car can match that
of a far away real car. Nonetheless, perceptually the two objects are not confused.
That is, invariant recognition is achieved in the case of varying viewing distance,

but not for varying real-world size. We regard this as being of major importance.
It means that physical size is an inherent object property used to distinguish
between objects, and that it is derived considering the current viewing distance.
To our knowledge, this is not accounted for by other models of size invariant
object recognition, making use of neurally implemented two-dimensional image
transformations [4], or of cascaded local feature pooling [3, 6]. There is, however,
evidence, that the ability to distinguish these two types of size variation is also
based on neural properties recently found in V1, V2 and V4 of monkeys [1, 2, 7].

1.2 Distance Estimation by the Visual System

Distance dependent modulation of single cell spike rates has been found to high
abundance (64–85% of neurons) in visual cortical areas V1, V2, and V4, making
it a very common property of cells at the lower levels of the ventral visual
pathway [2, 7]. While cell properties like receptive field size and preferred two-
dimensional stimulus properties (edge orientation, contrast, spatial frequency,
etc.) stay unchanged, the cells exhibit a modulation of firing rate with fixation
distance [1, 2]. The results can be interpreted as viewing distance being a further
property coded by the respective neurons, in addition to their classical receptive
field properties.

What functional purpose could the modulation of such large portions of neu-
rons along the ventral pathway serve? We suggest, that viewing distance in-
formation is used to select, by sensitivity modulation, subsets of local feature
detectors, which represent visual elements at a preferred viewing distance. The
representation of a fixated object then is primarily made up from the responses
of cells sensitive to the actual fixation distance.

2 Model

2.1 Extending the Concept of Hierarchical Visual Coding

Hierarchical models for object recognition adopt the view that increasingly com-
plex features constitute the representation of objects [3, 6]. Our present model
extends this concept by introducing the experimental finding of spike rate mod-
ulation by viewing distance into the hierarchy. Our model (Fig. 1) consists of,
A) a linear neural chain representing the current fixation distance by a single
activated blob, B) distance modulated feature detectors, C) distance complex
cells, and D) an object knowledge base.
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Fig. 1. Model architecture. Higher-order features are omitted for clarity. A: Neural
chain coding distance by activation blob. B: Sets of feature detectors assigned to dif-
ferent viewing distances. C: Distance complex cells. D: Object knowledge base for
shape and size, and neural chain coding the perceived physical size

A: Neural Chain Representing Distance. The exact origin and type of
the distance signal is unknown. It can be provided from a variety of sources,
including ocular vergence, lens accommodation, angle below horizon, or pictorial
cues such as contrast, texture gradient and motion parallax. We model its action
by a linear chain of coupled neurons, like a discretized one-dimensional neural
field, in which the position of a single activation blob represents the current
distance estimate of the ocularly fixated object (Fig. 1, A).

B: Modulation of Feature Detectors by Distance Signal. The retinal
image is represented by the activation of low- and higher-level visual filters, each
coding for their preferred features. Coding for distance is achieved by modulating
their sensitivity by a distance signal [1, 2, 7] (Fig. 1, A and B). The distance
tuning corresponds to the activation blob in (A:).1

C: Distance Complex Cells. Feature detector signals converge systematically
onto next stage cells, yielding what we term distance complex cells. Their recep-
tive field properties reflect the distance-variant transformation that a distinct
visual feature undergoes, as the distance between observer and fixated object
changes (Fig. 1, B and C, connections shown for one cell only). Throughout
such a movement, the same distance complex cell would be kept activated.

1 As experimental data [1, 2, 7] does currently not allow for exact shape estimation,
we assume Gaussian tuning profiles.
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D: Object Knowledge Base. The representation of objects as visual entities
is based on the outputs of distance complex cells. Features are combined to yield
representations defining not only the shape, but also the physical size of visual
objects (Fig. 1, D). We use a second one-dimensional chain of neurons with a
single activation blob to represent the physical size of a currently fixated object.

2.2 Operation of Model

Under real world viewing conditions the rich environment provides a distinct
visual input, generally sufficient for a reliable distance estimate. As illustrated
in Fig. 1, a subset of all feature detectors receives modulatory input from the
neural chain representing the current viewing distance. Owing to this modula-
tion, feature detectors of appropriate distance preference are facilitated and will
predominantly represent the visual scene, while activity of non-appropriate de-
tectors is diminished.2 These detectors will feed the attached distance complex
cells. The pattern of activated distance complex cells then activates a represen-
tation of correct shape and size in the object database.

Finally, activity in the different model modules carries information on identity
(shape and real-world size), as well as the distance of the observed object. This
mediates a stable percept of the three-dimensional scene, as the observer explores
the environment in a series of saccades.

3 Results

We examined the model’s response to hypothetical viewing situations, using a 3d-
rendering system to compute retinal projections of an artificial three dimensional
scene. Projection parameters such as position of lens and size of viewfield were set
to match those of the human eye. Network input consisted of the retinal image,
plus the current fixation distance (Fig. 2). No further information entered the
network. Output was the activation of a topologically arranged set of distance
complex cells.

3.1 Simulation Results

In a computer implementation, the model proves to generate size-invariant out-
put from distance-varying views of an object. (Fig. 2). Although different viewing
distances cause huge variations in retinal image size, the output of distance com-
plex cells is largely independent of fixation distance. Figure 2 shows results for
viewing distances of 30 and 60m, but the network operates reliably over the
full simulated distance range of 15–135 m. Note that the output is labelled in
real-world coordinates: Objects of different physical size will generate different

output, while representations will not change with varying view distance. The
network thus reproduces the two viewing modes described in Sec. 1.1.

2 Modulation affects the whole visual field, preserving spatial feature relations, but also
causing false size transformations of peripheral objects not at the fixation distance.
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Fig. 2. Simulation results. Size-invariant output is generated from distance-varying
stimuli. Note that output is labeled in real-world coordinates

Output quality depends on the spacing and width of the distance tunings:
Non-overlapping tunings generate unique contours (Fig. 2, 2nd column), but their
level of invariance depends on the density of distance sampling (i.e., the num-
ber of distance layers in Fig. 1, B). For broad, overlapping tunings, the level of
invariance is high, but the network generates multiple ghost images of fixated
objects (Fig. 2, 3rd and 4th column). Furthermore, the use of a single retinal
frequency channel in the implementation causes increasing blur with fixation
distance. The interdependence of retinal frequency tuning and distance modu-
lation is currently subject to investigations in our laboratory [1], and will be
incorporated into forthcoming versions of our model.

4 Discussion

The presented model belongs to the class of hierarchical models for object recog-
nition. These are known to produce invariance when constructed accordingly [3,
6], but do so implicitly, losing information, e.g. on object size, position, and
spatial relations among local features. Other models use control signals to set
up image transformations [4], but act in the two-dimensional domain, unable
to exploit the distance signal to gain information on physical object size. Our
model can be seen as an extension to both strategies, using pooling operations
guided by an explicit distance signal.

Based on the recent findings of firing rate modulation by fixation distance
[1, 2, 7], we propose the existence of a new class of cells, exhibiting complex

properties in the sense of being insensitive to feature transformations caused by
change in viewing distance. Cells with receptive field properties that in several
respects are similar to those of the hypothetical distance complex cells (Fig. 3)
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Fig. 3. RF-properties. A: Distance complex cells, as expected from model setup
(Fig. 1). B: Cells in V4A are reported to have large, radially oriented, “comet-shaped”
RFs. They prefer small stimuli and often respond to stimulation at appropriate distance
only (Fig. taken from [5])

have recently been reported for the newly identified area V4A of monkey visual
cortex [5]. These findings strongly encourage the further development of our
model.

A possible drawback of our approach is the large number of required feature
detectors. Detectors need to be present, which share the same preferred two-
dimensional feature, but are sensitized for different viewing distances. The qual-
ity of invariance generation depends on the width and overlap of tuning profiles,
as well as on the number of sampling points in distance. We will investigate, to
what multiplicity detectors are required to allow for stable operation, and what
constraints are imposed thereon by biological cell numbers. A radial gradient in
spatial frequency preference could compensate for distance dependent blur [1].

Many more setups of our model can be investigated, including attention
to distance and real-world size, attention to known objects, and operation in
reduced cue environments (i.e., size changes with no distance signal available).
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Abstract

We present a conceptually simple algorithm for dense image point matching be-
tween two multi-modal (e.g. color) images. The algorithm is based on the as-
sumption that correct image point matches satisfy locally a particular statistical
distribution. Through an iterative evaluation of a local probability measure, global
constraints are taken into account and the most likely set of image point matches
is found. An advantage of this approach is that no information about the cam-
era geometries, as for example the epipoles, has to be known. Therefore, the
algorithm can be used for stereo matching and optic flow.

1 Introduction

The basic idea behind all optic flow and stereo matching algorithms is, that if
two images are projections of the same 3D-scene taken from slightly different
positions or at slightly different times, then certain properties of corresponding
pixels are invariant. However, it is not necessarily the case that a pixel in one
image can be identified with exactly one pixel in the other, since rigid objects
may appear shrunk or grown in different projections. Furthermore, parts of a
3D-scene that can be seen in one projection may be occluded in the other. The
transformation between two images related by optic flow or stereo, is therefore
more like a homotopy, as Florack et al. [1] point out, than a vector field. Never-
theless, a vector field is what we need in most applications. Therefore, in general
an assumption is made about the invariant properties of corresponding pixel,
which approximates nearly invariant properties of the underlying homotopy.

The invariant properties which are typically identified are those of pixel color
and pixel neighborhood structure. Algorithms differ in how they model these
invariances and the method employed in identifying corresponding pixels using
the assumed invariant properties.

