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Abstract. We here introduce the Flexible Object Model to represent
objects with structured deformation, such as the human face under vari-
able expression. The model represents object shape and texture sepa-
rately and extracts a data parameterisation autonomously from image
sequences after initialisation by a single hand-labeled model graph. We
apply the model to the representation, recognition and reconstruction of
nine different facial expressions. After training, the model is capable of
automatically finding facial landmarks, extracting deformation parame-
ters and reconstructing faces in any of the learned expressions.

1 Introduction

Elastic matching of graphs labeled with Gabor wavelet features (EGM) [1] has
proved a very successful basis for invariant object recognition, even when spatial
deformation is involved as with face recognition under small changes in pose
or expression. According to that concept, variation due to position, scale and
in-plane orientation can be dealt with precisely, but intrinsic image deforma-
tions are not actively modeled and can only passively be followed. This leads
to limited discriminatory power during recognition and precludes the possibil-
ity to reconstruct images from model data. Facial image deformations due to
pose or expression are highly structured and should be represented by a param-
eterised model. To this end we have developed a Flexible Object Model (FOM).
It continues to use elastic graphs to represent objects in individual images but
parameterises these graphs, treating them as functions of pose and expression
parameters. In this paper we present the FOM in general and apply it in chap-
ter 3 to the description of the human face under nine different expressions. We
demonstrate the power of the model by matching and reconstructing faces in a
person-independent way. We conclude by discussing possible applications, among
them improved facial recognition under variable expression.

2 The Flexible Object Model

The FOM, using Gabor wavelet-labeled graphs as fundamental data structure,
distinguishes object shape (represented by the spatial arrangement of landmarks)
from texture (represented by Gabor jets attached to the landmarks). While de-
formation of shape is described in a parameterised way relative to a reference



model, the interrelationship between shape deformation and texture is charac-
terised using a linear function mapping the former onto the latter. The FOM
therefore also includes mappings between shape deformation and texture, an
idea developed earlier in our lab [2,3]. Both the variations (of shape and tex-
ture) and the mappings between them are extracted by statistical procedures
from video frame sequences for one or several persons performing different facial
gestures. Compared to the concept of Active Appearance Models, which describes
shape and texture variations using either one common set of parameters or one
set for each [4], in the context of FOM only the shape variation is learned in
a parameterised way while the texture is assumed to be fully determined by a
given shape and map. Finally also the matching process, which uses the concept
of EGM and is described in section 4 in detail, differs from the Fitting process
in the context of AAMs.

2.1 Data Collection

We used sample material collected by Hai Hong [3]. The sequences were taken
under fairly controlled lighting conditions and in frontal pose. In each sequence
the subject performs one of a number of facial gestures, starting and ending with
neutral expression. The gestures were selected for ease of performance (shunning
the difficulty of expressing emotional states) and attempting to cover the whole
range of facial movements. In this study we have used only a subset of 9 of the
23 gestures originally collected [3] for each person.

We initialise the process of extracting model graphs from the frames of a
sequence by manually locating the nodes of the standard graph over facial land-
marks in the first frame. The system then automatically tracks these nodes from
frame to frame with a method based on the phases of Gabor wavelets [5]. The
link structure of the graphs is kept constant throughout. For the sake of scale
invariance, the size of the reference graph is noted in terms of a bounding box
and node displacement in x- and y-direction is measured relative to the width
and height of that box, respectively. To encode local image texture, responses
of several Gabor kernels differing in scale and orientation [1] were extracted at
the landmark positions in each frame. We treat a set of 300 Gabor responses
(real and imaginary part, 15 orientations [¢min = 0, Gmaz = %w] and 10 scales
[Emin = 2*%7@ kmaz = %w]) as one real-valued vector, called Gabor jet.

For each frame, the normalised shift vectors of landmarks relative to the first
frame as well as the Gabor jets at the node positions are noted. They together
form the raw input data, see (1). The models of section 3 were created for
individuals, the models in sections 4 and 5 were formed using video sequences
for several persons. Figure 1, left side, shows two facial graphs superimposed
on each other. The graph with black nodes represents the reference shape (first
frame) while the one with grey nodes belongs to a deformation (which in this
case obviously only affects mouth and chin).
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Fig. 1. Deformation from reference shape normalised by the width w and height A of
the bounding box. N denotes the number of nodes while Az; and Ay; indicates the
displacement of node ¢ along z- and y-direction.

