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We describe an object recognition system based on symbolic contour graphs. The im-
age to be analyzed is transformed into a grapha with object corners as vertices and
connecting contours as edges. Image corners are determined using a robust multiscale

corner detector. Edges are constructed by line-following between corners based on evi-
dence from the multiscale Gabor wavelet transform. Model matching is done by finding
subgraph isomorphisms in the image graph. The complexity of the algorithm is reduced
by labeling vertices and edges, whereby the choice of labels also makes the recognition
system invariant under translation, rotation, and scaling. We provide experimental ev-
idence and theoretical arguments that the matching complexity is below O(#V 3), and
show that the system is competitive with other graph-based matching systems.
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1. Introduction

A human carries out an object recognition task with such ease, that we hardly
consider it as difficult. A closer view reveals the problems behind this act of per-
ception. A distribution of light intensities on the retinas is processed by the brain.
Although a distribution of light intensities can change considerably, e.g., when an
object is placed in a different environment or scaled, the object is being recognized
as the same. The brain transforms visual data into another representation where
these changes are compensated for, and then performs recognition tasks. Similarly
in computer vision, where the space in which tasks are performed is usually differ-
ent from the space of visual measurements. It is usually so different from the space
of visual measurements that using the first to guide the gathering of information
in the second is an area that is said to be still in its infancy.12

aA graph in its basic form is defined as a set of vertices and a set of edges, where the latter are
tuples of vertices.
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Unfortunately, the functionality and representation space of the brain are partly
known only. The existence of the so called simple, complex, and endstopped cells
found by Hubel and Wiesel19 in the visual cortex proves that edges and corners
play an important role in mammalian vision. Even though much effort has gone
into revealing the functionality of different groups of cells in the primary visual
cortex, still most parts are partly understood only. The complexity beyond the
visual cortex increases dramatically and neural models about recognition become
very hypothetical, even though it seems obvious that matching of some kind must
take place.

Starting from the observation that corners and contours of objects are relatively
robust under perspective transformations there is a variety of matching algorithms
that rely on corners as vertex points and connect vertices if there is a visual contour
connecting the corners. Throughout this paper we will use the term “contour” for
visual edges in order to avoid confusion with graph edges. Our algorithm is of this
type, and others include those by Eshera and Fu,10 Messmer and Bunke,29 Gold
and Rangarajan,15 and Rosin.37

More concretely, the term graph matching refers to the process of trying to
find correspondences between graphs. Two graphs are isomorphic if there is a one-
to-one correspondence function between the vertices of the two graphs such that
the structure of the edges is preserved by the function (McHugh28). If one of the
graphs involved in the matching process is larger than the other, i.e. the image
graph G(V,E) contains more vertices than the model graph Gm(Vm, Em), then we
are looking for a subgraph isomorphism from Gm to G. In many applications, the
encoding of objects as graphs will not be perfect due to, e.g, noise or limitations
of the graph extraction algorithm. Hence, it is not realistic to require isomorphic
matching. A natural idea is to introduce cost functions and incorporate the concept
of errors into graph matching. Graphs are then compared to each other by means
of the error-tolerant subgraph isomorphism.

Dependent on the application, different attributes are assigned to the vertices
and edges in a graph. Heuristics that use these attributes can decrease the search
space to a low order polynomial (Gold and Rangarajan15). The currently existing
algorithms can globally be divided into two groups.

The first group involves the construction of a state-space which is then searched
exhaustively, a procedure which always guarantees the optimal solution. One of the
best known methods for graph and subgraph isomorphism detection is based on
depth-first backtracking search (Corneil and Gotlieb6). The number of backtrack-
ing steps in a search tree can be greatly reduced by a combination of backtracking
and forward checking (Ullman45). Another approach for subgraph isomorphism de-
tection is based on building a so called association graph and searching for maximal
cliques in such a graph (Falkenhainer et al.,11 Horaud and Skorda,18 Myaeng and
Lopez-Lopez,31 and Pelillo et al.34)

The problem of error-correcting subgraph isomorphism consists of finding the
sequence of edit operations with minimal cost such that a subgraph isomorphism
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exists (Messmer and Bunke29). Most of these algorithms are based on the A∗-
algorithm (Nilsson32). By introducing a heuristic cost estimation function, the size
of the search tree can be greatly reduced. Various cost functions have been proposed
(e.g, Tsai and Fu,44 Shapiro and Haralick,39 Fu,13 Sanfeliu and Fu,38 Eshera and
Fu,9 and Wong.49)

All algorithms in the first group are guaranteed to find the graph and subgraph
isomorphisms. The second group is based on probabilistic approximation methods.
They generally have a lower computational complexity, but do not guarantee to find
the best solution. The algorithms are based on relaxation (e.g., Rosenfeld et al.,36

Peleg,33 Ton and Jain,42 Christmas et al.,5 and Gold and Rangarajan,15) neural
networks (e.g., Kuner and Ueberreiter,22 Yu and Tsai,53 and Suganthan et al.,41)
linear programming (Almohamad and Duffuaa1), genetic algorithms (Krcmar and
Dhawan21), or Lagrangian optimization (Rangarajan and Mjolsness35).

Most systems for object recognition and model-based scene analysis rely on
point matching or the estimation of corresponding point pairs in a stored model (or
prototype) and an image to be analyzed.