Some different types of approaches are for example: feature based methods
(e.g. [2]), pixel labelling methods (e.g. [3, 4, 5]) and Bayesian methods (e.g.
[6, 7, 8, 9]).
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Bayesian methods have the advantage of clearly stating the invariance as-
sumptions made about corresponding pixels by defining priors on the parame-
ters of the system. Markov random field (MRF) approaches as described in [10]
play an important role in this context [11]. The details of the different Bayesian
approaches to dense image point matching are quite varied. However, typically
they do not assign a single disparity label to a pixel but a discrete probabil-
ity distribution function (pdf) over a set of disparities. Although this might, at
first, seem to violate the often used uniqueness assumption as stated by Marr
and Poggio [12], one can always define the final disparity to be the expectation
value of the pdf. The advantage of defining a discrete pdf is that, in effect, we
can test a number of hypotheses concurrently and eventually extract the most
likely one. Finding the set of disparities which maximizes an appropriately de-
fined probability measure then gives the answer to the correspondence problem.
Such a maximization may be done iteratively or through a global maximization
scheme.

In this paper we also follow a Bayesian approach which is based on an idea we
published previously [13] using different mathematical tools. A detailed discus-
sion of our approach, including a number of experiments, can be found in [14].
Our approach is similar to [15] but differs in the implementation of the pixel
invariance properties. Where they use a MRF approach to enforce a smooth
disparity space, we follow the idea that the distribution of correct pixel matches
can locally be described by a particular pdf, whereas wrong match candidates
are uniformly distributed. Through an iterative evaluation of a local probability
measure, local matching constraints are propagated through the image, such that
global constraints are taken into account. Although, occlusion is not modelled
explicitly, half-occluded pixels are either given two different disparities simul-
taneously, or they are matched onto the nearest matchable pixel. That is, the
algorithm does not break down in the presence of occlusion.

2 Theory

In the model we develop, we are not interested in the exact camera geometry. We
simply assume that we are given two images A and B whose pixel are correlated
in as far as they represent the same scene, albeit from a different point of view
(stereo matching) or at a different time (optical flow). The only constraints we
can invoke then are pixel similarity and an ordering constraint.

We assume that correct image point matches satisfy a particular statistical
distribution whereas incorrect matches are equivalent to noise and are uniformly
distributed. We are looking for an iterative procedure that amplifies those pixel
that satisfy the appropriate distribution and subdues the others. We can only
give a short overview of the algorithm’s derivation here. For a detailed account
see [14].

First of all we need a measure for pixel similarity. This measure has to express
the likelihood that two pixels were created by the same element in a scene,
without taking into account any neighboring pixels. Such a measure therefore
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will be based on a pixel’s color, but may also include any other local property
like the local scale or local phase. We will denote this measure by s(xA,xB),
where xA denotes a pixel position in image A and xB a pixel position in image
B.

Using s(xA,xB), we can evaluate for each pixel in image A its similarity to
the pixels within an area of image B where we expect the correct match to lie. We
will also call this a test patch. That is, each pixel in image A has associated with
it a probability distribution giving its matching likelihood to a set of pixels in
image B. Our goal is to minimize the entropy of these probability distributions,
i.e. to minimize the match uncertainty.

In order to do this, the pixel similarity measure alone is not enough. We
also have to take into account a structural constraint. We do this by assuming
that the local distribution of pixel matches takes on a particular form. This
becomes the prior distribution in our derivation, denoted by h(xA,xB ,yA,yB).
That is, given an assumed pixel match (xA,xB) and a particular neighbor yA

of xA, h(xA,xB ,yA,yB) gives the a priori probability distribution for yB being
a correct match of yA.

It can be shown that the probability of (xA,xB) and (yA,yB) being two
neighboring pixel matches is then given by

P (XB = xB ,YB = yB |A,B,XA = xA,Ya = yA)

= s(xA,xB)s(yA,yB)h(xA,xB ,yA,yB).
(1)

The probability measure on which we base our match decision is the following.
Assuming (xA,xB) are a correct match, then for a given neighbor yA of xA we
say that the most likely match yB of yA is the one where the data best satisfies
the prior distribution of neighboring matches. That is we are looking for the
estimator ŷB given by

ŷB = arg max
yB

(

P (XB ,YB = yB |A,B,XA,YA)

maxy P (XB ,YB = y|XA,YA)

)

. (2)

The effect of this is that if for a particular set (xA,xB ,yA) the corresponding
ŷB maximizes the prior, then

P (XB = xB ,YB = ŷB |A,B,XA = xA,YA = yA) = s(xA,xB)s(yA,yB). (3)

That is, the match probability depends solely on the pixel similarities.
What we really need to estimate is the probability of (xA,xB) being a correct

match. However, for each neighbor yA of xA we obtain a match probability es-
timate from P (XB ,YB = ŷB |A,B,XA,YA). We therefore take the final match
probability estimate of a pixel pair (xA,xB) to be the expectation value of the
set of probability estimates for all eight neighbors of xA.

P (XB = xB |A,B,XA = xA)

= ρ s(xA,xB) 1

8

∑

yA
maxyB

s(yA,yB)
h(xA,xB ,yA,yB)

maxy h(xA,xB ,yA,y)
,

(4)
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where ρ is a normalization constant and the sum over yA goes over all eight
neighbors of xA.

Evaluating the probability measure from equation (4) only once, will not give
us a final match result. In order to minimize the entropy of the match probability
distributions, we have to apply this measure iteratively. This distributes local
match information throughout the image. It also means that homogeneous areas
are matched according to the match constraints contained in their surroundings.
In [14] we have shown that such an iteration converges. Note that this iterative
procedure can be regarded as a recurrent neural network, whose equilibrium
state gives the match result.

Half-occluded pixels, i.e. pixels that appear in one image but not in the other,
have not been treated explicitly. However, by using a bidirectional matching
scheme, the matching process is stabilized in the presence of half-occluded pixels.

3 Experimental Results and Conclusions

Fig. 1. Left image Pentagon example with evaluated disparity map.

In order to run the algorithm we have to set five parameters: the number
of iterations to perform, the test patch size, the mean pixel displacement, the
standard deviation of the ordering constraint σh and the standard deviation of
the pixel similarity function σs. The mean displacement is basically an approx-
imate pixel match. This is easy to find for optical flow, since we assume that
corresponding pixel are almost at the same position. For stereo correspondence
this initial match will have to be set by some other means. Finding the best
number of iterations could be automated by stopping the algorithm once it has
converged. The test patch size has to be set such that the correct match is always
included. Here we have to make an assumption about how much we expect the
pixels to have moved. The parameters σh and σs only change details of the final
match result. They do not have to be changed for different images.



� � � ��� � �M� � � � � ���T� � � � � ��� � � �����8� � � ��� � � � � � ��� � � � � � ��� � � �M� � � ����� 	 ��


The Pentagon stereo pair was provided by CMU/VASC. Here we matched
an area of 500×500 pixels with a test area size of 21×1. Figure 1 shows the first
of the two Pentagon images together with the evaluated disparity map after 20
iterations. It can be seen that the algorithm works quite well for stereo matching
on rectified images.

We used the Yosemite sequence cre-

Fig. 2. Initial image of Yosemite se-
quence.

ated by Lynn Quann at SRI to test
the algorithm in an optic flow setting.
We matched the lower part of the first
two images of the sequence, since no
ground truth is available for the cloud
region. The image dimensions were 315×
177 pixels, the test patch size was 7×7
pixels. The parameters σs and σh had
the same values as in the Pentagon
example. We performed 20 iterations
which took approximately 150 seconds
on an AMD Athlon XP 1800+ (1.53
GHz) running Windows XP. The al-
gorithm runs about twice as fast if we do not perform bidirectional matching,
which stabilizes the algorithm in the presence of occlusion. Note that the imple-
mentation of the algorithm was experimental and not optimized for speed.

We evaluated the Euclidean dis-

Fig. 3. Distribution of matching errors.

tance between our match results and
ground truth. Figure 3 shows the dis-
tribution of the pixel match errors over
the image. White regions indicate that
the pixel match errors are below half a
pixel. The next darker level indicates
pixel errors of between half and one
pixel. The meaning of the other shades
of gray are given in the legend of fig-
ure 3. Note that since we try to match
pixel onto pixel, half a pixel error is
as good as we can statistically expect
the result to be. Large areas have been
matched very well, whereas there are problems in the area of the mountain on
the left. Nevertheless, problematic areas are locally confined, which shows the
robustness of the algorithm. Recall that we only used two images to evaluate
the optic flow. By extending the algorithm to incorporate more images of a flow
sequence we hope to improve the matching quality further.

Although the algorithm has a simple mathematical structure, its computa-
tional complexity is high. Nevertheless, in principle the match likelihood estima-
tion of all pixels can be done in parallel. In fact, each element of the pixel match
probability distributions can be regarded as a single neuron which performs a
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simple calculation. Evaluating each neuron is all that has to be done per itera-
tion. We have implemented a similar structure on an FPGA which shows good
preliminary results.

Of course, there are still a number of problems that have to be addressed by
future research. Nevertheless, the results obtained with the algorithm show that
despite its simple structure, it is a good dense image point matcher. Note that a
program called Acre to test the algorithm on arbitrary images, is available from
the web page of the first author (www.perwass.de).
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Abstract. The primate posterior parietal cortex (PPC) is involved in the 
multisensory processing of spatial information. Damage to this part of the 
cerebrum leads to marked, and often long lasting, disturbances in spatial 
perception and visually guided action. Much has been learned about the 
underlying cortical mechanism subserving spatially oriented behavior in the last 
twenty years, due in large part to the development of awake primate behavioral 
physiology, to detailed investigations of behavioral deficits following brain 
damage in humans and to functional imaging of normal human volunteers. This 
review aims at describing some of the underlying neuronal circuits involved in 
spatial processing as has been revealed by single cell recordings in awake 
monkeys and fMRI studies in healthy human subjects. Both approaches, used in 
parallel, have led to an improved understanding of the basic principles of the 
processing of spatial information in the primate brain. 