2.2 Model Formation

To construct the FOM as a parameterised model of graph deformation, the raw
data extracted from several video sequences are merged using Principal Compo-
nent Analysis (PCA) [6] and a Neural Gas (NG) [7]. While the latter is suitable
for forming sparse representations of the extracted deformations and for clas-
sification purposes, PCA is important for data compression and is particularly
interesting for interpolating and extrapolating the deformations present in the
samples. By this, different deformations which do not not occur simultaneously
in the sample sequences can be superimposed, as illustrated in figure 4. In ad-
dition we are working with Principal Curves [8] to describe smooth transitions,
although we don’t elaborate on that here.

To represent our raw data we use the following notation. If the number of
video frames and raw graphs is M we form the matrices

[}

Fi=(ji...ji), (1)

= (dldM),

where the column vector d denotes the deformation as introduced in figure 1
and the column vector 5 indicates the feature vector belonging to the node
with index 4. Using PCA, we can now construct the following quantities

.M
<D>=_ mg_:l dp, (2)
LM
<F'>= > ik, (3)
m=1
P := (P ... Pr) = Principal Deformations 4)

Q' :=(Q%...Q%) = Principal Features at node i (5)
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where all vectors are taken as column vectors. To reduce the data dimensionality
we use only the first L principal components to describe graph deformation and
the first K principal components for the Gabor jets, respectively. Throughout
this paper we have set L = 7 and K = 20, values that proved sufficient to
reproduce the original data with little error.

Shape deformation is always accompanied by changing texture. We make the
simple assumption of a linear mapping between the shape deformation and the
feature vectors (or rather their mean-free versions), and see that assumption
justified by our numerical results, see chapter 3. Using the matrices A’ (one
matrix per node) we can express and estimate this relationship as follows,

APTHLQ)'E = A~ @)'E (P'D) . (8)
where + indicates the Moore-Penrose inverse [9] of the term in brackets. By
using homogeneous coordinates it is possible to squeeze all necessary operations
into one matrix that maps a given deformation immediately onto the feature
vector. This is important because it accelerates the computation and therefore
makes it more suitable for the matching tasks introduced in chapter 4.

3 Flexible Model for synthesising Facial Expressions

In this section we demonstrate the ability of the FOM to synthesise images of
varying facial expression. To this end we have created a person-specific FOM,
using as data nine video sequences with nine different facial expressions (each
containing between 30 and 70 frames). Sample frames are shown in figure 2.

Figure 3 shows three sample frames, taken from the same sequence, with
tracked landmarks.

After collecting the data from all nine sequences, we perform the PCA of
steps (4) and (5), and estimate the shape-to-texture mappings according to (8).
To demonstrate the resulting FOM we chose two of the principal components,
added them with variable amplitude to the mean deformation (which is near to
the neutral expression) and show in figure 4 reconstructions of the resulting data
models. Reconstructions were obtained by the method of [10]. In the bottom row
of the figure the PC amplitude runs from one negative standard deviation on the
left through zero in the middle to one positive standard deviation on the right.
The middle column shows the effect of another PC for positive amplitudes. Three
of the gestures shown in figure 2 can be recognised among the reconstructions
in the middle columns and bottom row. The diagonals of the figure were formed
by superposition of the two PCs and show gestures not present in the input
sequences, demonstrating the extrapolation alluded to above.



Fig. 2. Facial Gestures shown at maximal extent.

Fig. 3. Autonomously Tracked Landmarks within a gesture sequence.



Fig. 4. Synthesised facial expressions using the first (shown vertically) and fourth
(shown horizontally) Principal Deformation as well as superpositions.

In the next section we will need a discrete set of “canonical” facial deforma-
tions. To this end we use a Neural Gas [7] for clustering and apply the following
procedure. From each frame we obtain a shape deformation vector d. This we
project into the subspace of the first L = 7 principal components. These shape
vectors are clustered by a neural gas of 9 neurons, each neuron corresponding
to a cluster. Figure 5 shows the deformed face graphs for the 9 neurons or clus-
ters. From each neuron’s deformation d we obtain Gabor jets by applying the
matrices A’ and reconstruct a facial image, shown for the 9 clusters or canonical
gestures in figure 6.

