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Abstract. Built on the principles of “Learning from Nature” and “Self-organization” Elastic Bunch
Graph Matching for face recognition is a defining example for Organic Computing methodology.
Here, we follow these principles further to advance the method in two respects. First, the require-
ment for manual annotation of landmarks is reduced to one single face, from which a self-organizing
selection process gradually builds up the bunches by adding the most similar face to the bunch
graph and then recalculating the matching. Second, the resulting bunches are replaced by the prin-
cipal components of the nodes of all persons in the database. The similarity function is restricted
to a suitable subset of these components. The additional self-organizing processes lead to improved
precision of landmark localization and recognition rates. Altogether, an improved data structure for
face storage has emerged from the simple presentation of examples in a minimally supervised way.
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INTRODUCTION

Automatic face recognition has become an important part of biometric identification
systems. It is also a computer vision problem, which has been treated successfully
with methods of Organic Computing. The principles of “learning from nature” and
“self-organization” have been used to develop the methods of Elastic Graph Matching
(EGM) [2] and Elastic Bunch Graph Matching (BGM) [8]. The Organic Computing
methodology behind them is described in [9], where it is shown how the hierarchical
organization of elementary feature detectors to more and more complex structures can
be made useful for a computer system.

In this paper we take two further steps. First, we study the self-organized creation of
a bunch graph starting from one manually labeled face. In earlier versions the arduous
task of hand-labeling was required for about 50 faces in order to construct a useful bunch
graph. The remaining manual interaction is required in order to provide the system with
a basic definition of the concept of a face.

In a second organization step the bunches of collected jets are replaced by a subset of
their principal components, which can also be seen as a result of a self-organizing neural
network [1] and be computed very efficiently and incrementally [6].

The new method is tested on computer-graphics generated images of faces and a large
data set of real face images. In both cases it provides both better recognition results and
better performance in terms of computation time. For the artificial faces the positioning
precision of landmarks was highly improved.
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FIGURE 1. Examples of FaceGen generated face images with matched graphs.

ELASTIC GRAPH MATCHING

Elastic graph matching was developed for face recognition in [2] and extended to bunch
graph matching in [8]. A detailed description of this approach can be found there. In
1996 bunch graph matching showed very strong performance in the FERET test [5], and
in 2004 basically the same method scored second in the face authentication test at the
17th International Conference on Pattern Recognition [4].

Faces in this method are represented by elastic graphs, so called model graphs. Nodes
are placed on characteristic points on the face, which are called landmarks. Examples
of model graphs are shown in figure 1. At these landmarks local information about the
texture is stored by calculating the scalar products with a set of Gabor wavelet filters, the
resulting vector is called a jet. For the construction of a bunch graph the model graphs of
many faces are combined by linking the jets of the single graphs nodewise. It is crucial
for the success of the recognition that the nodes of the individual graphs are placed
as precisely as possible on the same landmarks in the face, so that the information at
the feature sets presents the same area of the faces. The concept of the bunch graph is
illustrated in figure 2.

To find the position of a face in an unknown image, the features of the bunch graph
are compared with features of points in the image in several steps, so called moves. In
the first move, called Global Move, the graph is placed on all possible positions in the
image without changing the shape of the graph, i.e. the relative positions of the nodes.
At every node, the different jets are compared via a similarity function with the jet at the
position in the image. The most similar jet is chosen and its similarity value is chosen as
similarity for this node. The similarity of the graph at this position is than calculated as
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FIGURE 2. Bunch graph concept: At every graph node a bunch of jets stored. In the matching process
the best fitting jet is selected.

the average of the similarities of the nodes. The graph state which delivers the maximum
graph similarity is used as initialization of the subsequent moves.

In the following moves, the shape of the graph is changed in different ways. In the
scale move, the size of the graph is changed either only in one dimension or in both
dimension simultaneously. In this way the method can deal with small variations in
scale or the shape of the face. In a last step, for every node in the graph the most similar
position in a small area around the node is searched and the node is placed on it. Since
the nodes are moving almost independently from each other, this move is called local
move.

Two similarity functions are in use for computing the similarity between two jets.
The first one only takes into account the magnitudes of the complex-valued Gabor filter
responses. These magnitudes are arranged into a vector and a normalized inner product
is computed. The second similarity function is used in the final steps of landmark finding
for very precise positioning and uses the phase information. The inner product of the first
function is modified by the difference of the phases here.

UNSUPERVISED COLLECTION OF MODEL GRAPHS

The organization process that selects the data for the bunch graph is rather simple. Start-
ing with one hand labeled model graph, the graphs of 516 faces of different individuals
are assembled in an unsupervised manner into a bunch graph. This method can only
work on a set of images, which shows faces of similar size, pose and orientation. We
chose a subset of the well known FERET database [3], which matched this criteria. The
first step for learning the model graphs is to match the hand labeled model graph with
all images. The image with the highest similarity is selected, and the matching graph
with jets from that image is added to the bunch graph, which now consists of two model
graphs.