1 Introduction 

The primate PPC is related to the processing of spatial and motion information [1]. In 
humans, damage to this where or how pathway, in particular in the right hemisphere, 
leads to behavioral deficits often referred to as extinction and neglect [2]. While 
extinction describes the inability to perceive a contralateral stimulus that is presented 
simultaneously with an ipsilateral one, neglect refers to the inability of perceiving 
(objects in) the contralateral space in general. Two specific functional aspects of 
neglect (and/or extinction) are essential for the description of this behavioral deficit 
and might be crucial for the understanding of how normal posterior parietal cortex 
operates. Firstly, these patients sometimes look at points in space contralateral to their 
lesion site although they do not perceive what is there (see e.g. [3]). Accordingly, 
some of these spatial locations that are not perceived, are located ipsilaterally with 
respect to the fovea but contralaterally with respect to the head or the body. This 
implies that the observed behavioral deficit occurs not in an eye- but rather in a head- 
or body-centered frame of reference. Secondly, extinction and neglect can occur 
across different sensory modalities, i.e. they are polymodal [4].  
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Lesions of posterior parietal and frontal cortex lead to comparable behavioral 

deficits in humans and non-human primates. It therefore appears appropriate to (i) 
consider the macaque monkey as an animal model for the better understanding of the 
normally working posterior parietal cortex and (ii) test for functional equivalencies 
between humans and macaques concerning specific cortical regions which have been 
described in detail for the macaque.  

2 Polymodal motion responses in macaque PPC 

Recent neurophysiological studies in macaque monkeys revealed a number of 
functionally distinct subdivisions along and within the intraparietal sulcus (IPS). One 
of these areas is the ventral intraparietal area (VIP) located in the fundus of the IPS. 
Based on anatomical data, area VIP was originally defined as the MT projection zone 
in the intraparietal sulcus (IPS) [5]. This anatomical result suggested that neurons in 
area VIP might be responsive for the direction and speed of moving visual stimuli, 
and in general might encode self-motion information.  

 

 
 

Fig. 1. Response of a neuron from area VIP to a visual stimulus moving on a circular pathway. 
Response is shown as histogram in (A) and as polar plot (B). This neuron clearly prefers 
stimulus motion right- and downward.  

Recent studies confirmed that VIP neurons respond selectively to basic optic flow 
pattern like frontoparallel motion, or forward or backward motion [6,7]. An example 
for responsiveness to frontoparallel motion is shown in Figure 1. Both panels show 
the response of a VIP neuron to movement on a circular pathway. Data are shown as 
response histogram (A) and in a polar plot (B). It is obvious that this neuron responds 
best to stimulus motion down and to the right. Figure 2 shows the response of a cell 
preferring visually simulated forward over backward motion. Responses are shown 
for an expansion stimulus simulating forward motion (A) and a contraction stimulus 
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simulating backward motion (B). A total of 70% of the cells in area VIP responds 
selectively to frontoparallel motion and/or forward or backward motion. Interestingly, 
preference for forward or backward motion cannot be predicted by knowledge of the 
location of a neuron’s visual receptive field and its preference for frontoparallel 
motion. It therefore appears that the responsiveness for forward or backward motion 
is an inherent response property of cells in area VIP.  
 
 

 

Fig. 2. Response to visually simulated forward and backward motion. The two histograms 
show the response of a neuron from area VIP to an expansion stimulus simulating forward 
motion (A) and a contraction stimulus simulating backward motion (B). Vertical lines within 
the panels indicate the onset and offset of motion. Response differences were statistically 
significant at p<0.001.  

Like visual information, somatosensory signals can be used to encode motion 
information. Many neurons in area VIP respond also to tactile stimulation [8,9]. Most 
VIP cells that have a somatosensory receptive field (RF) show a positive response to 
passive superficial stimulation of restricted portions of the head, with the upper and 
lower face areas being represented equally often. Tactile and visual RFs are organized 
in an orderly manner with tactile RFs showing a systematic relation to the main axes 
of the visual field. Critically, the matched tactile and visual RFs often demonstrate co-
aligned direction selectivity. 

Another source of motion information may result from vestibular stimulation, i.e. 
rotational and/or translational self-motion. Accordingly, neurons in area VIP were 
tested for their responses to vestibular stimulation. About one third of the neurons 
respond with direction selective discharges during whole-body sinusoidal horizontal 
rotational movement [10]. All neurons with rotational vestibular responses also show 
directionally selective visual responses. Interestingly, preferred directions for visual 
and for rotational vestibular stimulation are co-directional, i.e. non-synergistic, or 
non-complementary.  

These response characteristics led us to hypothesize that area VIP might be 
involved in the encoding of visual motion in near extrapersonal space. We thus tested 
neurons for their sensitivity to horizontal disparity. Random dot patterns moving 
along a circular pathway were presented at one of seven disparities, ranging from -3° 
(near) to 3° (far) disparity. These disparity values correspond to stimuli located 
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between 27cm (-3°) and 223cm (3°) in front of the monkey. An example for the 
responses of a cell with a maximum discharge for the nearest stimulus is shown in 
Figure 3A. The population histogram on the right (B) indicates that this response 
characteristic was quite common in area VIP and significantly different from a 
uniform distribution (chi2-test: p<0.001): 70% of the neurons had their response 
maximum for stimuli in near space while only 21% of the neurons preferred stimuli 
presented in far space. The remaining cells had their response maximum within the 
plane of fixation. Our data therefore supply evidence for the proposed role of area 
VIP for the encoding of motion in near extra- personal space.  

 

 
 

Fig. 3. Disparity selectivity in area VIP. Panel (A) shows the response of a single neuron for 
visual stimuli presented at different (virtual) depths. Bars indicate the mean response (+ sd) for 
a random dot pattern moving into the cell’s preferred direction. Response is strongest for the 
nearest stimulus (p<0.001) presented at -3° disparity. Panel (B) indicates that this preference 
for near stimuli was a common response behavior for the population of cells (n=90) tested.  

Sensory signals arising from different modalities are encoded in different frames of 
reference. While vestibular signals and tactile information (arising from stimulation of 
RFs on the head) are encoded in craniocentric coordinates, visual information is 
initially encoded retinocentrically. This led to the question, whether information from 
different sensory modalities might be encoded in a common, probably craniocentric 
reference frame. Accordingly, area VIP was tested for the existence of head-centered 
cells by measuring the location of visual RFs for different fixation locations [11]. A 
wide range of RF types was found. Some neurons had an RF that moved rigidly with 
the eyes, while other neurons encoded the same location in space irrespective of eye 
position. Such cells code visual information in a head-centered frame of reference. 
Interestingly enough, many cells had intermediate reference frames: they 
compensated only in part for the underlying gaze shift. While it was initially unclear 
whether these intermediate encoding cells represented an incomplete computational 
step from an eye-centered to a head-centered representation, there is now evidence 
from computational studies that these intermediate types arise naturally in neural 
networks involved in polymodal space representation [12]. 
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3  Polymodal motion responses in human PPC 

Fig. 4. Localization of area VIP in the macaque (A) and the human (B) posterior parietal 
cortex. The left panel (A) shows an anatomical MRI from one of the monkeys involved in the 
experiments. The right panel (B) shows a superposition of an anatomical MRI from the group 
of subjects (n=8) involved in the study and the region within the PPC activated by polymodal 
(visual, tactile, auditory) motion signals.  

From the aforementioned, it becomes obvious that the question needed to be 
explored, whether or not in humans an equivalent area to macaque area VIP exists. 
Accordingly, the test for the existence of ‘human area VIP’  was based on one of its 
most prominent response features in the macaque, i.e. sensory responses to polymodal 
motion stimuli. In this functional MRI study, subjects experienced a visual (large 
random dot pattern), tactile (air flow) or auditory (binaural beats) motion stimulus or 
a stationary control. Significant cortical activation (p<0.05, corrected) was observed 
for each individual stimulus condition. Conjunction analysis revealed cortical 
structures activated by motion in all three modalities, i.e. vision, touch, and audition. 
Bilateral significant activation was found in three circumscribed cortical regions, one 
of which was located in the PPC. By superimposing the functional images on the 
average anatomical brain originating from the group of subjects (Figure 4) it was 
possible to identify the activated region as lying in the depth of the IPS [13]. Based on 
these functional and anatomical characteristics it was suggested to consider this area 
to be the functional equivalent of macaque area VIP. 

4  Conclusion  

Complementary studies of macaque single cell recordings and fMRI in humans 
helped to elucidate the functional role of the PPC in polymodal spatial perception and 
motion encoding. In addition, the reviewed findings relate to neuropsychological 
deficits observed in patients with (most often right) posterior parietal lobe injury: The 
most prominent functional features of macaque area VIP are (i) responses to 
polymodal stimuli predominantly in near extrapersonal space, and (ii) the encoding of 
sensory information from different modalities in a head- or body-centered frame of 
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reference [11]. It is exactly this related type of attentive behavioral sensorimotor 
deficit, which in patients most often results from lesions centered on the (right) PPC.  

5  Acknowledgements 

This work was supported by grants from the Deutsche Forschungsgemeinschaft. 

6  References 

1. Ungerleider,L.G. & Mishkin,M. Analysis of visual behavior. Ingle,D.J., 
Goodale,M.A. & Mansfield,R.J.W. (eds.), pp. 549-586 (MIT Press, Cambridge, 
MA,1982). 

2. Driver,J. & Mattingley,J.B. Parietal neglect and visual awareness . Nat. Neurosci. 
1, 17-22 (1998). 

3. Husain,M. et al. Impaired spatial working memory across saccades contributes to 
abnormal search in parietal neglect. Brain 124, 941-952 (2001). 

4. Ladavas,E., Di Pellegrino,G., Farne,A. & Zeloni,G. Neuropsychological evidence 
of an integrated visuotactile representation of peripersonal space in humans. J. 
Cogn. Neurosci. 10, 581-589 (1998). 

5. Maunsell,J.H.R. & Van Essen,D.C. The connections of the middle temporal 
visual area (MT) and their relationship to a cortical hierarchy in the macaque 
monkey. J. Neurosci. 3 , 2563-2580 (1983). 

6. Schaafsma,S.J. & Duysens,J. Neurons in the ventral intraparietal area of awake 
macaque monkey closely resemble neurons in the dorsal part of the medial 
superior temporal area in their responses to optic flow patterns. J. Neurophysiol. 
76, 4056-4068 (1996). 