4 Landmark Finding

Landmark finding, that is, the establishment of precise point correspondences
between facial images and generic facial models, is a critical step for facial pro-
cessing. It is difficult to achieve, especially in the presence of facial deformation.
Passive mechanisms, such as classical elastic graph matching [1] have to be per-
missive in terms of deviations of image texture and shape relative to the model
and thus lose reliability quickly beyond small deformations. The problem can
only be solved by actively modeling the changes in texture and shape observed
in images. For this purpose we here employ a FOM. For greater robustness we
have trained it on four different persons (where we used the total number of se-
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Fig. 5. Shape deformations as per Neural Gas. Expressions are shown corresponding
to figure. 2

Fig. 6. Synthesised images using shape deformations as shown in figure 5.



quences collected from all persons while each person contributes a data amount
as described in section 3).

Our test images display facial gestures of persons not contained in the data set
used for training the FOM. We first find the face to some precision with the help
of a bunch graph [1] constructed out of frontal neutral-expression images for six
persons (again different from the test persons). After suppressing the background
of the image outside the convex hull of the bunch graph by Gaussian smoothing
we replace the bunch graph by the graph of the FOM and improve the match
by separate scale moves in vertical and horizontal directions using the reference
shape. Starting from this reference graph, we now apply the nine “canonical”
gesture deformations trained by the methods of the last section on four persons
(each with the amplitude represented by the trained neurons) and pick the best-
matching gesture. Figure 7 shows examples for six different facial expressions.
The first and third column show test images with suppressed background and
superimposed best-matching graph, each image accompanied on its right by a
reconstruction from the 4-person FOM in the best-matching expression.

In addition to accurate landmark finding in spite of image deformation the
system can be used to identify the gesture displayed in the image. Using several
persons to construct the FOM increased the robustness of the model for person-
independent matching (just as the bunch graph increases the robustness of face
finding), and in addition handled personal differences in the reference persons’
performance of gestures (although the gestures were originally selected for ease
of performance [3]).

5 Correction of Facial Expression

An important application of our FOM will be face recognition. Even for col-
laborating subjects, variation in facial expression cannot be totally avoided and
passive methods of dealing with it are compromising accuracy. What is required
is active modeling of the effect of expression change so that the test image’s
expression can be adjusted to that of the gallery entry (or vice versa). After
that step, standard recognition tools can be used. We here show in exploratory
experiments that our FOM is a viable basis for this operation.

Without loss of generality we assume that images in the gallery are of neutral
expression. Using a FOM, trained as described in the previous two sections on
data for several (4) persons, we first recognise the expression in the test image
by selecting the best-matching canonical expression (including neutral). After
landmark finding, feature vectors are extracted from the test image and the face
is transformed with the help of the FOM into neutral expression by applying the
reference shape and replacing only those jets which are significantly deformed
with the corresponding jets of the neutralised FOM. By keeping the jets which
belong to landmarks hardly deformed as much as possible of the subject’s identity
should be preserved. An example of this approach is shown in figure 8. The thus
synthesised model is compared with the one stored in the database. A similar
approach can be applied to changing head pose.



Sample Model that fits best Sample Model that fits best

-
o

—

b

Sample Model that fits best

Ed

pl
<

Sample Model that fits best Sample Model that fits best

sme,
>l

A

Fig. 7. FOM Matching for six different facial expressions. The sample images (first and
third column) are shown with suppressed background and superimposed final graph
position, while the correspondent image to the right is a reconstruction from the 4-
person flexible object model.

Fig. 8. Estimation of neutral expression using the FOM. From left to right are shown
the original image with the best-matching graph, the image reconstructed from that
graph, the estimated neutral expression using a person-indpendent FOM, and finally a
reconstruction of the neutral-expression gallery image from its graph representation.



6 Conclusions

We have presented an extension of the established concept of Elastic Graph
Matching. Instead of synthetically constructing a model for shape variation we
empirically learn it from sample image sequences requiring only minimal assis-
tance. The model describes flexible objects in terms of deformation in shape and
in texture as well as a linear mapping between the two. Applications to facial
gestures are investigated in exploratory experiments. As the model is based on
the data format of EGM it is immediately applicable to image matching opera-
tions, as demonstrated. More extensive experiments like recognition tasks using
a larger database and further applications are in progress.
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