Then the just added image is removed from the image set and the bunch graph is again
matched with the remaining image set. Again, the best matching graph is added to the
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FIGURE 3. Feature space spanned by the first three Principal Components for an arbitrary node

bunch graph and the relating image is removed from the data set. In this way, the bunch
graph grows and finally contains the information of all images in the data set. The value
of the maximal similarity, i.e. the similarity to the graph, which is put to the bunch graph
in the next step, is controlled, to prevent a very erroneous match to become part of the
bunch graph.

When the value of the maximal similarity begins to decrease for several learning steps,
the learning can be aborted, because this shows that the remaining images are difficult
to match, and the possibility for errors grows. Depending on how the graphs will be
used (bunch graph-building or as a basis for a statistical model), the requirements can
be adjusted.

CONCEPT OF LOCAL FEATURE MODELS

The idea of statistical feature models is motivated by the concept of feature bunches
as realized in the bunch graph concept. Instead of saving all features at a given node
and using them for comparison with features drawn from the image immediately, we
use them to create a statistical model, which describes the distribution of these features
with respect to a mean feature. This leads to one model for every node of the graph.
Unfortunately it is not possible to estimate the feature distribution directly. This is
due to the fact that the features of interest are distributed in an 80-dimensional space.
The well-known curse of dimensionality prohibits implementation of a statistical model
which could satisfy higher moments in the data distribution. Therefore, a dimension
reduction has to be performed in advance. We decided to use Principal Component
Analysis (PCA), which has proved to be an accurate tool for these kinds of problems.
This makes it possible to decompose a given n—dimensional data cloud into n one-
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dimensional signals. This assumes that the distributions along the axes are statistically
independent or can at least be treated as such in a first order approximation. Since PCA
decorrelates the samples, it at least guarantees that the second statistical moment as well
as the first one (samples have zero-mean) vanish. The n one-dimensional distributions
are described using a Gaussian. This, as we could conclude from examples, seems
to be a reasonable assumption. Nevertheless, there can exist axes according to which
the distribution can become different a Gaussian. In order to separate the former from
the latter only a subset of principal axes were used for estimating the one-dimensional
distributions. A reasonable selection was part of the experiments.

The Gaussian distribution is given by the mean value and the variance, both of which
are already determined by the previously performed principal component analysis. Fig-
ure 3 shows the distribution at a given node reduced to the first three principal compo-
nents.

After the statistical model has been determined for each node, which includes esti-
mating the mean value and variances for each principal axis, it can immediately be used
for matching using the following similarity function.

S(nodey) = ]\%) exp —M
i=n(k) 20

Here 771, 6; and P, represent the mean, the i-th variance and i-th principal component,
respectively, while J denotes a jet drawn from the image at the current node position.
(-]-) is the inner product, and the sum runs over all axes for which the assumption of a
Gaussian distribution is sufficiently well fulfilled. The node-dependent lower bound can
also be used to ignore the principal components with highest variance (see section for
details). The total similarity is finally given by

M
Stotal = Z S(nodek) ’
k=1

where M is the number of nodes within the graph. The matching process itself remains
otherwise unchanged in comparison to bunch graph matching. After all moves have been
performed, the location which leads to the highest total similarity determines the best
match. The original jets at these positions are then compared with the original jets of all
persons. The computational cost of this final step is still proportional to the total number
of persons, but it is much faster than the landmark finding, which in PCA matching
requires time proportional to the number of principal components used.

DATA FOR EXPERIMENTS

Artificial FaceGen images

To evaluate the accuracy of node positioning on landmarks, one needs to know the
exact landmark positions in a face. This is very hard for natural images, so in order to
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get precise localization errors, we have first made experiments with artificial images,
where we can evaluate both accuracy of node positioning and recognition rate.
FaceGen, a program by Singular Inversions Inc. provides the possibility to generate
images of a face, controlled by several parameters. Because these are rendered from
a three-dimensional model, precise landmark positions are known. Together with the
image, a corresponding graph file with 52 exactly defined landmark positions is created.
The data set we have used for the positioning experiments, as well for the recognition
experiments, consists of 2000 randomly created FaceGen images, 1000 persons in two
expressions (neutral and smiling) with little pose variation (up to 5 degrees from frontal
view horizontally and vertically). For training 500 different persons have been created
in the same way. The resolution of the images is 192x192. All of the faces in the images
have the same size and are located at the center of the image. These 500 images are the
basis of the bunch graph, from which the statistical model in the PCA graph is built.

FERET database

In order to provide exact landmark positions in real images one would have to label
all images manually. in the case of real images we have measured the recognition rates
from feature comparison on found landmarks. We expect, that a more precise landmark
positioning system leads to a better comparison of these landmarks and so to higher
recognition rates. This hypothesis can be tested by the experiments on artificial images.