In the first instance, matching algorithms rely on feature comparison. Visual
features, which are robust under the changes that are expected between model and
image, are extracted on both sides and their similarity yields a first hint at possible
candidates for correspondences. It is well known that correspondence cannot be
established on the grounds of feature similarity alone, and the relative position of
features must also be taken into account.

As a consequence of this dual constraint, attributed graphs present an ideal data
format for models. Points to be matched can be identified with graph vertices,
and the connecting graph edges can be used to code the relative positions. Any
useful further information about point features can be conveniently coded as vertex
attributes.43

The corresponding graph in the image can be found in various ways. One pos-
sibility is to represent the image as a matrix of point features and choose vertices
in the image by optimizing a cost function which combines some average feature
similarity with the deviation from an undeformed model graph. This approach has
been quite successful for face recognition.23,47 It is well suited for problem classes
whose feature values vary more or less smoothly over the image.

A different approach is to represent both model and image as graphs. This is
attractive, because the problem is transformed into a purely combinatorial one,
which makes it susceptible to complexity analysis. In the problem’s purest form,
the image graph must be searched for a subgraph isomorphic to the model graph.
In full generality, this problem is known to be NP-complete in the number of image
vertices,14 which makes it doubtful that such algorithms will be efficient in real-
world applications. However, the complexity is potentially greatly reduced by the
requirement of feature similarity and by further properties of the graphs involved.
It can be shown that subgraph isomorphism for planar graphs without attributes
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can be computed in a time proportional to the number of image vertices.8

For practical systems, the situation becomes more complicated, because robust-
ness in the presence of feature variations and eventually missing edges and vertices
become crucial. Additional requirements are necessary, which usually prohibit the-
oretical analysis of the algorithmic complexity. Furthermore, the constant factors
governing the matching time can no longer be ignored. Both turn the efficiency of
graph-matching algorithms for correspondence largely into an experimental matter.

In this paper, we test subgraph matching for the analysis of scenes, which may
contain several instances of the objects in the database. We focus on corner and
contour matching, no surface features are taken into account. Since we want to
recognize all objects in the database that differ at most an a-priori known error-
value from the exact object in the image, we have the problem of error-tolerant
subgraph isomorphism. The algorithm we use belongs to the first group, since we
want all possible objects in the image graph to be found. Images as well as stored
models are represented as graphs whose vertices correspond to object corners and
whose edges code for edges connecting corners in the image. The method is invariant
under translation, rotation, and scaling and robust under changes in background,
limited changes in perspective, and small distortions, but cannot handle occluded
corners.

For model matching it is assumed that corners can only be matched onto corners
and connecting edges must match edges in the image. This makes the process
equivalent to finding subgraph isomorphisms. In our approach, the complexity is
reduced by demanding that the labels of matched vertices and edges, respectively,
be roughly equal. We will show experimentally that the problem is so reduced to a
tractable size.

Because of the representational power of graphs, much effort has gone into the
development of efficient matching algorithms. A problem that has been tackled
party is the extraction of edges and corners from a two dimensional grid of picture
elements. However, a fully symbolic representation is necessary for recognition by
graph matching. Widely applied techniques for edge detection in image processing
are based upon enhancement of edges followed by thresholding. After that an ex-
traction algorithm should be applied to obtain a symbolic representation. Methods
that are well known and often used in computer vision that are based on this tech-
nique are from Canny4 and more recently from Smith and Brady.40 The problem
of such an approach is setting a threshold, which is different for every image and
that is called a plague by Faugeras.12 To his knowledge thresholding is unavoid-
able, and should be tackled with courage. Very recently, Jarvis20 stated that even
when sophisticated edge extraction and linkage algorithms are used, gaps in con-
tours can severely disrupt the segmentation result. Domain-specific knowledge can
help bridge the gaps, but restricts the scope of applicability. In this paper a greedy
edge contour following algorithm will be proposed that avoids manual thresholding
and length of contour settings for every different image. The algorithm, that uses
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detected corners and enhanced contour images, accurately finds the contours along
lines and edges and guarantees closed contours. Algorithms for edge extraction
based on the following principle are the border-tracking algorithm16 and following
as graph searching,2 but need further complicated processing to bridge gaps.

The corner extraction method, which is described here only briefly, is based on
a model for end-stopped cells in the visual cortex and thus models some aspect of
human vision. Recently, models start to evolve that present neuronal algorithms
for contour following.46 A neuronal model for graph matching was proposed.23,48

Although the evidence is still sketchy, it can be expected that the whole algorithm
allows a neural implementation and thus potentially models aspects of human ob-
ject recognition, for which corners and edges play an important role. For example,
Biedermann3 showed that partial contour deletion only impedes object recognition
if it is accompanied by altering corner attributes.

2. Symbolic contour graphs

The transformation from the input image, which is a two-dimensional grid of pixels
into completely different graph representation is a complicated task that requires
several steps.

Initially, Gabor filters that are closely related to the function of simple cells in
the visual cortex of primates are used.7,27 Sequentially the energy of the amplitude
of the Gabor filters is taken that is related to a model of complex cells which
combines the responses of a phase pair of simple cell responses. In turn the end-
stopped cells, that enhance line-ends and corners, receive input from the complex
cells. A local maximum operator is used to extract the corners. The set of extracted
corners represents the set of vertices in the graph.