7. Bremmer,F., Duhamel,J.-R., Ben Hamed,S. & Graf,W. Heading encoding in the 
macaque ventral intraparietal area (VIP). Eur.J.Neurosci . 2002 (In Press)  

8. Colby,C.L., Duhamel,J.-R. & Goldberg,M.E. Ventral intraparietal Area of the 
macaque: anatomical location and visual response properties. J. Neurophysiol. 69, 
902-914 (1993). 

9. Duhamel,J.R., Colby,C.L. & Goldberg,M.E. Ventral intraparietal area of the 
macaque: congruent visual and somatic response properties. J. Neurophysiol. 79, 
126-136 (1998). 

10. Bremmer,F., Klam,F., Duhamel,J.-R., Ben Hamed,S. & Graf,W. Visual-
vestibular interactive responses in the macaque ventral intraparietal area (VIP). 
Eur.J.Neurosci . 2002 (In Press)  

11. Duhamel,J.R., Bremmer,F., BenHamed,S. & Graf,W. Spatial invariance of visual 
receptive fields in parietal cortex neurons. Nature 389, 845-848 (1997). 

12. Deneve,S., Latham,P.E. & Pouget,A. Efficient computation and cue integration 
with noisy population codes.  Nat. Neurosci 4, 826-831 (2001). 

13. Bremmer,F. et al. Polymodal motion processing in posterior parietal and 
premotor cortex: a human fMRI study strongly implies equivalencies between 
humans and monkeys. Neuron 29, 287-296 (2001). 



Intersensory Interaction in Arm and Eye Movements

Petra A. Arndt

Carl von Ossietzky Universität Oldenburg, Institut für Kognitionsforschung,

26111 Oldenburg, Germany

petra.arndt@uni-oldenburg.de

Abstract. To investigate whether eye movements and arm movements share

motor control processes or are programmed separately we analysed the

characteristics of multisensory, visual-auditory integration in eye and arm

movements using a focussed attention paradigm. The effects of spatio-temporal

visual-auditory stimulus relationship, found in a first experiment, contradict the

notion of common control processes. In contrast, no evidence for separate

movement programming was found in a second experiment with variation of

auditory stimulus intensity. These conflicting results indicate that brain

structures in charge of hand movement control may have the capability of a

higher spatial resolution for auditory stimuli. A third experiment gives an

indication of the origin of the higher spatial resolution and supports the notion

of a common visual-auditory representation as a basis for eye and arm

movement control.

1 Introduction

The question of whether saccadic eye movements and goal directed arm movements

share common processing stages or are programmed separately is still under debate.

Recent physiological findings have provided new evidence for a combined

representation of eye and arm movements in several brain areas [1,2].

Three experiments are presented which investigate visually guided eye and arm

movements under visual-auditory stimulation. We employed a focussed attention

paradigm where subjects are asked to respond to the visual target stimulus and to

ignore an accessory auditory stimulus. However, although the auditory stimulus is to

be ignored it has specific effects on the performance of movements [3,4]. These

effects change with the variation of temporal and spatial relationship between visual

and auditory stimulus. Given that eye and arm movements share processes based on

the same multimodal representation of sensory stimuli, the effects of the auditory

stimulus in dependence of spatiotemporal stimulus arrangement should be the same

for both movements.

The neutral basis for this is that both multimodal, visual-auditory neurons as well

as arm-movement-related neurons were found in certain brain structures, e.g. the

superior colliculus [5].
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2 General Methods

2.3 Participants

Ten paid volunteers with normal or corrected to normal visual acuity took part in the

experiment. Participants reported to have no hearing problems of any kind. All

participants were naïve towards the purpose of the study.

2.2 Apparatus and Stimuli

Experiments 1 and 2 were performed in a virtual auditory environment, whereas we

used a free-field setup with loudspeakers for Experiment 3.

Participants were seated in a dark sound proof room with the head supported by a

table-mounted chin rest. Unless arm movements were executed both forearms were

resting on the table.

Auditory stimuli. White noise signals (band-passed 0.2 to 20 kHz, 500 ms) were

used as stimuli in all experiments. For virtual acoustics these signals were convolved

with the head related transfer function of a dummy head and played back via a high

precision sound card on headphones. Noise signals for free-field stimulation,

generated by a TDT System (Tucker Davis Technologies), were displayed by two

loudspeakers placed at the subject’s eye level.

Visual stimuli. In Experiments 1 and 2, white dots (diameter 0.1°) presented on a

black monitor screen (37”) were used as central fixation point and peripheral visual

target stimuli. In Experiment 3, two red light emitting diodes attached to the

loudspeakers served as visual stimuli; a third, central LED as fixation point.

The respective spatio-temporal stimulus relationships, stimulus onset asynchronies

(SOAs)  and intensities are given in sections 3 to 5.

Data recording. Eye movements were measured with an infrared light reflecting

system (IRIS, Skalar Medicals) providing an analog signal of horizontal eye position

and velocity. Data were recorded with a sampling rate of 1 kHz. In Experiment 1 and

2 a joystick placed midline in front of the participant was used to measure goal

directed arm movements. In the third experiment a photoelectric switch was used to

collect reaction time data of the arm movements and a magnetic position tracker

(Polhemus Frastrack) to register movement trajectories.

2.3 Procedure

Each trial started with the presentation of the fixation point for a random time

interval of between 800 and 2000 ms. The visual stimuli were presented to the left or

right in pseudorandom order after extinction of the fixation point for 500 ms, either

alone or with an auditory stimulus. The spatial distance between visual and auditory

stimulus and SOA varied pseudorandomly from trial to trial. Participants were

instructed to fixate properly and to place their right hand in a central position. As soon

as the visual target appeared, a saccade and/or a goal directed arm movement had to

be made.



� T��� � �q�@��£	 � � � T��� � � � � � 	� � ;� ��� ��G�l� �T� � 	��P� � ��T��� �g���
3 Experiment 1

The first experiment investigates whether the effects of spatiotemporal, visual-

auditory relationship are the same for eye and arm movements.

3.1 Methods

Visual targets (19 cd/m2) were presented at eccentricities of 15° or 25° to the left or to

the right of a fixation point. Accessory auditory stimuli (76 dB) were presented

straight ahead or 15° or 30° to the left or to the right; either 30 ms prior to the visual

stimulus, simultaneously, or 60 or 120 ms after the onset of the visual stimulus.

3.2 Results

Fig. 1. Example of mean latencies to bimodal targets for different spatio-temporal stimulus

conditions. The x-axis indicates the temporal arrangement (SOA), the z-axis refers to the spatial

arrangement, i.e. relative position of the auditory stimulus with respect to the visual stimulus, il.

= ipsilateral, cl. = contralateral. Mean unimodal reaction times are indicated by arrows.

However, the effect of the auditory signal was stronger for hand movement latencies

than for eye movement latencies. This holds true for the latency reduction resulting

from the presence of the auditory accessory and for the effects of spatiotemporal

stimulus arrangement (Fig.1). Statistical analysis (ANOVA) revealed a significant

interaction between type of movement (eye or arm) and effect of temporal resp.

spatial stimulus arrangement. Moreover we observed a markedly higher number of

directional errors in hand movements compared with eye movements - even if both

movements had been performed simultaneously.
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3.3 Discussion

The effect of SOA on reaction times may be resulting from unspecific warning effects

elicited by the auditory signal. However, the dependency on spatial stimulus

configuration shows that (a) general arousal or warning effect alone cannot account

for the RT changes and that (b) visual and auditory information converges at some

point of processing. Since these effects occur within eye and arm movements we may

assume that visual-auditory integration follows the same rules in eye as in arm

movement control.

On the other hand, our results suggest a stronger influence of the auditory stimulus

on manual latencies. The stronger effect of SOA is easily explained by the fact that

motor execution and muscle control are more complex in arm movements than in eye

movements and thus may benefit more strongly from warning or arousal mechanisms.

The assumption of a common control process is not violated. In contrast, the stronger

effect of the spatial stimulus arrangement and the higher error rate in arm movements

contradicts the hypothesis that eye and arm motor commands access the same

multimodal representation of the environment.

4 Experiment 2

To corroborate the finding of Experiment 1 we varied the intensity of the accessory

auditory stimulus. The hypothesis was that, due to the stronger dependence of arm

movements on the auditory stimulus, the effect of intensity variations should be

stronger for arm than for eye movements.

4.1 Methods

Possible positions for both stimuli were 25° to the left and to the right from the

fixation point and, additionally, straight ahead for the auditory stimulus. Visual target

and auditory signal were always presented simultaneously.

Visual stimulus intensity was 11 cd/m2. Auditory intensities were determined

individually for each subject in an intensity matching task. Three intensity levels were

used: the intensity determined in the matching task and two additional intensities of 6

dB above and 6 dB below the determined intensity.

4.2 Results

As in the first experiment the spatial variation in the stimulus arrangement led to

stronger effects on manual latencies compared with saccadic latencies. However, the

latencies for both types of movement decreased with increasing auditory intensity in

an almost identical manner. There was no evidence of a stronger effect of the auditory

intensity on arm movements.

The comparison of eye movements with and without concomitant arm movements

indicates an effect of the arm movements on visual-auditory integration in saccades.
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A test designed to verify integration processes (horse race inequality test [6]) provides

less evidence for multisensory integration in accompanied compared with

unaccompanied saccades. Although a negative outcome of the test does not mean that

no integration takes place, this finding would deserve further investigation.

4.3 Discussion

The lack of a stronger influence of auditory intensity on arm compared to eye

movements contradicts the idea that, generally, the auditory stimulus has larger

effects on arm movements compared to eye movements. Rather the result suggests

that a higher spatial resolution for auditory stimuli in arm movement control evokes

the differences found in Experiment 1. This raises the question what the origin of this

higher resolution might be.

