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Institut für Neuroinformatik
Ruhr-Universiẗat Bochum
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Abstract

We present a pattern recognizer to classify a variety of
objects and their pose on a table from real world images.
Learning of weights in a linear discriminant is based on es-
timating the relative information contributed by a set of fea-
tures to the final decision. Evaluation of the discriminant is
very fast, allowing for about three decisions per second on
datasets without segmentation difficulties like the COIL-100
database. Experiments on that database yield high recogni-
tion rates and good generalisation over pose.

1. Introduction

Analysis of a visual scene relies on (bottom up) fea-
ture calculation as well as (top-down) object knowledge.
While there are many methods for feature extraction the
knowledge-driven aspect in machine vision suffers from the
difficulty of applying knowledge about thousands of objects
more or less instantaneously to a given scene. Neural net-
works are good candidates because they usually combine
a slow (offline) training phase with very rapid evaluation.
They have difficulties with the many invariances to be dealt
with like movements in the image plane, 3D-movement, de-
formation, partial occlusion, and changes in lighting. Some
of these are typically normalized in the feature extraction
phase, although feature extraction can theoretically also be
formulated as additional network layers [2].

Attempts to use the appearance rather than the shape
of objects for classification go back to [3], their COIL-
100 database has become a benchmark for combined ob-
ject/pose classification for sufficiently segmented objects. It
consists of 100 objects on a turntable with rotation angles
4◦ apart. It has been observed that a multilayer neural net-
work with winner-take-all nonlinearity does a good job at
recognizing objects [4].

In this paper we study the capability of a single layer
perceptron to classify objects and measure their pose simul-

taneously. Weights are adjusted according to the contribu-
tion of the features’ values to the final decision. Techniques
of this sort have been used in linguistic analysis but to our
knowledge they have not previously been applied to vision,
yet.

2. Method

Our approach is based on information theory [6], which
has once been developed for the transmission of encoded
signals via a communication channel using as few resources
as possible by exploiting the statistical structure of the mes-
sages sent. However, for object recognition purposes it is
not the information transmitted by each symbol (or feature)
that is of importance, but what the patterns in the observa-
tions convey about the nature of the information source. As
more and more of the feature sequence is observed, more
and more information about the data generation process is
(hopefully) gained, or, conversely, we may interpret the task
of object recognition as a quest for minimum entropy [7].

2.1. Unsupervised Feature Learning

Let D be a set ofD imagesId, whereD is a well-defined
subset of some universe of imagesI of objects in varying
poses. In the followingD serves as alearning setand the
imagesId serve aslearning examples. The labeld is used
to differentiate between the images and ranges from1 to D
throughout.

D = {Id| 1 ≤ d ≤ D} ⊆ I (1)

We now defineR not necessarily disjoint sets of features
Fr, each containing the results of a functionfr : I 7→ Ωr,
calledfeature calculator, applied to all imagesId ∈ D re-
sulting in T r different featuresfr

t ∈ Ωr whereΩr is the
set of all possible features with respect to feature calculator
fr. A feature calculator shall be an implicitly parameterized
function capable of extracting some feature, e.g., the aver-
age color, out of the parameterized image. Labelr specifies



the feature calculator or the feature set, respectively, and
ranges from1 to R throughout. Labelt is used to differen-
tiate between the features in one feature setFr and ranges
from 1 to T r throughout.

Fr = {fr
t = fr (Id)| 1 ≤ t ≤ T r ∧ Id ∈ D} ⊆ Ωr (2)

We are interested in the (subjective) probability that the
object to be recognized is the one present in imageId given
that featurefr

t has been observed. Hence, we are interested
in the (posterior) probability

Pr
t [Id] := P [I = Id|Fr = fr

t ] (3)

whereI andFr are random variables that the image isId or
that featurefr

t has been observed, respectively. To avoid no-
tational clutter, we will omit the random variablesI andFr

whenever possible. Applying Bayes’ theorem and claiming
that all prior probabilities are equal yields

Pr
t [Id] =

P [fr
t |Id]P [Id]
P [fr

t ]
=

nr
t,d∑

Id̃∈D
nr

t,d̃

(4)

wherenr
t,d is the number of occurrences of featurefr

t in im-
ageId.

We would like to construct models for the real but un-
known (objective) probabilities̃Pr

t by using the knowl-
edge distilled out of the learning set. This results inM =∑R

r=1 T r not necessarily different distributions. For this,
we calculate the empirical risksRr

t [I] for each featurefr
t

which becomes the cross entropy between the subjective
and objective distributions if− ln P̃r

t [Id] is chosen as the
classification loss function [5].

Rr
t [I] = −

∑
Id∈D

P̃r
t [Id] 6=0

Pr
t [Id] ln P̃r

t [Id] (5)

In this case, the empirical risk becomes minimal, if the
Kullback-Leibler distance between the subjective and ob-
jective probabilities becomes zero, i.e.,Pr

t [I] = P̃r
t [I].