The set of corners together with the modeled complex cell responses form the
input for the contour extraction algorithm. A greedy algorithm where a contour
along the strongest responses of the complex cell operator is followed from one
corner to another. This corner pair forms an edge, but since contours are not nec-
essarily straight we add attributes to the graph. We keep the complete contour
represented by a Freeman chain as additional edge attribute. This attribute is of
importance if we want to compare the similarity of two curves. We used normalized
surface matching as additional matching criterion, that will not be discussed in this
paper.

When the complete graph is extracted additional attributes such as relative
length of edges and angles between edges connecting the same corners are added to
the graph. These attributes (ignoring, scale, translation, and rotation) guarantee
that we can make a frame of the original input image and by filling the surfaces in
between even a reconstruction of the original input image. Another advantage of
these attributes is that they strongly reduce the search space. When the first two
corners of an object, stored in a database, are matched with two different corners
in the image graph, all the other corners of the object have a fixed position in the
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image graph. Hence, if one would be searching exact copies of a known object, the
algorithm would be of order O(V 2), where V is the number of corners. In practice
one will tolerate small differences in length and angle, which means that all corners
in the image graph within a certain radius from the exact point will be accepted as a
partial match. The differences in angle and length should be rather small otherwise
accepted matches can be so strongly deformed that they are not being perceived
(by a human observer) as the same object.

2.1. Complex cells

We will describe objects and scenes as graphs with corners as vertices and contours
as edges. Corner detection and edge following are based on a Gabor wavelet trans-
form of the image. Complex-valued Gabor functions at scale σ and orientation θ

are defined as

Ĝσ,θ(x, y) = exp
(

i
π√
2σ

(x cos θ + y sin θ)
)

exp
(
− x2 + y2

2σ2

)
, (1)

These Gabor functions have been modified such that their integral vanishes and
their one-norm (the integral over the absolute value) becomes independent of σ,
resulting in Gσ,θ(x, y). They provide an transform of the image I(x, y) via spatial
convolution. Afterwards, only the amplitudes of the complex values are retained for
further processing:

Cσ,θ(x, y) = |I ∗Gσ,θ| . (2)

This “local energy representation” is the basis of all subsequent processing (for
analytical properties see Wundrich et al.50). A high value at a certain combination
of x, y and θ represents evidence for a contour element in the direction orthogonal
to θ. Orientations and scales are sampled linearly: θi = i·180

N , i = 0 . . . N − 1,
σj = σ0 + j∆σ, j = 0 . . . S − 1.

2.2. Robust corner detection

Starting from that representation, we have developed a biologically motivated
method for corner detection,52 which is described here only briefly. Our method
for detecting corners yields position, sharpness, size and color and contrast. The
subtended angle can be determined a posteriori by following the line segments that
constitute the corner (see section 2.3). It is based on a model of cortical end-stopped
cells.17

The first step towards an end-stopped operator is an approximation of the first
derivative of the C-operator in the direction orthogonal to that of the line segment
in question:

Ês
σ,θ(x, y) = Cσ,θ(x + dσ sin θ, y − dσ cos θ)−

Cσ,θ(x− dσ sin θ, y + dσ cos θ) ,
(3)
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and second derivative:

Êd
σ,θ(x, y) = Cσ,θ(x, y)−

0.5Cσ,θ(x + 2dσ sin θ, y − 2dσ cos θ)−
0.5Cσ,θ(x− 2dσ sin θ, y + 2dσ cos θ) .

(4)

These two operators are both inhibited by a tangential and a radial inhibiting
operator:

It
σ(x, y) =

2N−1∑
i=0

[−Cσ,θimodN
(x, y) + Cσ,θimodN

(x1, y1)]
≥0 (5)

and

Ir
σ(x, y) =

2N−1∑
i=0

[
Cσ,θimodN

(x, y)− wrCσ,θ(i+ N
2 )modN

(x, y)
]≥0

, (6)

where x1 = x + dσ cos θi, y1 = y + dσ sin θi, [z]≥0 is equal to 0 for negative z and
equal to z elsewhere (half-wave rectification), and constant wr = 4. The corner
operators on a single scale in a single direction then are:

Eσ,θi
=

[[
Êσ,θi

]≥0

− g(It
σ + Ir

σ)
]≥0

. (7)

Constant g = 2 is a gain factor and for E one can substitute Es or Ed. For details
and motivation of constants, see Lourens and Würtz.24,52

At each point we consider only the maximum over all orientations, and also the
maximum of single and double end-stopped operators:

Eσ =
2N−1
max
i=0

max(Es
σ,θi

, Ed
σ,θi

) . (8)

Sharp corners are characterized by strong responses over a wide frequency range. If
only high frequency cells respond, the feature is likely to be noise or texture rather
than a corner. We found that averaging the responses over a range of frequencies
yields a much more robust corner detection:51,52

Eavg(x, y) =
1
S

S−1∑
j=0

Eσj (x, y) . (9)