5 Experiment 3

A higher spatial resolution in arm movement control may be evoked by different

representations of the visual-auditory environment for eye and arm movements or by

the fact that arm movement latencies are approximately 100 ms longer than saccadic

latencies. Although most of this latency difference is attributed to (peripheral) motor

processes, it might provide additional processing time to improve auditory resolution.

To investigate this hypothesis we varied SOAs over a wide range.

5.1 Methods

Visual and auditory stimuli were presented under free-field conditions either spatially

coincident 25° to the left or right of the fixation point or in different hemispheres.

Seven SOAs between –50ms (auditory first) and 250ms separated by 50ms were used.

Auditory stimulus intensity was 65 dB SPL.

5.2 Results

For small SOAs the same spatiotemporal effects on eye and arm movement latencies

were found as in Experiment 1. However, the spatial as well as the temporal effects

decay for larger SOAs. In eye movements unaccompanied by arm movements the

decay occurs at approximately 50 ms shorter SOAs compared to arm movements

executed without eye movements. For conjoined eye and arm movements this

difference is less clear.

Saccades are altered by the concomitant execution of an arm movement. Saccades

are larger and in some subjects faster when accompanied by an arm movement

compared with unaccompanied saccades. Amplitude, peak velocity and main
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sequence (peak velocity with respect to saccadic amplitude) differ significantly

between eye movements with and without concomitant arm movements [cf. 7].

5.2 Discussion

Similar effects of spatiotemporal stimulus arrangement on latencies of conjoined eye

and arm movements are within expectation. The interdependence of the movements -

reflected for example in changes in latencies and the main sequence data - may be the

basis of this resemblance. However, the high degree of correspondence in

unaccompanied eye and arm movements when corrected for the 50 ms difference in

SOAs is remarkable. This may indicate, that both movements are based on the same

representation of visual-auditory stimuli. Arm movement control processes might

access the spatial representation approximately 50 ms later than systems controlling

saccadic eye movements. During this additional processing time the spatial

representation may have changed. E.g. the detection of auditory stimulus position

which is based on the comparison of the input signals from the left and the right ear

may be refined.

6 Conclusion

Our results corroborate the notion of a common control process in saccades and

goal directed arm movements. Latency data suggest that both movements rely on the

same visual-auditory representation which they access at different points in time.
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Abstract Cue integration from multiple cameras is an important aspect
for machine vision systems operating in complex, natural environments.
One successful approach for self–organized cue integration is Democratic
Integration. The hallmark of Democratic Integration is that different cues
can autonomously determine whether and in how far they are useful for
the current task, giving the system flexibilty to engage in different tasks
and robustness in the face of sudden failures of cues. In this paper we
embed Democratic Integration in a probabilistic framework and extend
it hierachically in order to model adaptive cue integration for the general
case of n calibrated cameras. Our experiments show that the method is
capable of robust cue integration and adaptation during object tracking
using three cameras placed arbitrarily in the scene.

1 Introduction

It is an unsolved problem in computer vision how sensor data selection and fusion
should be done in the case that multiple cameras and multiple cues from each of
the cameras are available. Such problems arise for example in surveillance tasks,
where different sensors (e.g. infrared and daylight cameras) are placed at different
positions in the environment and information from these sensors needs to be
combined dependent on the environmental conditions (day/night, rain/sunshine,
etc.). Also, the estimated position of the tracked object in the scene will have an
influence on the contribution, each sensor can make. Of particular importance for
real world applications in this respect is also, that individual sensors or cues may
sometimes (unexpectedly) fail due to, e.g., limited view, occlusions, or hardware
problems, or other reasons, and that the system must be robust with respect to
such disturbances.

The main contribution of this work is a robust cue integration and adap-
tation mechanism for object tracking using multiple cameras. The basis of our
approach is the Democratic Integration mechanism [3]. It is briefly summarized
in the next section. Democratic Integration has originally been applied to fuse
multiple cues arising from a single camera. We extend this approach towards hier-
archically fusing cues originating from multiple calibrated cameras. Our goals are
to demonstrate that cues from multiple cameras can be fused in a self-organized
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manner, such that the contribution of each of the cameras is dependent on the es-
timated reliability of that camera, and that such a system is robust with respect
to unexpected failure of individual cues or entire cameras.

2 Democratic Integration

The idea behind Democratic Integration is to integrate different perceptual cues
in a self-organized manner [3]. Adaptation of the cues is driven by the agreement
or compatibility between the different cues and sensors in the system. This idea
was first studied in a face tracking system [3]. The system employed a stationary
camera monitoring a room. Five simple cues analyzed the camera images. Each
cue computes a 2-dim. saliency map registered to the camera image, in which
high values inidicate a high confidence of the cue that there is a face at that
location. The different cues are integrated or fused by computing a result saliency

map which is a weighted average of the individual saliency maps. Importantly,
the weights are time dependent and are constantly adpated in a self-organized
fashion. To this end, an agreement or quality function is defined, that compares
a cue’s saliency map to the result saliency map. A cue whose saliency map is very
similar to the result saliency map currently has a high quality. The important
step now is to change the cue weights based on these qualities. A cue whose
quality becomes very small, indicating disagreement of its saliency map to the
result saliency map, will reduce its weight to no longer disrupt the overall system.
Conversely, a cue that has recently been in very good agreement with the result
will increase its weight. In addition, each cue can adapt internal parameters in
order to better match its saliency map to the result saliency map. This allows
the system to recalibrate cues and to use cues for a particular task that have no
a priori information about the task. These cues are bootstrapped by other cues
and simply adjust their internal parameters to match the result.

3 Probabilistic Fusion with Multiple Cameras

In Democratic Integration one of the key concepts is the result saliency map into
which all different cues are fused to produce the final result for tracking with
one camera. The main idea in our approach is, that for fusing the information
gathered by multiple, calibrated cameras, the local and result saliency map is
substituted by a probability distribution over a state space. Note, that it is quite
intuitive to interpret the saliency map in 2–D — assuming proper normalization
— as a distribution over a 2–D state space. In this special case the 2–D state
consists of the position of the moving object on the image plane. In our approach
we deal with the general case of an n–dimensional state space and observations
that are made in several 2–D image planes.

The key idea of the hierarchical probabilistic approach can be summarized
in the following informal way:

Probabilistic modeling of the state A particle filter framework is used to
estimate the state of the object in 3–D (in the experiments the position,
velocity, and acceleration of a moving object). This gives us a distribution
over the state space represented by a particle set. A similar approach in the
case of cue integration for a single camera has been proposed in [2].
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Camera 1

Camera 2 Camera 3

Figure 1. Left: Experimental setup. Position of the three cameras and the rail track.
The images show the view on setup basic. Right: Images of setup complex, bucket
and yellow bucket (taken from camera 1).

Local state estimation For each sensor local state estimation is done using
the original cue integration mechanism of Democratic Integration, i.e. a re-
sult saliency map is generated for each sensor from the different cues. This
saliency map is used as likelihood function for evaluating the likelihood of
each particle, that is drawn while applying the particle filter. In the case of
calibrated cameras each particle, which might be interpreted as a kind of
hypothesis for the 3–D state, is projected into the image plane and a score
can be computed for each hypothesis by the likelihood function (for a de-
tailed introduction on how particle filters are used the reader is referred to
[1]). The weights of the different local cues as well as the other parameters
of the cues are adjusted as described in [3] afterwards.

Global state estimation In an additional step a global state estimate is com-
puted in a similar manner as it is done for each of the local state estimates.
Each particle is projected onto the image planes of the different cameras.
The global score of a particle is now computed as a weighted average of
the local scores (already computed during the local state estimation). The
weights, assigned to each camera, are updated in an additional Democratic
Integration step. The main difference is, that now distributions represented
as particle sets have to be compared, to figure out the agreement of the
local estimates with the global ones. For comparison different metrics can
be used to measure correspondence (agreement) between two distributions.
One example is the Kulback–Leibler distance.

4 Experimental Setup and Results

During the experiments a moving toy train is tracked in 3-D using our proposed
framework. 3-D estimation is conducted with a particle filter. The state (i.e. each
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Figure 2. Estimated versus true motion path for setup complex occl. Left: without
sensor weight update. Right: with sensor weight update.

particle) consists of the 3-D position, velocity and acceleration of the object. For
all experiments 2000 particle have been used.

In order to analyze our approach we choose the for the following basic ex-
perimental setup: the toy train is moving on a circular path in front of three
cameras. Camera 1 and Camera 2 are SONY DFW–VL500 firewire cameras
with a resolution of 320×240 at 25Hz. Camera 3 is a SONY digital camera with
a resolution of 720 × 576 at 30Hz. The positions of the rail track and the three
cameras are indicated in Figure 1. This setup is called basic in the following.
In the beginning the cameras have been calibrated using Tsai’s method [4].

Three different scenes are built up modifying the basic setup: a scene complex
that contains a lot of different objects inside and outside the rail track to induce
occlusions for one or the other camera and heterogeneous background. The scene
bucket consists of a big red bucket in the center of the circular track, while in
scene yellow bucket a yellow bucket that has similar color as the moving toy
train is used. Two more setups are constructed: basic occl and complex occl.
In both cases the setups basic and complex are used, except for a sensor failure
that was simulated by totally covering one of the cameras for a couple of seconds.

For each of the six setups a 10s sequence has been recorded for each of the
three cameras simultaneously. The cameras have been manually synchronized
only once at the beginning of the recording and in the end to subsample the
30Hz sequence of the third camera to match the 25Hz sequences of the first two
cameras. The resolution of the images has been reduced to 80 × 60 for the first
two cameras and to 75 × 60 for the third one. Additionally, the RGB images
have been transformed to HSV color space.

To evaluate the quality of tracking for the different setups the circular rail
track was reconstruced in 3–D using the calibration information of the cameras.
As quality measure the mean euclidian distance between the estimated position
of the toy train during tracking and the reconstruced circle in 3–D is used.
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Figure 3. Cameras’ weights for scenes complex occl (left) and bucket (right)

For tracking the moving object, each camera uses the cues motion, prediction,
contrast and color (for the computation and the parameters of these cues see
[3]). Each experiment starts using only color and motion cue, i.e. the weights for
color and motion cue are both set to 0.5. The other two cues are bootstrapped
by the former ones.