For the recognition experiments on natural images two large galleries of the same
persons are needed. All faces should be located at the center of the image, they should
have about the same size. The pose variation should be minimal. For this purpose,
we have taken pictures of the FERET database [5]. The fa- and fb-pictures provide
images of frontal view with little pose variation. To get images in which all faces have
approximately the same size, we have done the following preprocessing.

First the resolution has been reduced to 256 x256 pixels. A Facefinder [7] has been
applied, that uses bunch graph matching with three bunch graphs of different sizes. The
area of the best fit has been scaled to an image of size 128 x 128.

As this preprocessing does not work perfectly, some so created images only show
parts of a face or no face at all. These image pairs have been removed manually. If the
same person was represented by more than one image pair these image pairs have also
been removed. Please note that these manual interventions are not part of the algorithm,
they have only been applied to get clean data for quantitative experiments.

This preselection has provided two galleries of 957 persons. The bunch graph and the
PCA graph have been build from 516 different images as it was described in Section .

RESULTS

Positioning results on FaceGen images

At first, we compare the positioning of PCA matching against bunch graph matching.
For this, we compute the average pixel error for each of the 2000 images for both
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Positioning Error PCA vs BGM
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FIGURE 4. Average positioning error PCA matching vs. bunch graph matching for 2000 test images.

TABLE 1. Positioning errors for 2000 FaceGen Images

graph matching Method Positioning Error [Pixel]

No matching 2.30
BGM (500 graphs) 0.99
PCA (500 graphs) 0.54
Ground Truth 0.00

matching methods. The result is shown in figure 4. The average errors for all the images
are shown in table 1. There also the average error for the case, that the average graph
is just placed in the center of the images, is presented. Using PCA matching instead of
bunch graph matching, the positioning error could be reduced from 0.99 pixel to 0.54
pixel.

Another great advantage of PCA matching is that matching speed is proportional to
the number of used PCs, which are 80, if all PCs are used. The matching time for bunch
graph matching is proportional to the number of model graphs inside the bunch graph,
which is 500 in our case.

TABLE 2. Recognition error for 1000 FaceGen
persons

graph matching Method Recognition Error

No matching 14.0%
BGM (500 graphs) 10.3%
PCA (500 graphs) 9.7%
Ground Truth 9.5%
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Positioning Errors
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FIGURE 5. Positioning errors of PCA matching over first principal component used for 2000 test
images.
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FIGURE 6. Recognition error for 1000 FaceGen Persons.

It has turned out that for PCA matching not even all PCs need to be used. Normally,
the PCs with the least variance are not used, but for landmark finding it is useful to
ignore the first PCs (the ones with the highest variance). This makes sense, because for
searching a landmark, the feature dimensions which are similar for all persons are more
important than those that vary a lot from one person to the other, but for the features that
are the same with many persons. Figure 5 shows that positioning works well if the first
PCs are disregarded.
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Recognition Error Rates
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FIGURE 7. Recognition error for 957 persons of the FERET database.

TABLE 3. Recognition errors for 957 preprocessed
real persons of the FERET-Database

graph matching Method Recognition Error
No matching 8.25%
BGM (516 graphs) 7.31%
PCA (516 graphs, PCs 38-79) 5.64%

Recognition results on FaceGen images

One important question is of course, if the improvement in landmark positioning
achieved with PCA matching also results in a higher recognition rate. Table 2 shows
the result.

The recognition rates show that fewer positioning errors lead to fewer recognition
errors. Especially, if one compares the recognition errors with the recognition error at
ground truth positions, the improvement from bunch graph matching to PCA matching
is really significant. This can be improved by leaving out the first PCs, as figure 6 shows.

With the found coherence between positioning error and recognition error, it is possi-
ble to evaluate the positioning error indirectly by measuring the recognition error. Figure
7 shows the recognition errors over the first used PC as in the figures for FaceGen im-
ages.

The characteristics are about the same as for artificial images. The results are also very
similar, which is shown in table 3. Performing no matching at all (relying on accurate
centering of the faces) leads to a high recognition error (8.25%), bunch graph matching
works better (7.31%) and PCA matching yields the best result (5.64%).
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CONCLUSION

By application of Organic Computing principles we have conceived a novel method of
encoding local facial features using a statistical PCA model fitted to sample data. Using
this model on artificial face images, we could show an improvement both in positioning
accuracy and recognition rate. This confirms the expectation that higher accuracy in
landmark finding improves recognition. A higher recognition rate could also be achieved
on natural images of faces. Furthermore the new approach is more efficient for large data
sets, because the computation time for landmark finding is independent of the number
of samples, only the much faster recognition step still requires time proportional to the
number of persons.
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