This yields the Shannon entropyHr
t [I] with respect to the

distribution of featurefr
t in D, which is a measure of disor-

der (or uncertainty) the feature exerts on the learning set.

Hr
t [I] = −

∑
Id∈D

Pr
t [Id] 6=0

Pr
t [Id] lnPr

t [Id] (6)

Based on those entropies we define a measure of infor-
mationirt for each featurefr

t .

irt = ln D −Hr
t [I] (7)

Those measures of information have the desirable property
that they scale proportionally with the importance (or rele-
vance) of the features, i.e.,irt attains the maximal value of

lnD, if there is exactly one image with featurefr
t , whereas

irt becomes minimal, i.e., 0, if each image in the learning set
contains featurefr

t .
Further, we defineR vectorial functionsτ r that map an

imageI ∈ I onto binary vectors of lengthT r each. Each
vector element is the result of a functionτ r

t : I 7→ {0, 1}
applied toI whereτ r

t returns 1, if featurefr
t is observed in

I and zero otherwise.

τ r : I → {0, 1}T r

; τ r (I) = (τ r
t (I))>

∣∣∣
1≤t≤T r

(8)

Finally, we defineR matricesWr of dimensions(T r ×
D) whose elementswr

t,d are equal toirt if imageId contains
featurefr

t and zero otherwise.

Wr = (τ r
t (Id) irt )|1≤d≤D,1≤t≤T r

=
(
wr

t,d

)∣∣
1≤d≤D,1≤t≤T r (9)

2.2. Simultaneous Object and Pose Recognition

For the object and pose recognition task we use the learn-
ing set as a gallery. For this purpose, a vectorial functiona
maps an imageI of the object to be recognized onto a vec-
tor of activationsof lengthD, i.e., we assign one activation
ad to each learning exampleId. Each activation is the sum
of all measures of informationirt for which in both the pre-
sented imageI and in the learning exampleId featurefr

t is
present. Note thata has the form ofR linear equations.

a : I →
(
R+

0

)D
; a (I) =

R∑
r=1

(
Wr

)>
τ r (I)

= (ad (I))>
∣∣∣
1≤d≤D

(10)

As a decision rule for the recognition tasks we apply the
’winner-take-all’ nonlinearity [4], i.e., the imagêI ∈ D with
the largest activation, i.e., with the largest sum of measures
of information, i.e., with the smallest sum of entropies [7],
i.e., with the smallest uncertainty, is most likely the image
of the object to be recognized.

Î = Id̂ ∈ D
∣∣
d̂=arg max

d
{ad(I)|1≤d≤D} (11)

Note that the object and its pose are recognized simulta-
neously rather than in two consecutive tasks like in [3]. The
object pose is recognized implicitly by assigning the pose
of Î.

2.3. Network Representation

From equation (10) one may conclude that the presented
object recognition system can be interpreted as a single
layer perceptron withM input neurons,D output neurons
and connectionswr

t,d. Figure 1 shows the resulting network.
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Figure 1. Resulting Single Layer Perceptron

2.4. Feature Calculators

So far, the feature calculators have been defined in a
rather abstract fashion. But intuitively, the choice of reason-
able feature calculators along with a reasonable parameter-
ization is crucial for the system’s functional efficiency [1].
We use three feature calculators with various parameteriza-
tions introduced in the following.

2.4.1. Bounding Box Ratio and Orientation This fea-
ture calculator places a bounding box around the object
and calculates the ratio of the boxes height and width. The
bounding box may be unrotated or rotated, the ratio may
have up to four decimal places. The orientation of the ro-
tated bounding box is also a part of this feature. An exam-
ple is shown in Figure 2.

(a) Unrotated (b) Rotated

Figure 2. Bounding Box Ratio and Orientation

2.4.2. Local Average of Grey LevelThis feature calcu-
lator evaluates the average grey level in rectangular im-
age patches. For this, the object in the unrotated bound-
ing box is enlarged to128 × 128 pixels. Further, the num-

ber of grey levels and the maximal difference between
two grey levels when comparing two vectors of grey lev-
els is parameterized. The number of image patches is ei-
ther22, 42, 82 or, 162, the number of different grey levels
is either 5, 12, 25 or, 50 and the maximum difference be-
tween two grey levels is either 0, 1, 2, 5 or, 10. An example
is shown in Figure 3.

(a) 22 Patches (b) 42 Patches (c) 82 Patches (d) 162 Patches

Figure 3. Local Average of Grey Level

2.4.3. Local Average of ColorThis feature calculator is
very similar to the ’Local Average of Grey Level’ feature
calculator but that it does not operate on the grey level but
on the separate RGB channels.

3. Results

Table 1 summarizes the results derived by applying our
object recognition system to the COIL-100 image database
[3]. The experiments are subdivided into two series. In the
first series the local average of grey level and the local av-
erage of color feature calculators are parameterized to con-
sider up to82 image patches, whereas in the second series
also162 image patches are considered. We constructed nine
learning sets with increasing rotation angles (column ’∆’)
between two consecutive learning examples resulting in de-
creasing numbers of learning examples per object (column
’Ex.’). All remaining images were assigned to the respec-
tive testing sets. Note that smaller learning sets lead to larger
testing sets, which is a twofold increase in difficulty.

Then we measured the recognition rate (column ’RR’)
with respect to the testing set and the average time needed
for one recognition (column ’̄T ’). For our experiments we
used a Pentium IV 2.4 GHz. Further, we analyzed the pose
angle of the correctly classified objects with increasing tol-
erance (columns ’PRα’), where PRα means that the ob-
ject’s pose is considered to be correct, if

min {|ϕId
− ϕI | , 360◦ − |ϕId

− ϕI |} ≤ α∆ (12)

holds true andϕI is the true pose angle andϕId
is the clas-

sified one.



∆ Ex. RR T̄ PR0.5 PR1.0 PR1.5 PR2.0

[ ◦] [%] [s] [%] [%] [%] [%]

10 36 99.22 0.45 91.55 91.55 95.77 95.77
20 18 98.02 0.38 89.78 93.33 95.09 95.79
30 12 96.25 0.30 88.10 92.81 94.16 94.49
40 9 95.11 0.27 82.24 87.10 88.67 89.47
50 8 93.28 0.27 78.27 84.99 86.52 87.97
60 6 89.52 0.24 81.60 88.44 90.78 92.11
70 6 89.38 0.25 74.40 81.12 83.61 85.68
80 5 86.61 0.24 76.08 83.41 86.51 91.83I.

U
P

T
O

8
2

PA
T

C
H

E
S

90 4 74.63 0.22 78.50 86.98 92.43 100.00

10 36 99.28 1.67 93.90 93.90 97.26 97.26
20 18 97.98 1.15 91.78 94.69 96.13 96.67
30 12 96.30 0.94 89.82 93.96 94.95 95.33
40 9 95.27 0.83 83.39 87.92 89.09 89.70
50 8 93.02 0.80 79.84 85.69 87.03 88.12
60 6 89.59 0.68 83.09 89.60 91.75 92.88
70 6 89.61 0.70 75.09 81.38 83.83 85.78
80 5 86.79 0.63 77.61 84.13 86.88 91.76II

.
U

P
T

O
1
6
2

PA
T

C
H

E
S

90 4 75.01 0.55 79.73 87.79 92.59 100.00

Table 1. Results

4. Discussion and Outlook

Although our classification system has a single layer
structure performance compares very favorably with other
classifiers. In [8] the performance of the original system [3]
and a support vector machine is compared with their method
of setting up the feature extraction layers in an evolution-
ary fashion. Their results are about the same as for our sys-
tem, which has a small advantage between 5 and 12 train-
ing views per image and is still better than the SVM for 4
training views per image. The pose accuracy of our system
appears rather high, other authors do not usually measure
them for the whole object set. The pose errors contain all
errors due to pose ambiguity, which are negligible in prac-
tice. For robot grasping, the number of misclassified poses
is more relevant than the mean pose error. Our method is
fast enough to allow for real time recognition and pose esti-
mation.

As single layer perceptrons cannot solve all classifica-
tion problems these results mean that either the combined
object/pose estimation consists of linearly separable classes
or that the number of objects is still small. The latter is cer-
tainly true compared to the number of objects needed for re-
alistic scene analysis. The scaling of object recognition al-
gorithms to large numbers of objects is thus a very impor-
tant research question.

It is clear that appearance-based classification schemes
rely heavily on prior segmentation. They also have difficul-
ties when objects are deformable. Thus, our recognition sys-

tem can only be a part of larger system, which takes care of
segmentation and handling of other object classes.

Due to the hierarchical structure of the organization
of features and objects additional heuristics can be incor-
porated. The features we have used are not independent,
e.g., the average grey value clearly depends on the av-
eraged color channels, and the lower resolution features
depend on the higher ones. These dependencies are han-
dled automatically by the statistical weighting of the sin-
gle features. Therefore, we expect good scaling of the sys-
tem when more features are added, whose dependencies
may be less clear (e.g., shape descriptors and color his-
tograms). As an example for heuristics, after identification
of a moving object, dynamic pose estimation can be re-
stricted to that object type. Furthermore, the method is very
well suited to pick a set of object/pose combinations with
high activations and hand them over to more sophisticated
correspondence-based methods, e.g., [9]. The resulting cor-
respondence fields open the possibility of improved pose
calculation. First experiments in this direction have been
successfully conducted.
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