In the experiments we tested different settings for the time constants τs

(for sensor weight adaptation) and τc (for cue weight adaptation, see [3]). The
time constants directly control how fast the influence of a sensor or a cue is
changed. Since the different scenes differ in the demands on the adaptation, a
compromise has been chosen between fast adaptation but not over–reacting on
sensor noise or processing errors. Due to lack of space we only present results
for τs = τc = 10000msec. Smaller values tend to improve the results for the
sequences complex and complex occl while at the same time the quality for
basic and bucket is slighly reduced. For the setup complex occl the advantage
of the sensor weight adaptation can be best shown. Without sensor weight update
tracking of the 3–D position breaks down during the simulated failure of sensor
1. With our proposed method (Figure 2, right) the system keeps track of the
moving object with high accuracy. In Figure 3, left, the weights for cameras 1–3
are plotted over time. Evaluating the weights of the sensor over time, we can
observe that the influence of each sensor is changed due to the visibility condition
of the object (a periodic up and down of the weights can be observed). During
failure of camera 1 the weight of this camera is decreased, as expected. A similar
plot for scene bucket is shown in Figure 3, right, that again shows the periodic
increase and decrease of the cameras’ influence due to the visibility situation in
the scene.

In Table 1 the estimation error is summarized for the different setups, Demo-
cratic Integration without and with sensor weight update as well as a result
achieved if no cue and sensor adaptation is applied. In the latter case a non–
adaptive particle filter approach is used to estimate the position in 3–D by
probabilistic fusion of all three cameras.
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no weight update weight update no DI

setup mean std. dev. mean std. dev. mean std. dev.

basic 24.6 14.4 22.3 13.0 39.1 23.7
bucket 22.7 13.3 26.6 16.6 50.7 34.2
yellow bucket 46.7 32.5 38.8 28.3 130.4 73.4
complex 33.2 20.4 37.5 27.0 53.0 37.7
basic occl 30.9 29.6 26.3 21.7 39.6 28.1
complex occl 52.5 56.5 32.5 20.6 59.3 48.5

total 35.1 30.6 62.0

Table 1. Mean euclidean error and standard deviation in the 3–D estimation of the
moving toy train (in mm). Left column: without sensor weight update. Middle column:
with sensor weight update. Right column: non–adaptive sensor data fusion using par-
ticle filters without adaptation of cues’ or sensors’ influence. The size of the toy train
is approx. 110 × 80 × 90mm at a distance of 1.5-2.0m from the cameras.

5 Conclusions

In this paper we have shown first, that the integration of cues from multiple
cameras can be done very elegantly in a probabilistic framework using particle
filters, and second, that adaptation in Democratic Integration can not only be
performed locally in each sensor but also globally giving more influence to more
reliable sensors at the current situation. The circumstances in our experiments
(i.e. weak synchronisation of the cameras, different types of cameras, different
and low resolution of the images) prove that our approach is robust and also
capable for handling systematic differences in the reliablity of the sensors, as
well as unexpected temporary failure of one or the other sensor3. The particle
filter allows for handling multi–modal distributions over the state space, i.e.
dealing with multiple hypotheses and objects in the scene.

Acknowledgment

The work was partially supported by the Bavaria California Technology Center
under grant 2410-2001 and the German Science Foundation (DFG) under grant
SFB603 TP B2.

References

1. A. Doucet, N. de Freitas, and N. Gordon, editors. Sequential Monte Carlo Methods

in Practice. Springer, Berlin, 2001.
2. M. Spengler and B. Schiele. Towards robust multi–cue integration for visual track-

ing. In ICVS 2001 Vancouver, Canada, 2001, pages 93–106. Springer, 2001. Lecture
Notes in Computer Science.

3. J. Triesch and C. von der Malsburg. Democratic integration: Self-organized inte-
gration of adaptive cues. Neural Computation, 13(9):2049–2074, 2001.

4. R. Y. Tsai. A versatile camera calibration technique for high-accuracy 3D ma-
chine vision metrology using off-the-shelf TV cameras and lenses. IEEE Journal of

Robotics and Automation, Ra-3(3):323–344, August 1987.

3 The reader is referred to http://www5.informatik.uni-erlangen.de/˜di for image se-
quences and results of the processed scenes



Sensor Fusion for Vision and Sonar Based

People Tracking on a Mobile Service Robot

T. Wilhelm, H.-J. Böhme and H.-M. Gross
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Abstract. Service robots intended to interact with people must be able
to localize and continuously track their users. A method is described
which integrates information from visual and sonar based tracking path-
ways while updating hypotheses about the position of the robot’s human
user. Each tracking method uses information from the other to generate
a more robust measure of the user’s position, and thus a more robust
behavior generation is achieved.

1 Introduction

A service robot, which is designed to serve people in special domains or to help
them in their everyday life, must be able to localize and continuously track
its users. If the user breaks the interaction off, there is no need for the robot
to continue to produce any outputs. Lacking these capability would result in
a robot, which is trying to contact arbitrary things or which is proceeding to
offer its services even when the user already left the operation area. The authors
consider the knowledge about the position of the user as fundamental for a smart
appearance of any service robot. On the other side, the price determines the
economical success of any service robot application, so it seems favorable to use
cheap hardware whenever possible, which has consequences on the complexity
of any people tracking algorithm.

Our experiments were carried out in a home store, where our service robot is
to operate as a mobile shopping assistant, guiding customers to desired products
in the store [1]. A major problem concerning people tracking in this environment
are the varying illumination conditions from natural to artificial lighting, which
imply a multimodal approach to the problem, not only relying on visual cues.

2 Tracking

Tracking of users can be realized by using different sensor systems. The distance
to an object can be measured by means of sonar or laser data, and there are
methods that extract hypotheses about the position of people in the robot’s
surroundings from laser data [6]. In contrast to laser scanners, the resolution and
accuracy of sonar sensors give only a vague hint about the nature of the object,
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and it seems that these methods can not be assigned to cheap sensor systems
such as sonars. Moreover, the used features are not very person-specific and
could detect other objects as potential users as well. Cameras can be considered
as cheap sensors compared to laser scanners, and visual data can be used to solve
ambiguous situations and to discriminate people from arbitrary objects. Thus
the proposed tracking method consists of a sonar and a vision based tracking
module.

2.1 Sonar Based Tracking

The task of the sonar based tracking is to always keep contact to the user by
moving the robot according to its mode of operation and the position of the user.
Our experiments were carried out on a B21 mobile robot (RWI IS Robotics)
equipped with two layers of sonar sensors with 24 sonars respectively. The raw
sensor data is noisy and depends on the orientation and the material of the
objects around the robot. Therefore the raw data is preprocessed as follows:

1. replacement of invalid measurements: distances larger than 22, 5m are con-
sidered as invalid and are replaced by the previous measurements

2. local spatial low pass filtering of adjacent measurements
3. temporal low pass filtering of successive measurements
4. calculation of a weighting factor in each direction which is inversely propor-

tional to the measured distance W
(c)
Sonar = 1 − d

(c)
sonar/dmax, where d

(c)
sonar is

the preprocessed sonar measurement at position c in the scan and dmax is
the maximum distance (1, 5m); for distances larger than dmax the weight is
set to 0

The position of the maximum in the resulting weighting vector corresponds
to the nearest object (see Figure 2e) and is used to generate an appropriate
behavior, depending on the robots mode of operation:

1. communication: orient the touch interface mounted on top of the robot to
the position of the maximum, thus allowing the user to make inputs

2. guide user: keep the distance to the user small and stay in front of him, while
driving towards a goal position in the market

3. follow user: keep distance to user small and try to stay behind him

The advantages of the sonar based tracking are its low computational costs
and thus its ability to continuously track the user and align the robot appropri-
ately. It generates an adequate behavior as long as the nearest object is really
the user, otherwise the robot reacts to any object in its surroundings and tries to
interact with it. This drawback can be encountered by integrating information
from a vision based tracking module, which is able to distinguish people from
any other objects in the area.
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2.2 Vision Based Tracking

The basis of the vision based tracking procedure is the condensation algorithm
[4]. The task of calculating the probability of the existence of a person for every
pixel and tracking the resulting density function is solved by an approximation
of the density function by a relatively small number of samples. The condensa-
tion algorithm operates on the panorama images from an omnidirectional color
camera and uses different feature extraction methods to calculate hypotheses
about humans faces and the upper part of the human body. Compared to a
panoramic image with 720 × 106 pixels calculating the feature extraction only
for 200 samples yields a reduction to merely 0.262%.

Skin Color A widely used method for finding faces in images is skin color
classification. Here the dichromatic r-g-color space (r = R/(R + G + B), g =
G/(R+G+B)) is used, which is widely independent from variations in luminance.
The color model consists of a look up table with manually classified skin color
pixels in the r-g-color space [3]. To prevent the color model from getting holey
because of insufficient training data, there is a small Gaussian placed around
each skin color pixel. The skin color model is depicted in Figure 1. The color
detection can be calculated very fast but it is highly dependent on illumination
color and variations in hue and often fails in back light situations.

Head-Shoulder-Contour The second method uses a contour model which de-
scribes the mean head-shoulder-contour of a person [2]. The model Λ was derived
from a number of images containing frontally aligned persons. On the mean gray
level image, the local orientations were calculated with a structure tensor [5]. The
same tensor is used during head-shoulder-contour detection to calculate the gray
value orientation in a local surrounding around each sample, and the template
matching is carried out for every sample according to equation 1, where o is the
orientation in the image and λ is the orientation in the contour model. Figure 1
depicts the head-shoulder-contour model Λ of size 20 × 20.

Whsc(x, y) =

∑I−1
i=0

∑J−1
j=0

1
2 [cos(2|λi,j − o(x − i, y − j)|) + 1]

card(supp(Λ))
(1)

The head-shoulder-contour is computational more expensive and not as per-
son specific as the skin color detection, but it yields good results in back light
situations, where any other gray value or color based face detector fails.

