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Abstract. A visual representation of an object must meet at least three
basic requirements. First, it must allow identification of the object in the
presence of slight but unpredictable changes in its visual appearance. Sec-
ond, it must account for larger changes in appearance due to variations
in the object’s fundamental degrees of freedom, such as, e.g., changes in
pose. And last, any object representation must be derivable from visual
input alone, i.e., it must be learnable.
We here construct such a representation by deriving transformations
between the different views of a given object, so that they can be pa-
rameterized in terms of the object’s physical degrees of freedom. Our
method allows to automatically derive the appearance representations
of an object in conjunction with their linear deformation model from
example images. These are subsequently used to provide linear charts to
the entire appearance manifold of a three-dimensional object. In contrast
to approaches aiming at mere dimensionality reduction the local linear
charts to the object’s appearance manifold are estimated on a strictly
local basis avoiding any reference to a metric embedding space to all
views. A real understanding of the object’s appearance in terms of its
physical degrees of freedom is this way learned from single views alone.
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1 Introduction

An object representation useful for computer vision should meet at least three
basic requirements. First, it must allow identification of an object in the pres-
ence of slight but unpredictable changes in its visual appearance. This a fact
widely acknowledged and a problem frequently tackled. One successful way of
dealing with this invariance problem is provided by the elastic graph matching

approach [6]. Second, it must be able to yield an interpretation of larger changes
in appearance, which are due to variations in the object’s fundamental degrees
of freedom, such as, e.g., changes in pose. And last, it is important that the
object representation be learnable, i.e., it should be derived from visual input
alone, without interaction of a user.

In this paper, we construct such a representation by deriving transformations
between the different visual appearances of a given object, so that they can be
parameterized in terms of the object’s physical degrees of freedom. Our method
allows to automatically derive the appearance representations of an object in
conjunction with a model for their linear deformation from example images.
These are subsequently used to provide linear charts to the entire appearance
manifold of a three-dimensional object. A topology on the space of all views of
an object is created, without reference to an embedding metric space. Finally,
it is shown that the retrieved topology is indeed ideally suited to relate the
single views of an object to parameterizations of the object’s physical degrees of
freedom. An understanding of the object’s appearance in terms of its physical
degrees of freedom is thus learned from nothing but the visual input.

2 View representation by labeled graphs

A single view of an object is here represented by labeled graph such that the
similarity between different views can be assessed via elastic graph matching [6].
In order to extract the labeled graph from a given image, the location of the
object in the image must first be determined.

2.1 Segmentation

As fully-fledged data driven segmentation is beyond the scope of this paper
some simplifying assumption about the nature of the image data are made. It
is assumed that images contain only one object, that the background is fairly
homogeneous, and that the object is relatively close to the center of the image.

If these requirements are fulfilled (and they are in the image data we used
in this paper) the background can be determined using the spin segmentation
approach described in [4]. From the thus determined object region a regular
grid-graph can be extracted as shown in figure 1.



Fig. 1. Single View Models: In order to describe an object, a suitable representation
of a single view is found by first splitting the image into a background and a foreground
region. To this end the spin segmentation method [12, 4] is used, in connection with the
knowledge that only one object is presented approximately at the center of the image
and that there is a nearly homogeneous background. After the segmentation step the
resulting object region is represented by a jet-labeled graph.

Fig. 2. Elastic Graph Matching: The labeled graph (left) is used to determine
the correspondences with a novel but similar view (right). The figure is copied with
permission from [6].

2.2 Model graphs

Each graph node is now labeled with a Gabor-jet, which locally describes the
image content. Given an image of a novel but similar view of the same object
elastic graph matching [6] can be be used to determine the corresponding points
in the new image for each node of the graph (see figure 2).

Elastic graph matching thus yields a set of xi and yi coordinates in the new
image for each node i in the graph as well as the the similarity si between Gabor-
jet of node i and the Gabor-jet at the corresponding location (xi, yi)

T
in the new

image. The overall similarity smin = mini(si) can then be used as a similarity
measure between views.

3 Aspects

Equipped with this powerful method of comparing views, one can try to group
views, according to their similarities, into larger entities which we will call as-

pects. Given a model graph g and a set of views U , the aspect a is defined as the
subset of views ui of U , whose similarity smin to g is above a given threshold t,
i.e.

a(g, U) = {ui ∈ U |smin (g, ui) > t} . (1)



In this context we call g the representational graph of the aspect a. This repre-
sentational graph can be used to establish a meaningful topology on the views
of the aspect a.

3.1 Local linear descriptions

Let g be a representational graph and a its associated aspect, the correspon-
dences between g and all views in a are then also given, as a was derived from
the training set U by thresholding on the graph similarities, which in turn were
established by elastic graph matching. The correspondence mapping can now be
associated with a point (x1, y1, . . . , xN , yN )T in Euclidean space, where (xl, yl)

T

is the mapped position of the l-th node of the representational graph. It must be
noted that for a given aspect the dimensionality of the mapping space is fixed
and given by twice the number of nodes N of the representational graph, but
between different aspects associated with different representational graphs the
dimensionality can vary.

To get rid of all the variation in this coordinate vector stemming from simple
translation, the correspondence mappings are normalized by subtracting the
graphs center of gravity, i.e.

XT =

(

x1 −
1

N

∑

n
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1

N

∑
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1

N

∑
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yn

)

. (2)

To see whether the variations between the coordinate vectors of different views
within the same aspect can be understood in terms of variations in some underly-
ing low-dimensional parameter space principal component analysis is performed
on the set of all the X i of all views view i in the aspect a. The resulting eigen-
vector matrix P and the mean M can now be used to introduce a topological
structure on the aspect a. For a given dimensionality K of the aspect, i.e. the
number of degrees of freedom along which the observer-object-relations varied
to create those views, the first K eigenvectors P 1, . . . , P K form an orthogonal
basis, which spans an affine subspace of the correspondence mapping space. A
correspondence mapping X can then be expressed in this coordinate system by
the vector

ξ =
(

(X − M)
T

P 1, . . . , (X − M)
T

P K

)T

. (3)

As each view within the aspect is associated with a correspondence mapping,
these coordinates impose a topology upon the views of the aspect. Examples
of the such induced topology are shown in figure 3 for K = 2 and different
values of t. The quality of the established topology depends of course critically
on a suitable choice for t. Luckily, the similarity as established by elastic graph

matching is a fairly good estimate of view-similarity independent of the concrete
object at hand, as previously shown in [5, 1], such that t = 0.7 yielded good
results in all following experiments.



(a) threshold: t = 0.7 (b) threshold: t = 0.55

(c) threshold: t = 0.7 (d) threshold: t = 0.55

Fig. 3. Examples of aspect representations: Shown are four groups of views. Each
is displayed in its local coordinate system spanned by the first two principal compo-
nents. Views that are known from ground truth to correspond to neighboring samples
on the view sphere are connected by a line. For each group the value of the threshold
used listed below the diagram. The data sets (a) and (b) have one degree of freedom,
whereas (c) and (d) have two.

3.2 Estimating local dimensionality

In order to estimate the aspect dimensionality K automatically, a modified ver-
sion of the Scree-test is used. Given the eigenvalues of the principal components
of a distribution, it is assumed that they can be separated into two classes, one
belonging to variations due to changes in some underlying variables and the
second being created by noise. The first group, consisting of the largest eigen-
values, contributes most to the overall variation. The second group, generated
by noise, usually shows a characteristic flat and monotonous decline, which is
approximately exponential [3].



To detect this transition the ratio between the eigenvalue pi and its immediate
predecessor pi−1 is calculated. The minimum of those ratios pi

pi−1

is supposed to

mark the transition. So the first K principal components are assumed to be due
to variations in the object’s degrees of freedom if

K = arg min
i

(

pi

pi−1

)

− 1. (4)

Using this method, a correct estimation of the number of underlying degrees of
freedom was possible for 97% of the aspects.

4 View manifold

It was demonstrated how a set of views can be decomposed into aspects, which in
turn can be represented in terms of simple linear models via principal component

analysis. In order to arrive at a complete parameterization of the view manifold
it is again assumed that a training set U of views is given. It is also assumed
that a set of representational graphs and the aspects they define were extracted
from U such that all views in U are part of at least one aspect and that pairs of
aspects which are neighbors in appearance space have a set of views in common.
The set of views common to two aspects a and b is denoted Oab. Because these
sets O contain views which are represented in more than one aspect, they can
be exploited to establish relations between the aspects.

4.1 Defining aspect distances

Let a and b be two K-dimensional aspects with representational graphs ga and
gb, mean correspondence mappings Ma and M b, and eigenvector-matrices P a

and P b, respectively. Then each view which is contained in both a and b can be
represented by a point in a K-dimensional Euclidean space for each of the two
aspect representations (see section 3.1). The point coordinates are derived from
the correspondence mappings Xa and Xb from the representational graphs ga

and gb associated with the view. They yield the following coordinates in the
affine subspaces of each aspect.

ξa =
(

(Xa − Ma)T
P a

1
, . . . , (Xa − Ma)T

P a
K

)T

, (5)

ξb =
(

(

Xb − M b
)T

P b
1
, . . . ,

(

Xb − M b
)T

P b
K

)T

. (6)

It must be noted that the dimensionalities of ξa and ξb are all equal to K, because
K is the number of the object’s degrees of freedom and must be constant over
the whole view manifold. On the other hand Xa and Xb may have completely
different dimensionalities, because they are determined by the number of nodes
of ga and gb and are therefore of a fairly arbitrary nature.



If a whole set of common views Oab is given one can estimate the centers of
gravity o a,o b in the two aspect coordinate systems.

o a =
1

N

∑

n∈Oab

ξ a
n , (7)

o b =
1

N

∑

n∈Oab

ξ b
n , (8)

where N is the number of views in the overlap. One can now define the distance
∆ab between the origins of the two aspects a and b by

∆ab = ‖o a‖ + ‖o b‖. (9)

Given the distances between all overlapping aspects, the distance between non-
overlapping aspects can be defined to be the shortest connecting path of overlap-
ping aspects. If, e.g., aspects a and c are not overlapping, but the distances ∆ab

and ∆bc to the aspect b are already defined, ∆ac is defined by ∆ac = ∆ab +∆bc.
If these rules lead to different definitions of the distance between a pair of

aspects the distance is taken to be the shortest of those distances. In this way
all violations of the triangle inequality are eliminated and a metric is imposed
upon the aspects.

In case the set of aspects is composed of two or more completely unconnected
subsets, these are treated separately in all following considerations and are said
to constitute different object hypotheses.

It is important to note that this somewhat awkward distance measure has
unique qualities rendering it fundamentally different from all other previously
proposed methods. The distances are measured solely inside the view manifold,
no reference is made to an embedding space. This distinguishes it from other
methods which retrieve perceptual manifolds in an unsupervised fashion, such
as classical neural network approaches or more recent techniques, e.g., [9, 11].
Even most techniques which establish the topology of views in a supervised
fashion such as [7, 2, 10, 8] require an embedding space in which distances can
be measured. This point is so important, because a space embedding all views
of an object requires finding a view representation suitable for the whole view
sphere of an object beforehand. This in turn raises difficult questions regarding
the missing data problem [8], caused for example by self-occlusion, or it requires
normalization procedures in order to render the view representation comparable
even across large changes in viewpoint [7, 2].

4.2 Global parameterization

So far, a local topology has been established between all views within an aspect,
and distances between the single aspects have been defined. What is missing
for complete knowledge about the manifold is a global parameterization of all
views. To achieve this metric multi-dimensional scaling is applied to the distance
matrix ∆ of the aspects. Given a distance matrix between a number of objects,



in our case the aspects, metric multi-dimensional scaling yields a representation
of these objects as points in an L-dimensional Euclidean space, such that the
distances between those points approximate the original distance matrix. Very
similar to principal component analysis each dimension in this Euclidean space
is associated with an eigenvalue, such that the appropriate dimensionality L can
be estimated by the previously introduced Scree-test.

This way a point c a in an L-dimensional Euclidean space G is assigned to
each aspect a. But as this only defines coordinates in the global parameterization
space G for the origin of the local aspect parameterization, one has to take one
more step, namely to estimate a mapping from the local parameterization of
each aspect to the global one.

4.3 Aligning the aspects

a
bOab

ca

ooa b

cb

µab

Fig. 4. Neighboring Aspects: Shown is a schematic drawing of two neighboring
aspects a and b. The coordinates of the origins of the aspect representation are given
by � a and � b, respectively. The set of views in the overlap of a and b is denoted Oab.
The center of gravity of Oab in the local coordinate systems of a and b is given by � a

and � b.

In order to retrieve mappings from the local parameterization of each aspect
into the global parameter space the already established global coordinates c a

of the aspect origins are used to determine the rough position of views and
the overlap sets Oab are again exploited to yield the correct orientation of the
different aspect mappings.

Let c a and c b be the global coordinates of two overlapping aspects a and
b, and let o a and o b be the center of gravity of the overlap set Oab in local
coordinates of a and b respectively. In this situation the global coordinates µ ab

of the center of gravity of Oab is estimated by

µ ab = c a +
‖o a‖

‖o a‖ + ‖o b‖

(

c b − c a
)

. (10)



In doing so it was assumed that o a and o b are mapped onto the same point
µ ab and moreover that the mapped origins c a, c b, and µ ab lie on a straight
line (see figure 4).

Assuming now that the mapping between the aspect a and the global pa-
rameter space can be approximated linearly, a matrix Aa can be estimated from

µ ab − c a = Aao a. (11)

Aa is a L × K matrix, where L is the dimensionality of the global parameteri-
zation space G and K is the the dimensionality of the local parameterization, or
in other words the dimensionality of the view manifold. One such equation can
be obtained for each overlap of a and another aspect. Consequently, K overlap
sets are sufficient to determine Aa. If more are available a solution optimal in a
least-square sense can be found by standard techniques. If fewer are available, the
aspect representation cannot be incorporated into the global parameterization
and must be discarded. This, however, is rarely the case as the required number
of overlapping aspects is just the number of the physical degrees of freedom of
the object.

So, if a new view, represented by an image, is to acquire coordinates ζ in
terms of the global parameterization, all representational graphs ga are matched
on the image. The one with the highest similarity is then used to assign to the
new view local coordinates ξ amax in terms of the aspect representation. These
are then transformed into the global coordinate system by

ζ = Aamax
ξ amax + c amax . (12)

4.4 Summary

All the previously described processing stages can now be integrated into one
algorithm which derives a complete object representation from single views.

If views of an object are presented to the system one by one in no particular
order, the algorithm proceeds the following way. First a view is associated with an
aspects, describing the transformation properties of the object by a local linear
model. These linear charts to the actual view manifold are then integrated into
one global embedding parameter space by determining their topology from the
mutual overlap.

So, for each view of an object which is presented to the system, the following
steps are taken:

1. Initialization: If this is the first view and no aspect representation has so far
been created, a graph is extracted from the view, after prior segmentation.
This graph is then the representational graph ga of a new aspect a.

2. Aspects: All representational graphs ga associated with local aspect repre-
sentations a are matched onto the view.

(a) If the similarity between the new view and a representational graph ga

exceeds the threshold value t, i.e. smin > t, the view is assumed to be



well represented in the associated aspect a. The retrieved correspon-
dence mapping X a between graph and view is stored and the linear
aspect model is updated by recalculating the principal components of
the correspondence mappings (see section 3.1).

(b) In case a view is represented well by two aspects a and b the view belongs
to the overlap set Oab of those two aspects, and they are said to be
neighboring.

(c) If the view cannot be represented in any of the current aspects, a graph
is extracted from the view, after prior segmentation. This graph is then
the representational graph ga of a new aspect a.

3. Object Hypotheses: Aspects that are neighboring or can be connected by
a succession of neighboring aspects are grouped together to form an object
hypothesis. An object hypothesis is thus a coherent patch, or atlas, of an
object’s view manifold for which neighborhood relations between the linear
models as well as distances between the aspects in the sense of section 4.1
are defined.

4. Global Parameter Spaces: A global parameter space G is now assigned
to each object hypothesis. The mapping between the origins of the linear
aspect representations and the new global coordinate system is retrieved via
multi-dimensional scaling (see section 4.2).

5. Mappings from Global to Local Representations: The transforma-
tions Aa from the local linear parameterizations of all aspects a into the
embedding global parameter space G are retrieved by once again exploiting
the overlap between the aspects (see section 4.3).

In this fashion the object representation can be refined as more and more
views become available. The process has no well defined point of termination,
because it cannot be guaranteed, that all degrees of freedom of one object are
covered for any given representation. But when only views are presented to the
system, which are already well represented, the object representation should
slowly converge towards a stable solution.

5 Experiments

The algorithm was tested separately on image databases of four different objects,
two plastic figures, an ink blotter, and an animal (the plastic figures were real ob-
jects whereas the other two objects were generated by the raytracer POVRAY).
Of each object 2500 views were recorded by varying longitudinal viewing-angle
in steps of 3.6◦ from 0◦ to 360◦ and the latitudinal viewing-angle in steps of 3.6◦

from 0◦ to 90◦. The views were presented to the system by selecting a view at
random in each iteration step. Multiple presentations of the same view were not
prohibited.

5.1 Results

Figure 5 shows the evolution of the number of aspects and object hypothesizes
as a function of views presented for those sets of views reflecting two degrees of
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(b) Number of estimated objects as
function of iterations

Fig. 5. Evolution of representations: For four example objects with training images
containing two degrees of freedom the change in the number of aspects and the number
of estimated objects are shown as more and more images are presented. After 1000
to 1500 presentations most aspects seem to have a corresponding representation. At
about the same time the representation of single aspects are fused to form a small set
of integrated object representations. After about 2000 presentations all but one or two
aspects are fused to from a complete object representation.

freedom. After 1000 − 1500 presentations the final number of aspects is nearly
reached, all remaining views are already represented by the existing aspects. Af-
ter another 500 presentations most aspects are integrated into into one coherent
object representation.

For two of the four objects (see figures 6(a),6(b)) the derived topology and
embedding into a three-dimensional space the nature of the underlying transfor-
mation is well captured. Views which are located in close proximity on the view
sphere are associated with similar coordinates in the embedding space and vice
versa.

The view topology, derived for the dwarf object (figure 7(a)), is less intuitive.
Here the view topology, as for example given by the relative viewing angle, is
not well established. The reason is to be found in the asymmetric properties
of the similarity function used. To determine whether a certain view is part
of a given aspect, the representational graph is matched onto the view and all
subsequent evaluations are solely based on the resulting similarity. But to yield
a high similarity it suffices if the representational graph is similar to a part of
the view. The top view of the dwarf, which shows only the hat, does match the
hat of the side view of the dwarf very well and the views are thus assumed to
belong to the same object aspect. This could be trivially avoided by employing
a symmetric similarity function (for an example see [13]), which requires the
similarity between the top of the dwarf to the side of the dwarf to be the same as
vice versa. Such a similarity function was not used as it would require the solution



(a)

(b)

Fig. 6. Two examples where the topology of the view sphere was captured very well by
the algorithm. (a) shows real pictures of a plastic figure of the cat Tom, (b) generated
graphics of an ink blotter.



of the correspondence problem in two directions and thus double the necessary
calculation time, which was already fairly long. But it must be emphasized that
the poor result for the dwarf is due to a detail in the implementation rather than
due to the general approach.

More general problems are exhibited in figure 7(b). In this case the topology
of views is not represented well. Views which, although similar, are not neighbors
in physical terms, are represented as being part of the same aspect of the object.
This in turn yields a topology which cannot be realized as a manifold. This is
so because the assumed virtual transition between the physically unconnected
views locally introduces a new degree of freedom, which is not present at other
points of the view sphere. In the examples presented this effect might be avoided
by employing a more sensitive similarity measure or by resorting to images of
higher resolution. But this problem cannot be avoided in general, because objects
are thinkable that actually have identical front and rear views. In such cases the
similarity of single views is insufficient to determine their topology and it shows
a point where additional information must be used to construct a reliable object
representation.

6 Conclusion

It was demonstrated that it is feasible to derive an appearance-based object
representation from nothing but single pictures. The approach taken went all
the way from the single views of an object to aspects to a completely integrated
object description.

At each stage of integration the entities of representation (model graphs, as-
pects, view manifolds) provide new knowledge about an object. The description
of single views in terms of representational graphs enables the system to recog-
nize known views in the presence of slight variations by elastic graph matching
without any further knowledge about the overall structure. The representation
of aspects in terms of representational graphs and linear transformation proper-
ties helps to determine the local degrees of freedom of an object. Thus creating
a foundation for understanding the varying appearance of one object in terms
of variations in lower-dimensional parameter spaces.

The global representation, finally, integrates the local topologies and param-
eterizations into one global topology-preserving parameterization. This way all
the different view of an object can be related to each other, forming an ideal
basis to describe an object’s appearance in terms of its physical parameters.

Starting from a simple view representation and establishing local topologies
by aspect representations before integration in terms of a global parameterization
also eliminated the need for an embedding space for all views.In the exemplary
case of a representation by graphs creating an embedding space would imply
that all views must be dealt with in terms of a single graph. Such a graph would
unavoidably face the problem that some of its nodes disappear from the field
of view while the object is rotating. The task of handling those invisible parts
which are nonetheless still part of the representation was termed the missing



(a)

(b)

Fig. 7. Two examples where the algorithm yields results different from the view sphere.
In (a), real views of a plastic dwarf are arranged poorly, because the system is confused
about the very similar top views. In (b), generated graphics of an animal lead to a
singularity, where the front and back views are very similar although distant in the
view sphere topology.



data problem in [8]. By utilizing completely independent representations for each
aspect of the object we here avoided the missing data problem. We also kept the
representational space low-dimensional at all times, because invisible parts of the
object were simply not represented. Differentiating between the local number of
degrees of freedom and the dimensionality of the embedding parameter space
also prevented the spread of local errors in topology and allowed to properly
parameterize non-Euclidean manifolds.

These results shed some light on the discussion of how new objects can be
learned. They provide evidence that single view information can be enough to
learn object properties, but additional information, such as continuous motion or
even manipulation is sometimes required to resolve ambiguities. The algorithm
also provides a basis for learning facts about the three dimensional physical space
from visual experience.
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