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Abstract. We propose a feature-based system for face recognition using
contextual information to improve the recognition rate. A small (6 mem-
ory blocks, 3 cells each) recurrent neural network with internal memory
cell states (LSTM) is trained on single images of 49 different identities
randomly picked from the FERET database and tested on images with
different facial expressions using a predefined saccade path. We show that
the system presents an improvement of recognition rate and an outlook
to the future development of the system including autonomous saccade
generation, evidence accumulation and novelty detection.

1 Introduction

Recurrent neural networks Recurrent neural architecture facilitates op-
erating on a sequential data stream, binding information distant in time. A recall
of sequences of almost arbitrary length is realized through a cascade mechanism,
where each step in the sequence facilitates the recall of the consecutive portion of
information. This mechanism is present in various forms of perception — music
encoding and decoding, manual skills, following a remembered path, etc. Predic-
tion of perception in the immediate future is matched against actual experience.
Such a recall mechanism must have its appropriate encoding counterpart. See
Jensen and Lisman [3] for a model of sequential recall.

Context dependency Both feature and configurational information play
a role in face processing. Recognition of a face is context dependent, as similar
features in several distinct identities do not lead to multiple identity recognition,
but rather a request of the neural system for additional data to resolve the am-
biguity. Successful technical methods of combining configurational and feature
information include Elastic Graph Matching [5] and Gabor pyramid matching
[15], which take into account spatial relations between features. A psychophysi-
cally convincing strategy of encoding and recall of these spatial relations should
take into account a multi-saccade approach.

Facial properties Facial features are not restricted to semantically defined
ones like eyes, brows and mouth, which have a name in common language. In the
language of visual analysis, or the code of the primary visual cortex, an equally
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Fig. 1: Creating a multidimensional Gabor filter response set called a jet (top)
on manually labeled fixation points (bottom).

important distinction between features may be based on different responses to
filters of different spatial frequency or preferred orientation. A set of forty Gabor
functions — eight different orientations and five different spatial frequencies —
called a jet will be the filters of choice.

Involuntary visual stimuli sequencing Experiments by Thorpe and van
Rullen [13, 14] have pointed to a natural mechanism of visual input sequencing.
Based on the contrast of particular features and top-down attention facilitating
the response of particular neurons, the brain automatically adapts to process
the stimuli it considers important more quickly than others. This sequencing
begins already in LGN and goes on further as the stream of spikes propagates
into higher cortical levels. This is a natural sequencing mechanism within a
single fixation.

2 Methods

Manual labeling and data preprocessing 49 identities with two fa-
cial expression (neutral — non neutral) were chosen randomly from the FERET
database [7]. For a successful method of normalizing facial expressions see
[11],[12]. Twelve fiducial points were labeled manually as points of fixation,
and the response vectors of 40 Gabor filters have been extracted at these points.
Manually selected points are known to be areas carrying a large amount of infor-
mation in inner facial features. These jet values are normalized absolute values
of complex numbers representing a scalar product of a complex Gabor function
with the image. This is a model for V1 complex cell responses [4, §].
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Fig. 2: In LSTM each memory block output connects to all previous memory
block inputs. Each memory block has one or more cells and three multiplicative
gates, whose activity depend on input. Forget gate sustains or resets cell state.
Input and output gates modify the strength of information flowing in and out
of a memory block.

LSTM The “Long Short Term Memory” (LSTM) recurrent neural network
architecture [2, 1] is a successful tool for sequential data analysis. Neurons
in this network have an internal state, which serves as a short term memory.
Equipped with powerful multiplicative gates it shields the neuron states from
unwanted input, when it is clear that in this context the input data is not
relevant. Forget gates allow for a quick reset of the cell state when new data
needs to be memorized. Long term memory is coded within synaptic weights.
The sequential architecture of memory blocks allows the network to switch on
consecutive blocks as time goes by, allowing for information back propagation
and using the full capacity of the network only for long lags between important
cues.

An LSTM network with forget gates [1] was employed to process this data.
6 memory blocks containing 3 cells each were chosen, the bias weights for con-
secutive memory blocks were set to 0.3 - 3, where § is the memory block index,
and the learning rate a was set to 0.25.