Combination of the Vision Based Cues Although both cues are person-
specific, it can happen that they do not detect a user or give false alarms. There-
fore both cues are combined by a fuzzy min-max-operator (minmax(a, b) =
γ min(a, b) + (1 − γ) max(a, b)), which can be configured between a pessimistic
and an optimistic fusion. Pessimistic (min, γ = 1) means that an user which
was not detected by at least one cue is not accounted for at all, while using the
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Fig. 1. Models used for vision based tracking. Left: Color model in the dichromatic r-g-
color space. Right: Head-shoulder-contour model, local orientations are represented by
gray levels, where white and black pixels code horizontal, and gray pixels code vertical
edges respectively

max (γ = 0) fusion results in a behavior, where all false positive matches from
one cue are considered valid. See Figure 2 for results of the single cues and their
combination.

3 Sensor Fusion

As mentioned before, vision based tracking shall now be used to prevent the sonar
based tracking from interacting with arbitrary non-human objects. On the other
hand, the vision based tracking can benefit from the sonar based method by
using it as third cue for calculating the sample weighting.

Support of Vision Based Tracking by Sonar Data Since the sonar scan
as well as the image constitute an 360◦ description of the robots surroundings,
it is possible to assign a scan measurement at position c in the scan to each
position x in the image. This way, the sonar vector can be used to modulate the
sample weighting in the condensation algorithm, equation 2 and 3. Thus only
those samples get a high weight, that are supported by the vision based cues
and, at the same time, lie in a direction with a short distance measured from
the sonar sensors. Samples that are only supported either by the vision or the
sonar based tracking eventually die out (Figure 3).

W
(i)
Sample(x) = minmax

(

W
(i)
skincolor(x),W

(i)
hsc(x)

)

Wsonar(c) (2)

P
(i)
Sample(x) =

W
(i)
Sample(x)

∑

i W
(i)
Sample(x)

(3)
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Fig. 2. Results of the single vision based tracking modules and the sonar based track-
ing: a) original panoramic image; b) skin color classification; c) head-shoulder-contour
detection; d) MinMax-fusion (γ = 0.7), note that at the position of the users head,
both cues give the largest contribution; e) weighting factors Whsc calculated from the
sonar scan

Support of Sonar Tracking by Vision Based Data Since only the sonar
based tracking is responsible for behavior generation, the case where vision based
data supports sonar tracking is more important. The camera image is divided
into columns corresponding to the single sonar measurements. In every column
c, the sum of the sample weights is calculated, resulting in a vector with high
values on those positions where most likely the user is. For behavior generation,
the positions of the maxima in the sonar and vision based scan are compared.
If they are aligned, the motor commands are executed, otherwise all actions are
suppressed. Thus, other people can approach, without the robot turning away
from its current user.

4 Summary

The paper presents the integration of a sonar and a vision based user tracking
pathway into a robust tracking procedure, which was applied successfully on a
mobile service robot in a home store.
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Fig. 3. Comparison of pure vision based tracking (left) and vision based tracking with
sonar support (right). Every 10th image in the sequence is shown; the user moves
around the robot (sometimes the robot is turning to the user based on sonar tracking).
While at the left many samples get stuck on other objects, the tracking with sonar
support does not loose the user

5 Outlook

In our current work, we investigate possibilities of automatic camera color cal-
ibration to get the skin color classification independent from variations in illu-
mination color. In addition to that, we analyse the performance of other feature
extraction and face detection methods, such as cascade correlation neural net-
works for the vision based tracking pathway. Furthermore, a robotic face with
two cameras was designed, which is always oriented towards the currently tracked
person. High resolution images from these frontally alligned cameras can be used
to recognize a user who was lost from the omnidirectional view during tracking.
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Abstract. School-children were provided with controlled prior knowledge
about otherwise unfamiliar 3D objects, the effect of which on visual category
learning and generalisation for 3D objects from images was examined. There
occurred a developmental double-dissociation in that at age 8-9 years visual
prior knowledge reinforced visual category learning more than haptic prior
knowledge did, whereas at age 13–14 years and beyond haptic prior knowledge
was much more effective. Generalisation performance revealed that object re-
presentations were view-based for the youngest children but multimodal for
adolescents and adults. It is suggested that haptic prior knowledge reinforces
visual object recognition by facilitating the solution of the correspondence
problem for matching input data to internalised 3D object representations.

1 Introduction

For retrieving the spatial structure of 3D objects biological vision systems need to rely
on additional information not given in the static retinal image. Thus it is generally
assumed that image data are referenced to object representations stored in memory
and  current models of human object memory differ in their degree of view-point in-
dependence and view-point dependence. View-point independence is claimed by the
recognition-by- (3D) components model, a non-algorithmic account of how the visual
input is related to the non-accidental characterisation of object parts and their
relations [1]. On the other hand, the multiple-views hypothesis holds that a set of
object views is stored in memory and the object is recognised by relating the input
view to the nearest view stored in memory [2]. These approaches focus on the
variation of observer performance with varying views and ignore the fact that, due to
object redundancies, view-point dependence of performance cannot be equated with
that of representation [3]. They also ignore the need for a matching process between
mental representations and input images [4]. 

We aimed at contributing to these issues by using an experimental paradigm
characterised by several features. First, the effects of input information and object
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representation were separated by providing humans with a controlled amount of prior
knowledge about otherwise unfamiliar objects and then submitting them to a fixed
procedure of visual category learning and generalisation [5]. Second, we explored
how object information relevant to visual object recognition can be created in human
memory with haptic and with visual input. Third, we investigated in a developmental
context how humans learn with a teacher (supervised learning) to achieve the
categorisation of  3D objects from 2D views [6]. Fourth, by using objects carefully
constructed to have view-dependent symmetries and ambiguities we have excluded
the possibility that recognition can be based solely on image matching (as in cross-
correlation between view-dependent objects in memory and images). 

Fig. 1. The 3D objects used (left) and examples from the learning set of 2D views used for
category learning (right).

2 Method

The three learning objects each consisted of three spheres forming an isosceles
triangle and a fourth sphere placed upright above the centre of one of the base
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spheres. Objects 2 and 3 were mirror symmetric to each other (Fig. 1). Real object
models were constructed of polystyrene balls, measuring 6 cm in diameter. Virtual
object models were constructed and displayed on a O2 workstation (Silicon Graphics
Inc., USA). The learning set of 22 object views sampled the viewing sphere in 60°
steps, the test set of  64 novel views in 30° steps. On the computer screen the objects
subtended 1.5° of visual angle at a viewing distance of 1 m.

Learning units consisted of a learning phase and a test phase. During learning
phases subjects saw the learning set three times in random order paired with class
labels. Test phases consisted of classifying the learning set once (for details see ref.
6). For acquiring prior object knowledge subjects were assigned to either a control, a
visual, or a haptic group. Subjects of control groups received no prior knowledge.
Subjects of  visual groups rotated the virtual object models on the computer screen via
the mouse. The blindfolded subjects of the haptic groups were encouraged to freely
manipulate the real object models. 

Three groups with a total of 45 school-children and a control group of 15 adults
participated. Thirty children were in elementary school, grade 3 (8-9 years) and grade
4 (9-10 years), fi fteen in high-school, grade 8 (13-14 years). The fi fteen adults were
aged 20-45 years. The age groups were equally distributed over the three conditions
of prior knowledge.

3     Results

Fig. 2 shows that the type of prior had a distinct impact on visual category
learning. At age 13-14 years children with visual prior knowledge were not
significantly better than children at age 8-9 years. In the same period there was little
change in learning performance for the control groups as well. By contrast, the
children with haptic prior knowledge were at age 13-14 years significantly better in
learning performance than at age 9-10 years and much better than at age 8-9 years.
MANOVA tests on the maximum performance and the average performance yielded
significant effects of the factors age and condition, as well as a significant interaction
between these factors.

The generalisation to novel object views is shown in Fig. 3. Performance is
measured in terms of signal detection d’  separately for the “non-symmetric” object 1
and for the “symmetric” objects 2 and 3. In the latter case, d’-values are mean values
for objects 2 and 3. The children of the control groups show independently of age no
generalisation abilities at all. The children in grades 4 and 8 show a similar improve-
ment in generalisation due to visual and haptic prior knowledge. The generalisation
performance of all age groups of  school-children is clearly worse for the symmetric
objects as compared to the non-symmetric object. This difference in generalisation
performance is to some extent overcome by the adults.

The complete lack of generalisation by the children of the control groups suggests
that they simply learned to associate the views of the learning set to object classes. By
contrast, the convergence of “vi sual”  and “haptic” generalisation performance for
symmetric objects at grades 4 and 8, as well as for non-symmetric objects at grade 8,
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indicates the development of visuo-haptic object representations with balanced
information input from the two modalities. The fact that childrens’ generalisation
performance for the mirror-image objects was generally worse than that for the non-
symmetric object suggests that learning relational object representations poses greater
demands on cognitive development than learning non-relational representations.

Fig. 2. Effects of prior knowledge on visual category learning for 3D objects. Average (shaded
bars) and maximum (white bars) classification performance achieved during the course of
learning in terms of percent correct classifications. School-children preformed up to 15 learning
units, adults learned to a criterion of 90% correct. Within each age group conditions of prior
knowledge were controls (light gray bars, left), visual (medium gray bars, centre), and haptic
(dark gray bars, right). 5 subjects per condition; error bars S.E. (N=5).

4 Discussion

We have found a dissociation of the effects of haptic and visual prior knowledge on
visual 3D object categorisation in the sense that the effect of haptic prior knowledge
strongly increased in late childhood and adolescence, whereas the effect of visual
prior knowledge did not. Active haptic exploration therefore provides an independent
component of human 3D object recognition that, by definition, is not visual and view-
dependent. We infer that humans can construct multimodal object memories from
directly applying non-visual sources to visual input.