With a slight and biologically justified extension of the concept of complex cells,
corner detection can be extended to color channels (red-green and blue-yellow op-
ponent), which is described in detail in Würtz and Lourens.51,52 The amplitude of
Eavg for each of the red-green, blue-yellow, and grey value channels yields the final
corner detector Eall. The Ir-operator (6) has been improved compared to former
work;51,52 it now yields better results at corners with large angles. Currently an-
gles up to 140◦ are recognized compared to a maximum of 120◦ before, while the
remaining properties are preserved.
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2.3. Contour extraction

The idea of contour following is, to select corners and local edge maxima as starting
points, and then to follow a contour to another corner or local maximum by selecting
the strongest edge responses during the following process. Such a mechanism might
exist in the brain as well. A group of cells, which are coined linking cells,25 receive
their inputs from the complex and endstopped cells. Initially, only the strongest
local responses of the complex and endstopped cells will trigger the linking cells at
the same spatial positions. These activated neurons will activate their neighbor with
the strongest complex input response; both will start firing in synchrony. In turn,
these newly activated neurons will activate an inactive neighbor, and a cascade of
synchronously firing neurons along the edge contours will be the final result.

In order to follow a contour, we combine the various orientations, scales and
colors in the same way as for the end-stopped operators:

Cσ =
N−1
max
i=0

Cσ,θi
, (10)

Call
σ =

√
C2

σ +
(

1
2
Cr,g

σ

)2

+
(

1
2
Cb,y

σ

)2

, (11)

where Call
σ is the amplitude over the three, two chromatic and one achromatic,

channels.
Globally the algorithm, illustrated in Figure 1, contains 3 stages:

(1) detecting corners and local edge maxima by thresholding (lines 2-3); the initial
stage of a two dimensional layer of linking cells

(2) extracting contours starting at local maxima (lines 4-7) and corners (lines 8-12);
activating and linking neighbors along an edge contour

(3) connecting corners with edge contours and each other (lines 13-16); also acti-
vating and linking neighboring neurons along an edge contour

This contour following method, which is described in more detail in Lourens
et al.,26 is more sophisticated than extracting binarized responses of appropriate
edge detectors, because the latter are very sensitive to changes in local contrast and
size of thresholds. Furthermore, it can be tailored to special situations by taking
the concrete distribution of Gabor energy over σ and θ into account locally. Our
method starts at corners and collects evidence for a contour to connect this corner
with another one. Thus, the resulting contour graphs can be called “symbolic”.

2.4. Evaluation of edge extraction

The proposed method is compared with two other methods: the well known Canny
edge detector4 combined with the curvature scale space detector,30 and with the
SUSAN edge and corner detector.40 Although edge detection and extraction are
not the same, the results can be compared by displaying the extracted data in a
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two-dimensional image. For both Canny-CSS and SUSAN the thresholds were set
manually for every image to obtain good results.

Extraction of contours in both Canny-CSS and SUSAN, in practice, is very
difficult. This is caused by gaps, overlapping contours, or multiple detection of a
single contour, as illustrated in Figure 2. Even in the synthetic P image the contours
near the corners are not closed. In case of noise or speckle (or textures that have
a similar effect) these methods underperform due to small filter kernels and high
contrast sensitivity.

The advantage of the proposed model over other two models is that the same
low constant thresholds for corner and local contour maxima detection are used
for different images.26 Closed contours are guaranteed by the contour following
algorithm. The results of the extracted contours (when displayed as being detected)
show similar or better results compared to the SUSAN and Canny-CSS detectors.

2.5. Graph attributes

After contour following, we end up with a graph that has corners as vertices and
contours described by a series of points as its edges. After graph extraction, one
optimization step is performed: removal of multiple extracted contours. Additional
optimizations can be added, like deleting corners and partly double detected con-
tours, to further improve the graph.

Once stored models and the image to be analyzed are represented in this way,
model matching can be done by finding a copy of the model graph in the image
graph.

1 Function ExtractAttributedGraph (Eall
ω , Call

σ )

2 C := Set of corners obtained by taking local maxima from Eall
ω

3 M := Set of local edge maxima obtained from Call
σ

4 forall m ∈ M

5 forall n ∈ BestNeighborSelectedByResponseAndOppositeCoord (Call
σ , m)

6 l := ExtractContour (Call
σ , C, M , m, n)

7 Add (L, l)
8 forall c ∈ C
9 forall n ∈ EightNeighbors (c)

10 l := ExtractContour (Call
σ , C, M , c, n)

11 Add (L, l)
12 RemoveDoubleDetectedContours (L)
13 forall l ∈ L
14 forall c ∈ C
15 lc := ConnectCornerToContour (l, c, dσ)
16 Add (Lc, lc)
17 G := CreateAttributedGraph (L ∪ Lc)
18 return G

Fig. 1. Algorithm for graph extraction. Variable ω is σ or avg.
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a) Input images: left “P”, middle “colors”, and right “door”.

b) Proposed c) Canny-CSS d) SUSAN

Fig. 2. a) Top row input images used as benchmarks and bottom row enlarged results of parts of

the input images. b) Results obtained with proposed method using σ = 2.36 and default parameter

settings. Corners are represented by green squares and detected contours are marked in red. Blue
squares are corner edge connections. Yellow squares denote a junction (due to extraction) or the

end of a contour. c) Results of the Canny edge detector combined with the CSS corner detector.

d) Results of the SUSAN edge and corner detector.
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Each corner is labeled with the angles between all pairs of adjacent line segments
starting from it. The edges are labeled with the relative length of the line segments,
i.e., the ratio of the length to the length of the longest line segment in the whole
graph.

An example model graph is shown in Figure 3a. The extracted corners are
known by their (x, y)-coordinates. To keep a graph translation invariant these are
not directly suitable for attributes, but only the relative positions may be used.
This is obtained by taking the lengths of the contours and the starting angles
between contours at corners. This makes the representation rotation invariant as
well. Finally, to make the graph be scale independent we choose the lengths relative
to each other. This is illustrated in Figure 3b, where the edge with the longest
contour is assigned 100.00 and the others their contour’s length as percentage of
the longest one. Angles are measured counterclockwise: as a consequence, we have,
e.g., in Figure 3b that the angle at vertex 0 is different from the angle at vertex 1,
although the graph is symmetrical in the vertical axis. The choice of these attributes
keeps the graph invariant under translation, rotation, and scale, but not under
mirror reflection. The attributes of the graph are represented in a table, an example
is shown in the lower table of Figure 3c.

3. Graph matching

A depth first tree search algorithm is used, and partial solutions are pushed on a
stack. At every vertex at least one evaluation takes place, but multiple evaluations
(N − 1) at a single vertex can take place depending on the number of edges N that
start from a vertex in the model graph. For example two evaluations take place at
vertex 2 and 3 in the model graph of Figure 3c. In our experiments we measured the
complexity in pushes. The time between a push and a pop from the stack is small
because only a few criteria are evaluated (see Figure 4), hence it gives the most
objective measurement. Often the complexity is measured in the number of states
in the search tree, which is equal or smaller than the number of pushes, depending
on the different number N of edges starting at the vertex.

In common, to cut down evaluation expenses attributes as described above are
assigned to vertices and edges. To cut down evaluation expenses in graph matching
often only the best matching copy is searched. This is not acceptable here, because
the same object may appear several times in the image graph. Consequently, we
require to find all copies of a model graph Gm in the given image graph G.

3.1. Cost function

The standard representation of a graph is the Boolean adjacency matrix B. Its
elements B(i, j), i < j and i, j ∈ V , of this matrix are chosen to be true if and
only if (i, j) ∈ E, and false otherwise. We generalize it by replacing the Boolean
with a real-valued cost function EC(v1, v2), v1, v2 ∈ V , which defines the cost of an
edge missing in the image graph. During the process of matching we sum the costs
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for these tolerated missing edges. This accommodates cases where missing edges
in certain places are considered less severe than in others. Since we use undirected
graphs we only need the lower- or upper-diagonal of the adjacency matrix with
1
2#V (#V −1) elements, where #V denotes the number of vertices in V , throughout
this paper.

To cut down evaluation costs during matching we try to evaluate as little as
possible, while allowing inexact matches and without losing any solutions. During
the matching process we tolerate one or more missing edges in the image graph. Only
inexact matches with a total cost less than an a-priori known cost are considered.

The flexibility of the edge matching reflects the philosophy that contours are
often weak in real images, so contour following may fail in the image. It is, however,
assumed that the model is known well enough, i.e., images of sufficient quality are
available, for all relevant contours to be present in the image graph. Beside the
added robustness this flexibility yields a method of processing unconnected model
graphs by adding extra edges. See Figure 6 for examples. Unconnected components
of model graphs might attain arbitrary relative positions in our coding, and the

a) b)

21.97

2

100.00 100.00

40.74 40.74

37.95

0 1

3

54
27.97 c)

0
1 0
2 0 ∞
3 ∞ 0 0
4 ∞ ∞ 0 ∞
5 ∞ ∞ ∞ 0 0

0 1 2 3 4 5

angle in at from to edge
degrees vertex edge edge ratio
258.69 0 (0, 1) (0, 2) 0.54
101.31 1 (1, 0) (1, 3) 0.54
78.69 2 (2, 3) (2, 0) 0.93

194.17 2 (2, 0) (2, 4) 0.41
78.69 3 (3, 1) (3, 2) 1.07
87.14 3 (3, 2) (3, 5) 0.38
92.86 4 (4, 5) (4, 2) 0.28
92.86 5 (5, 3) (5, 4) 3.58

Fig. 3. a) An example of a model graph. b) The same graph augmented with edge attributes,
which are the (relative) length of a contour and vertex attributes, which are the angle between

two contours. c) Two tables are used to represent the attributes of the graph. At the top the
adjacency matrix is displayed, zero denotes that there is an edge and ∞ denotes that there is no

edge between the two vertices connected by the edge. The table at the bottom gives the angular

attribute plus the ratio between the lengths of two contours as a percentage of the length of the
“from contour” by the length of the “to contour”.
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matching algorithm also assumes connectedness.

3.2. Attribute similarity thresholds

In the lower table of Figure 3c, the vertices are augmented with a set of angle
and ratio attributes. In the matching process these attributes are used to reduce
the search space. When a vertex is matched we tolerate an angle and a ratio at
the vertex in the image graph to differ by at most a known constant angle and a
known constant ratio from the corresponding angle and ratio in the model graph.
Additionally we allow the average angle difference of all angles to differ at most a
known constant angle. Similarly the average ratio difference is also bounded by a
constant. We introduce four bounding constants:

(1) the angle tolerance,
(2) the average angle tolerance,
(3) the ratio tolerance, and
(4) the average ratio tolerance.

We assume that the model graphs are either constructed by hand or extracted from
“clean” images. Thus, they are supposed to contain both all corners and all edges.

3.3. Graph matching algorithm

The algorithm for graph matching is illustrated in Figure 4. It can find all copies
of a model graph Gm in an image graph G. Lines 2–11 are the initial stage of the
algorithm, we start with an empty stack and push all vertices of the image graph
onto the stack one after another, since each of them can, in principle, be matched
with the first vertex of the model graph. Lines 12–30 constitute the matching proper.
In line 13 we take a possible partial solution from the top of the stack and check
if the match is already complete (line 14). If so, the maximal and average relative
length differences to the model are calculated; if both are within the bounding
constants the match is accepted and displayed. If the match is incomplete the
process continues at line 17. Here we check if the current angle and ratio can
already be evaluated. If we can not evaluate because one or both vertices to form
the angle are still missing, then the missing model vertex is parsed by adding it
to the list (line 26) and all possible vertices in the image graph (lines 27–30) are
searched. A vertex v is added if it is not yet matched and if the cost EC of adding
edge (Lcv, v) is smaller than the allowed cost.

The speed of the algorithm mainly depends on the condition in line 18. If angle
and ratio differences are chosen properly most of the partial matches will be rejected
here, and the path is rejected by not pushing it back on top of the stack. During
matching, the difference in ratio δr = max

(
rm

r , r
rm

)
(where rm denotes the ratio of

an edge pair in the model graph and r denotes the corresponding matched ratio in
the image graph) between two pairs of edges is obtained by scaling the edge pairs
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in such a way that the first edge of both pairs is one, then the ratio is the size of
the rescaled second edge of the first pair: the size of the rescaled second edge of the
second pair. The average length difference is evaluated by using the relative lengths
of both model and found match in the image graph, as described earlier in this
paper. The absolute difference of the model edge with its corresponding image edge
is taken, when there was no edge between va and vb in the image graph we used
the relative length of dist(va, vb). The average of all edges is taken to represent the
average relative length difference.

4. Results

Figure 5 shows a color image and the extracted image graph. We have used the
model graph illustrated in Figure 3b to find all markers in the image.

The result is illustrated in Figure 5c. We allowed at most three (by setting the
cost function EC to one for every missing edge) out of the seven edges in the model
graph to be added and a maximal δr of 5. We tolerated an angle difference and an
average angle difference of at most 36◦ (which in practice is far too large, hence
results might be strongly deformed that they are not being recognized by a human
anymore). When a match is found we tolerate a maximum relative length difference
of 50% and an average relative length difference of 10%. The matching time for the
image graph is less than 0.1 second on a standard PC.

1 Procedure MatchGraph (G, MG)
2 stack := ∅
3 forall v ∈ V (G)
4 L0 := v /* list of parsed vertices of image graph */
5 ML0 := first model vertex /* list of parsed vertices of model graph */
6 mv := 1 /* number of matched vertices */
7 cv := first model vertex /* vertex being evaluated */
8 cva := first angle of cv /* angle of cv to be evaluated */
9 ED := 0.0 /* accumulated edge difference */

10 AD := 0.0 /* accumulated angle difference */
11 Push (mv, cv, cva, L, ML, ED, AD)
12 while stack 6= ∅
13 Pop (mv, cv, cva, L, ML, ED, AD)
14 if mv = cv = #V (MG) /* Match found */
15 Evaluate maximum and average relative length differences
16 else
17 if Angle cva of vertex cv can be evaluated
18 if Evaluation accepts angle and ratio
19 if cva = last angle of cv
20 cv := next (cv)
21 cva := first angle of cv
22 else
23 cva := next (cva)
24 Push (mv, cv, cva, L, ML, ED, AD)
25 else /* Add a missing vertex */
26 MLmv := missing-vertex
27 forall v ∈ V (G)− L /* Unused vertices only */
28 Lmv := v
29 if ProperVertex (EC, max ED − ED)
30 Push (mv + 1, cv, cva, L, ML, ED + EC, AD)

Fig. 4. Algorithm for graph matching. See section 3.3 for explanation.
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5. Application

The crucial question is how the execution time scales with the number of vertices
in the image graph. We measure the speed in the number of pushes occurring in
lines 11, 24, and 30 of Figure 4, because this number is independent of machine and
implementation details. For translating the values into real time, over one million
pushes can be evaluated per second on a PC with a 2 GHz Pentium 4 processor.

In this section we present a case study to get insights in the actual matching
time needed for graphs up to 250 vertices. Our choice is to recognize traffic signs
in a normal environment. For our experiments, we used 39 different image graphs
and three model graphs (Figure 6). Among the image graphs 26 contained one or
more traffic signs, the other 13 were without traffic signs. Extra edges in the model
graphs of Figure 6a-b are needed to retain the relative position and size of the
different parts of the graph.

In the simple case of the marker recognition, we have used a simple cost function

a) b) c)

Fig. 5. a) Input image. b) Image graph extracted from a). The small squares denote detected

corners. In the graph an additional chain attribute is used to describe the exact curve of the

contour. c) Found matches of the markers. Parameters values are: maximally three edges to be
added, ratio between two edge pairs δr = 5, average angle tolerance 10%, maximal angle tolerance

10%, maximal length tolerance 50%, and an average length tolerance 10%.

a) b) c)

Fig. 6. The three model graphs used. a) Danger sign, b) Precedence sign, c) Stop sign. As the

method requires connected model graphs, extra edges have been introduced in a) and b).
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(one per missing edge) for the image graph. For the traffic signs this has been
extended as follows. The cost function for an existing edge is still zero, but the
cost for a non-existing edge between a and b is one if there exist a chain between a

and b, i.e. there are one or more vertices vi on or near the imaginary line-segment
(a, b) for which there exists edges between (a, v0), (v0, v1), . . ., (vn, b). If there is
no edge and no chain between vertices a and b the cost for tolerating the edge is
two plus the number of intersections (a, b) makes with existing edges. In common,
this implies that adding short edges between a and b have a lower cost than longer
edges. This choice of cost function decreases the matching time.

We have evaluated a total of 42 image graphs. Three of them are the model
graphs transformed to image graphs. All three are (of course) recognized correctly.
In the 13 graphs which do not contain traffic signs nothing is detected. In the
other images all signs except one were detected. The undetected sign is due to a
K-junction, which is not identified as a corner. This implies that a corner is missing
and the match is not found. There are no falsely detected signs in any of the image
graphs.

Four images of the experiments are illustrated in Figure 7. These images il-
lustrate that recognition is invariant under translation, rotation, and scale. The
evidence for rotation invariance can be obtained easily from the precedence model
where two connecting edges are used, while the recognized image there are four
connecting edges which is due to multiple recognition of the same object. Matching
by corners and edges has the advantage that the method is robust under different
lighting conditions (Figure 8), but require sufficient contrast to extract the corners
and edges. The enlarged images illustrate clearly that the method is robust to noisy
data.

5.1. Resulting complexity

Figure 9 shows the number of pushes required for finding all solutions for all 42
image graphs. The matching time clearly has an upper bound of O(#V 3). This
is not what one would immediately expect since three vertices are needed for the
evaluation of the first angle and ratio. This would suggest already #V 3 but we
should take into account that not every triple is possible. For example if one or both
edges are missing the cost can be higher than we tolerate. For all three models we
tolerate an edge cost of 15 which can be exceeded directly by the cost of tolerating
the first edge, therefore a partial match containing a single vertex can be rejected.

On average 89 matches are obtained (but not all accepted) for the danger sign,
which has six corners, seven edges, and eight angles (6-7-8). On average 39 matches
are found for the stop sign (8-8-8). This model graph is one of the most time
consuming examples that can be constructed with eight vertices, only a chain would
be worse (8-7-6). The model graph of the precedence sign (8-10-12) on average has
8 matches. Extending model graphs with more vertices increases the matching time
while the number of vertices is small but saturates for a larger number of vertices
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a) b) c)

d) e) f)

g) h) i)

j) k) l)

Fig. 7. Input images, extracted graphs, and found matches are shown in the left, middle, and

right column, respectively. The following parameters have been used: the average angle error is
3, the average length error is 5, the maximal angle error is 5, the maximal length error is 14, the
ratio tolerance is 1, and the maximal cost of missing edges is 15. The size (#V , #E) of the image

graphs from top to bottom is (240,294), (247,351), (117,170), and (216,281).
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a) b)

Fig. 8. Enlargements of Figure 7i and j.

5 10 25 50 75 100 150 200 250
10

2

10
3

10
4

10
5

10
6

10
7

Vertices

P
us

he
s

Danger               
Stop                 
Precedence           
rlD = 14.9(#V)2.03

rlS = 2.8(#V)2.67 
rlP = 4.4(#V)2.51 

Fig. 9. Matching time measured in pushes and the regression lines rlD, rlS, and rlP of the three
used model graphs. The correlation coefficients are 0.96, 0.98, and 0.97, respectively.



PREPRINT, published in
International Journal of Pattern Recognition and Artificial Intelligence,
Vol. 17, No. 7, pages 1279–1302 (2003)

Extraction and Matching of Symbolic Contour Graphs 1297

since almost all partial matches are already rejected before the last vertices are
evaluated. Extending the number of edges in the model graph will decrease the
matching time. This implies that the matching time is not expected to increase
dramatically with large model graphs.

In Figure 9 the regression lines indicate the average amount of pushes needed
to match a model. The number of pushes needed is approximately 15(#V )2.03,
3(#V )2.67, and 4(#V )2.51 for the danger, stop, and precedence model, respectively.
All correlation coefficients were above 0.95, which implies that these regression lines
are reliable and that increasing the set of images will hardly influence the results.

6. Related work

Most of inexact matching algorithms deal with error-correcting subgraph isomor-
phisms and very few with error-tolerating subgraph isomorphisms. The difference
between the two is that the first always finds one subgraph isomorphism with a
distance or cost and the second delivers all subgraph isomorphisms within a known
distance or cost. Hence, it is difficult to compare the time complexity of these
problems with each other.

Messmer and Bunke29 used an error-tolerant subgraph isomorphism for detec-
tion and recognition of graphical symbols. Their algorithm tolerates missing vertices
and edges, and can even merge vertices during matching. The angle attribute is used
to increase the speed of matching, these angles are assigned to the edges and there-
fore a directed graph is necessary. As their focus is on organizing the model base,
their results are not directly comparable but computing times seem to be on the
same order of magnitude as for our algorithm.

Eshera and Fu9,10 proposed an algorithm for the error-correcting subgraph iso-
morphism. They assigned attributes to vertices and edges to impose restrictions to
the graphs. They called these graphs attributed relational graphs (ARGs), which
use three different features types (straight line, arc, and curve) and have rela-
tions (joint, intersection, and facing) between these features. For these relations
the distance and angle attributes are used. This algorithm is of polynomial time,
approximately O(l3m2), where l and m are the number of edges in the two graphs.
The main problem of this algorithm is the preprocessing. It is difficult to match the
segments with one of the three feature types.

More recently Gold and Rangarajan15 used ARGs for image representation and
analysis. Their probabilistic algorithm has a time complexity of O(lm). They ap-
plied the algorithm to the error-correcting subgraph isomorphism problem to match
an image containing a cup (model) with an image that contains a coffee pot and
a cup. They manually marked 10 corners and 8 additional points in the model
and approximately 40 corners and approximately 40 additional points in the im-
age. They needed about 30 seconds to find the match. If we assume that we need
#V 3 pushes and that we can evaluate 10,000 pushes/sec. on a comparable machine
then we need about 6 seconds to find the match. Thus, our algorithm is faster and
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guarantees to find an (inexact) subgraph isomorphism if there is one.
A complementary method is labeled graph matching which is applied success-

fully for, e.g. invariant face recognition.23,47 In this method, vertices are assigned
local texture elements and edges carry the geometrical information about relative
locations. This method is limited to richly structured or textured objects like faces.
Objects with homogeneous surfaces do not provide the sort of vertex labels required
there and can only be matched using their contours.

7. Discussion

We have presented a graph matching scheme for object recognition based on corners
and contours of objects. We have used a robust and biologically motivated operator
to detect the corners. A relatively sophisticated algorithm has been used to follow
lines between corners, which may allow to call these graphs symbolic information.

The problem of subgraph matching has been greatly simplified by assigning
contour angles as vertex attributes and relative contour lengths as edge attributes.
Although we currently can not make formal statements about the resulting com-
plexity we have shown that the time requirements can be cut down to reasonable
amounts for realistic problem sizes. The choice of labels makes the matching invari-
ant under translations, rotations and scaling. When two isomorphic but different
models are found, the similarity of the labels is used as as selection criterion. We
conjecture that the worst-case complexity of the algorithm is O(#V 4), because un-
der ideal conditions three matching point pairs determine the translation, rotation,
and scaling involved, while the fourth is needed to check for further copies of the
model.

We are currently testing the robustness of the algorithm on more images and
are planning to introduce some extensions. The most serious limitations are that
occluded corners or corners degraded enough for the corner detector to miss them
impede the whole model matching. Also, the line following algorithm is restricted
to the simple case of relatively straight lines starting and ending at corners (This
causes the poor representation of the scissors in Figure 4b).

We did not use curved lines for matching but introduced intermediate points to
achieve a proper description of the curve. Edge attributes can be extended to yield
a more accurate description of the model and arrive at a more realistic cost of a
match in the image graph. When additional coordinates are used we can apply a
curve matching by surface difference algorithm.

These shortcomings show that the algorithm presented here does not constitute
a general solution to the correspondence problem. On the contrary, it works only for
objects with sufficiently many corners, no occlusion and is independent of surface
texture. This makes it somehow dual to graph matching based face-recognition
systems,23,47 which concentrate on surface texture and do not attempt to match
corners. The matching algorithms suited for these problems are very different in
the sense that the latter relies on local optimization for point positions, while the
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one presented in this paper implements a combinatorial graph search. Nevertheless,
they are related by building on the data format given by the magnitude of a Gabor
transform.

A matching algorithm expected to bring computer vision anywhere close to
human performance in object recognition and scene analysis will presumably need
to integrate a large number of simple algorithms to arrive at robust solutions over
a wide range of situations. The integration of the two matching methods is subject
of current research, and we consider it as an important test case for integrating the
very different procedures to yield a single result, which is much more robust than
any of the individual ones.
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tained his diploma in

mathematics from the
University of Heidel-

berg, Germany in 1986.

After that, he was re-
search assistant at the

Max-Planck-Institute for
Brain Research in Frank-

furt, Germany. In 1990,

he joined the Institute for Neurocomput-
ing at the University of Bochum, Germany,

where he received his Ph.D. from the Physics
department in 1994. Until 1997, he was a
postdoctoral researcher at the department

of Computing Science at the University of
Groningen, The Netherlands. He is currently
a scientific staff member at the Institute for

Neurocomputing in Bochum. Research inter-
ests include neuronal models and efficient al-
gorithms for object recognition, hand-eye co-

ordination, integration of visual and tactile
information, and links to higher cognition.

General organization problems and solution

methods inspired by living systems are stud-
ied under the framework of “Organic Com-

puting”.