The network’s input layer consists of n+m + 3 input units and n 4+ m output
units, where n represents the size of the jet and m the number of identities. The
input vector is enhanced by two units coding for start and end of a sequence,
as well as a bias neuron, always set to 1 to adapt the synaptic weights to the
mean of the input data. Identity coding m output units serve as input units
as well. In this way the network sustains its decision regarding identity unless
further fixations prove it wrong. The network is asked not only to predict one of
m identities but also the most probable jet in the next fixation (this will serve
as input for saccade generation in a future version). The memory blocks have
been connected in a unidirectional manner, thus serving as a kind of stack for
jets encountered at earlier fixation points.
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Fig. 3: Modified LSTM architecture with a bias neuron clamped to 1, and the
recurrently connected part of an output layer.

Training and recall During training the jets of each face are presented
in a fixed order of the saccade points, while one identity cell is clamped to one
and the others to zero. In the recall phase, the first jet is presented with equal
activity on the identity cells, and their activity evolves over the saccade path.
The identity with the maximal response after the last fixation is taken as the
recognized one.

3 Results

Using only twelve fiducial points and a small neural architecture we could im-
prove the recognition rate using context dependent decision making (see fig. 4).
The simple identity prediction feedback is the first step in improving the overall
abilities of the system. This already allows for a very good prediction of the
next, expected jet. The mean scalar product of expected and encountered jets is
© = 0.931+0.06, while a scalar product of two random jets reaches u = 0.78 £0.07.
We have shown that even without extensive parameter tuning the system is
capable of properly recognizing identity based on a short sequence of partly
ambiguous input.

4 Discussion and outlook

Evidence accumulation Despite the improvement in recognition rate the
presented system is only a first step, and the most important improvement will
be a a more robust evidence accumulation mechanism. Simple identity feedback
is not enough to allow for more cautious decisions by the network. The strong
influence of the jet part of the input layer forces network to make fast and
sometimes incorrect decisions about identity, which are then forced back to the
input layer.

Sequential memory for face encoding and recall Our results show a
large potential of the LSTM architecture for processing floating point data of



o5k
- - Without context

With context

Recognition rate

10
Number of presentations of the training set

Fig. 4: The architecture including the context of the presented jet performs
better than the one using merely current jet information. Recognition rate
increases relatively by 12% + 3%(0.08 £+ 0.02).

large dimension. The network is flexible in adapting to newly acquired data and
there are no theoretical obstacles in allowing the growth of this architecture.
We plan to develop a system which will autonomously decide on the saccade
path based on the quality of information it has gathered so far. The consecutive
fixations may be related to anything from a different area of the face to a different
spatial frequency of interest. This will require an “artificial central executive”
to calculate the current state and probable point of interest in the next step
communicating with the ”artificial saccade generator”.

Bayesian saccade generator Such a manually chosen saccade path is
definitely not stable enough to be applied to general problems of face recogni-
tion. The results of the proposed method will however provide useful cues to
limitations and possibilities of a system which autonomously chooses fixation
points. The sequential memorization needs to be successful for a fixed path
in order to withstand the challenge of independently chosen saccades. Human
saccade behavior during search in the visual scene follows a model of an ideal
Bayesian observer. Evolved strategy make much use from processing informa-
tion during a single fixation rather than integration across fixations. Using a
large retinal view and Bayesian priors, a system is capable of making a correct
saccade decision based on low resolution marginal information [6].

Novelty detection An important goal for further development is auto-
matic novelty detection based on information about the current fixation com-
bined with prediction about the next location and what is expected there. Vi-
olations of predictions are relevant cues for a decision whether unpredicted en-
countered data implies a new identity or merely a fluctuation in volatile facial
features. An ideal system would recognize a new face from the old (a familiarity
signal), properly recognize a difference in a single feature e.g. new haircut, facial



hair, glasses from a completely new identity. Theory of novelty detection using
information theory is gaining more support and acceptation as a predictor of
hippocampal activity signaling human experienced novelty [10]. Mechanisms of
cortical inference using Bayesian statistics and the role of neuromodulators are
described in [9, 16].

Summary We have presented first results of a neural network to recognize
faces as sequences of V1 response vectors over a saccade path. The context
introduced by the sequencing could improve the recognition rate significantly
over decisions based on a single jet. This shows that the data format is suitable
for further development of a neuronally realistic recognition model.
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