With regard of the effect of prior knowledge, we note that computer vision systems
generally recognise objects and their pose in a scene by finding valid correspondences
between features from an image and those of stored object models. Correspondences
are said to be valid if there exists a transformation of pose, scale, and/or shape, that
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maps model features onto their corresponding image features [7]. They are typically
solved via different types of parallel/serial graph matching algorithms. We propose
that, for human object recognition, prior knowledge facilitates the search for valid
correspondences between internalised representations and input images. This may be
mediated by the generation of neuronal data structures that constrain the search for
valid correspondences via similar classes of procedures identified in the machine
vision literature. 

Fig. 3. Generalisation to novel views of the three 3D objects shown in Fig. 1.  Bias-free
measures of performance in terms of d’ obtained from signal detection theory. Two decisions
per subject and test view. Subjects and conditions of prior knowledge as in Fig. 2

The construction of multimodal representations of object recognition under the
influence of haptic prior knowledge further raises the question of whether they are
object-centred or view-dependent. We argue that prior knowledge facilitates the
solution of the correspondence problem for visual object recognition independently of
the structure of indexing primitives per se. Indeed, technical object recognition
paradigms vastly differ in the complexity of indexing primitives but all require the
solution of the correspondence problem. The choice of indexing primitives, ranging
from 2D points to 3D volumetric primitives, depends on the nature of the data base
[8]. This suggests that in human object recognition the complexity of indexing
primitives is also task-dependent and not a fixed characteristic as such. However it is
implausible that prior knowledge from haptic exploration should be encoded in terms
of image features. Thus we conclude that the indexing primitives of resulting
multimodal representations also range in complexity somewhere between 2D features
and 3D primitives.



��� � � �@<��� � ����� � 	 � �����������
References

1. Biederman, I.: Human image understanding: recent research and a theory. Computer
Vision, Graphics, and Image Processing 32, (1985) 29-73 

2. Bülthoff, H.H. & Edelman, S.: Psychophysical support for a two-dimensional view
interpolation theory of object recognition. Proc. Natl. Acad. Sci. USA 89 (1992) 60-64

3. Liu, Z.: Viewpoint dependency in object representation and recognition. Spatial Vision 9
(1996) 491-521 

4. Caelli, T., Johnston, M. & Robison, T.: 3D object recognition: Inspirations and lessons
from biological vision. In: Jain, A.K., Flynn, P. (eds.): Three-dimensional object
recognition systems. Elsevier, Amsterdam, (1993) 1-16

5. Rentschler, I. & Caelli , T. Visual representations in the brain: Inferences from
psychophysical research. In: H. Haken, M. Stadler (eds.): Synergetics of  Cognition.
Springer-Verlag, Berlin, (1990) 233-248

6. Osman, E.,  Pearce, A., Jüttner, M. & Rentschler, I.: Reconstructing mental object
representations: A machine vision approach to human visual recognition. Spatial Vision
13 (2000) 277-286

7. Grimson, W.E., Lozano-Pérez, T., White, S.J. & Noble, N.:  Recognizing 3D objects
using constrained search. In: Jain, A.K., Flynn, P. (eds.): Three-dimensional object
recognition systems. Elsevier, Amsterdam (1993) 259-284

8. Dickinson, S. Part-based modeling and qualitative recognition. In: Jain, A.K., Flynn, P.
(eds.): Three-dimensional object recognition systems. Elsevier, Amsterdam, (1993) 201-
228



���������
	���������

� ��	 �V� 	��	���	��Æ�ã	 �V� �
� ��£	 � �>�g	 � �P	�� �
� ��� ��� � 	 � �ã	 � �
� � ��I�V	 �|� � �ã	 �����
� � � � � 	��>��	��)�ã	 �*� � 	 � � �
� ���T� � �
	 ���ã	�� �
��� � � 	!	��®� � �ã	 � �
� � �	 � �.� ���s	 � �P	 ���
� �	�� � �g	��®� ��� �ã	 � �.� 	 ��� �
�5� � � �V	��®�ã	 �����
�5� � ��� � � 	 � �ã	�� � �
�5���  � � � � �P� � 	 �®� � �ã	�� �g�
� � ��� � 	 � �ã	�� � �
� �>���·� � 	 � �ã	 � � �
� �)� �>��/�g	 � �ã	 ���
� � � � ��s	 � �ã	 ���=�
� 	���	� � � ��	����ã	 � � �
�5��� �y��!	 � �>�
	��®�ã	M� ���
� � � � ����)� � 	 � �P	 � � �

� ������� � 	 � � � �P	 ����/��� � � �	!	 � �ã	 ���
� �� � ��� � 	 � �ã	 ���g�
� !" � � 	 � � � �ã	 �b�
��� ���I� ����� �Y	 � �P	 � � �
��� ���/��	 � �ã	 � �
��� � ��� �!	 � �ã	 �=�
� ��� �@��	 � �ã	M� ���
� ��� ��	 � s	 � �ã	�� ��� 	M� � �
� � � � G���Y	 � � �$# �ã	 ���
� � ��y�V	 � �ã	 �5�
��� � 	��V�Y	 � �ã	 �.�
� � ����� �Y	 � ��� �ã	 �5�� � ��� �� ���·� � 	 � �ã	 �V����§�  � 	%�®� � �P	 � � ��§�  � 	%�®� � �ã	�� ����!��� ��� � �s	 � �ã	 � � �
��� � �
	��®�ã	�� �g�
��� ��� ��	 � � � �ã	 �=�
����	 � �!	 �I�ã	 �V�g�
� � ���q�g	 � � � �ã	 � � � 	 �c���

� � ������ � 	 � �ã	�� �
� ���  �>�>�V�Y	 � �ã	 ���
� � 	��£��	%��� � � �ã	 � �.� 	 �.���
�~�� & � ���s	 � �ã	�� �b�
��� � � � � 	 � �'���P	�� �
��� � �<�V	 � �ã	�� ���
����� � ���Y	 �$�ã	 ���
��� �  ����� ����	 � �ã	�� ���
��� ��� 	��!	 � �(�®�ã	 �.�
� � �·�
	��®� � �ã	�� �.�
�L	 � � ���s	 �I� � �|�ã	�� ���
�~�� � �� � 	 � �P	 � �
� ���!	 � � � �ã	 � �b� 	 ���=�
� ���!	�� �ã	 � � �
� �� � � �g	 � �ã	 ���
� ���y��	 � � 	 � �ã	 �c���
��� Y	��®�ã	�� �
� 	�����y��	�Y	 � �P	�� �5�
� �� �q���� � 	 � �ã	 � � �
����� �  � � � �Y	 � �ã	 � � �
��� � �
	 � � � �ã	�� ���
����� � /���)������ �!� 	 � � 	 � �ã	 � � �
�~�	� � �!	 � �ã	 � �5�
�I	�� � 	 �&	 � ��	���	 � �P	�� ���
�I	 � � � ��� 	%)��ã	 ���b�
� ���� ��� � 	�*®�ã	���� �
� � � �"� � 	 � �ã	�� � �
�Q�� �y��� � ��	 � �ã	 ���
+ ����!	 � �ã	 � � �
+ ������g	 � �ã	 ���g�
+ � � �"�g	 � �ã	 �V���
+6� � 	 �Æ�ã	 ���
+ 	 � � �����	 � �ã	 ����� 	 � � �
� �����V	��V	%��� � �P	���� �
��	�R�I� � � �>��� � � � �!	 � �ã	 � � � 	�� ���
� � � � � �� ��� �s� � �ß� ����	!	 � �ã	 � �
� ���£������	 � �ã	���� �
� � � ��� � � � ��!	 � �ã	��b� �
�
��� ����� � 	 � �P	�� ���
� 	 ��� �·�·����	 � �ã	 �b�



�����
� 	 ��� ���·����	 � �P	 �b�
� �� ����� � 	 � �ã	 � � �
� �  � �?	 + �ã	 � � �
�m�� �£�q���·� � 	 � �ã	 � �
*�� � � ���s	 ���P	�� � 	M� ���
# � � ��Y	��$�ã	 � � �
�����·���5	!	 � � � �P	 �b�
�������y��� � 	 ���ã	�� ���
��� � �����£��	 � � � � � �ã	�� � �
��� � ��� � ����	[� � � �ã	 ���
� � �m����	 � �P	�� ���
�§	 � �/� � s	 � �ã	 ���
�§	��y� � �?	%�)�ã	 � ���
� ��T��� � �/�·� � 	 � �P	 � � �
��� ��	����
	��®�ã	 �����
� �	�� ��� � � Y	 � �ã	�� �b�
� 	���	��)�ã	 ���� � � �M� �  � 	 � � �|�ã	 � �� ����� � � � 	 �®�ã	 � � ���� �)� � �·� � 	 � �ã	�� ���� �)� �/� 	����ã	 � ���� ���·� ��� 	 � �ã	�� ������ � � �	���� � 	 � �P	 � �5�

�.� � � � ���Y	 � �ã	 ������.����� /�g	��$�ã	 � �� 	��·� ��� 	 � �P	 � �� 	 ��� � � 	��®�ã	���� �� � � ����	��®�ã	 ���� ��� � ���������	 � �P	 ������ ��	 � � 	 � �ã	 � �� � �� ��� �
	?� �ã	M� � �
�Y��� �@� � �Y	 � �ã	 �g�g�
�Y� 	 � �g	%*��P	 ��� � 	�� �.�
� �£	����£	���	 � � �I�ã	 � �
�>�� � � � ������	 � �ã	 � ���
�>��
�/��
��� ��� � 	 � �ã	 � ���
� 	�� � � � ��	��®�ã	 ����B�����£	�s	 � �P	�� �5�� � �@���)� � �I�V	 � �ã	 � � �� � ���/��� � 	 � �ã	 ������ �	 � �[�	��q��� � 	 � �ã	 ��� 	M��� �� � ��� � 	��®�ã	M� �b� 	M� �=�� �� � � � 	 � � �|�ã	 � � � 	M� � �
)�� � � � 	 � � � �ã	M� �b�
)"� � �
	 � �ã	�� �b�
)"��� � � � ����	 � �ã	M� ��� 	M� ���
)&	 � ����	%)|�P	 �g���


