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Abstract

We present a so-called Neural Map, a novel memory
framework for visual object recognition and categorization
systems. The properties of its computational theory in-
clude self-organization and intelligent matching of the im-
age features that are used to build their object models. Its
performance for representing the visual object knowledge
comprised by these models and for recognizing unknown
objects is measured using three different types of image
features, which extract different granularity of information
from object views of the ETH-80 image set. The obtained
experimental results slightly outperform previous ones us-
ing PCA-based methods on the same image set, and they
suggest that the medium-sized image features maximize the
object models’ informativeness and distinctiveness.

1 Introduction

A fundamental aspect of perception is the processing of

visual information in relation to accumulated world knowl-

edge. This can be subsumed under the processes of object
recognition [12] deciding about an object’s unique identity,

and object categorization calculating an object’s kind [8].

Although humans can determine easily the correspondence

of objects in a natural scene with the ones previously seen,

this remains a very challenging task for artificial systems.

The complexity of modeling these tasks comes from the

fact that the space of all possible views of all objects is pro-

hibitively large, which results in a high disparity between

the known and the newly encountered object views. This

variability can be grounded on the fact that objects in natural

scenes are observed from different viewing positions. Addi-

tionally, the objects’ shape can vary considerably both inter-

category and intra-category. Objects in natural scenes are

also not isolated, but normally seen against different back-

grounds, interacting with more objects, and sometimes par-

tially occluded by some of them. Furthermore, objects are

subjected to photometric effects including the position and

distribution of light sources in the scene, their wavelengths,

the effects of mutual illumination with other objects, and

the distribution of shadows and specularities [11]. In exist-

ing artificial systems, each one of these possible variations

applied to a known object view generates a different object

view and discerning their conceptual equivalence is not a

trivial task to accomplish.

Consequently, a large variety of artificial object recog-

nition and categorization systems motivated in biology

have been proposed. These systems use either a feature-

based [7, 2] or a correspondence-based approach [14, 5, 15].

In both, the processing of an object view relies on the ex-

traction of image features together with the use of stored

object models derived from training object views. The first

ones classify object views by detecting which features are

present disregarding spatial relations. These models usually

fail when confronted with complex backgrounds, multiple

objects, or occlusion. The latter ones store object models

as ordered arrays of local features, which are matched with

object views by solving the correspondence problem. Those

models perform better on realistic images, but require more

processing time than feature-based ones.

A major limitation of these approaches is that the in-

herent structure of their proposed object models is derived

from the bottom-up process of visual information, with lit-

tle or no use of top-down knowledge. The resulting artifi-

cial systems are either limited to represent a narrow range

of object types, or they are in conflict with neuropsycholog-

ical and neuroanatomical observations [4], as well as with

the results of psychophysical experiments [9] and compu-

tational studies [11]. A recently proposed artificial system

dynamically generates its object models using a more bal-

anced approach [14]. This method yields high recognition

rates, still it performs rather poorly on categorization and

further research on its visual object knowledge representa-

tion is needed to improve its performance and robustness.

The present work proposes combining a Growing Neu-

ral Gas (GNG) network [3] with a classifier motivated by

the population coding and decoding processes of cortical

neurons [10] in a so-called Neural Map, which is capable
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of generating a structural association for the elementary im-

age features that serve as components of dynamically gen-

erated object models. During training, the relationships be-

tween a given set of image features extracted from train-

ing object views are automatically established through an

unsupervised learning process according to their similarity.

Throughout recall, these relationships are exploited by the

classifier to retrieve the best matching model image features

for a given set of image features extracted a from a test ob-

ject view.

The detailed description of the above mentioned pro-

cesses is organized as follows: initially, Section 2 intro-

duces object views and the types of image features extracted

from them. Section 3 describes the training and recall pro-

cesses of the proposed Neural Map together with its com-

ponents and main characteristics. Section 4 defines two ex-

periments to evaluate the performance of the Neural Map

for representing the visual object knowledge derived from

the training object views. Finally, Section 5 discusses the

experimental results and outlines future research steps.

2 Feature Extraction

2.1 Object views

The object views used for the present work are extracted

from the ETH-80 image set [6], a subset of the COGVIS

database particularly designed as a basis for both psy-

chophysical and computational studies concerning object

categorization. It contains views and segmentation masks

of 80 objects within a taxonomy composed of 8 basic level

categories (i.e., cows, dogs, horses, apples, pears, toma-

toes, cars, and cups) from 4 superordinate areas (i.e., an-

imals, fruits and vegetables, human made big, and human

made small). Each category contains 10 different individ-

uals that are represented by 41 images from view-points

spaced equally over the upper viewing hemisphere. The

experiments described in Section 4 employ the images of

the ETH-80 cropped-close version — some examples are

depicted in Figure 1.

2.2 Image features

The present work uses three different local feature detec-

tors, which represent patches of information derived from

the object view at different granularity. They consist of

the complex responses of a set of Gabor filters from one

or more jets [5]. In the feature extraction process, each de-

tector initially places a 10 × 10 pixels grid over the image,

and the (known) segmentation mask is used to discard the

background pixels. The remaining ones are used as build-

ing blocks for creating Grid, Square, and Node image fea-

tures. In case of encountering different numbers of building

Figure 1. Samples of the ETH-80 cropped-close
version extracted at 90◦ vertically and 45◦ hori-
zontally. This version contains gray value images
of single objects scaled to 128×128 pixels.

blocks, the Grid feature detector invalidates randomly se-

lected ones, in order to ensure equally sized Grid image fea-

tures. Gabor jets are extracted from the object view at each

pixel position given by the feature building blocks (see Fig-

ure 2). Finally, the image features are created by concate-

nating the Gabor jets J (xp), 0 ≤ p < P extracted from

their respective pixel positions xp in the object view, with

P indicating the number of Gabor jets in the image feature.

A generic image feature is given by

F (x) = (ap,m,l· exp(i·φp,m,l))p,m,l , (1)

where each complex filter response is expressed in terms of

amplitudes ap,m,l and phases φp,m,l, with 0 ≤ m < M de-

noting the spatial frequency and 0 ≤ l < L the orientation

of the Gabor filter, and x represents the concatenated pixel

positions xp. For simplicity, we drop x and use F to denote

the image features.

These local feature detectors can extract several Square
and Node image features from each object view, but only

one Grid image feature. Overall, this feature extraction

process generates 3280 Grid, 154166 Square, and 265937
Node image features from the ETH-80 image set.
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(a) (b) (c)

Figure 2. The image features: Grid features (a)
cover the whole object view, Square features (b)
consist of 5 Gabor jets, and single jets constitute
Node features (c).

3 Visual Object Memory Model

In order to represent visual object memory we use a

Neural Map, a biologically inspired memory organization

framework that provides a structural association to image

features derived from training object views. It comprises

a GNG network [3] and a classifier motivated in the corti-

cal neurons population coding and decoding processes [10].

These components equip the data structure of the Neural

Map with self-organized feature structuring and intelligent

feature matching.

3.1 Self-Organized Feature Structuring

A set of image features FT extracted from training ob-

ject views is automatically integrated into the Neural Map’s

associative structure of model features through an unsuper-

vised two-stage learning procedure.

In the first stage, the amplitude values of the image fea-

tures F ∈ FT are employed to generate sample signals from

a high-dimensional data distribution. The GNG [3] uses

these sample signals to incrementally develop a neural net-

work. During this process, each neuron is associated with

a point in the feature distribution. Neurons are connected

with synapses, which are locally adapted according to the

feature similarity:

S
(
F , F̃

)
=

∑
p,m,l ap,m,l· ãp,m,l√∑

p,m,l a
2
p,m,l·

√∑
p,m,l ã

2
p,m,l

. (2)

This measure allows for smooth similarity potentials with

fairly wide maxima [14].

In comparison with previous and similar approaches

(e.g., Kohonen Feature Map, and Growing Cell Structure),

GNG is more flexible since no dimensionality assumptions

need to be made, and it allows continuous learning by

adding neurons and synapses until a performance criterion

is met. The algorithm’s resulting network has a topologi-

cal structure composed of a set of N neurons connected by

synapses closely reflecting the topology of the feature dis-

tribution.

During the second stage, the developed neural network

is utilized to establish a map C : FT → R
N by calculating

a distance measure for each feature’s amplitude values with

all its neurons:

C (F) = (ci)i = (1 − S (F ,Fi))i , (3)

where Fi represents the ith neuron’s point in the feature

distribution with ci ∈ R, 0 ≤ i < N .

The vector of values resulting from this map constitutes

a feature code and represents the neuronal population code

for each of the image features extracted from the training

object views. Population coding has many advantages in

information processing (e.g., its resulting codes are robust

against a potential loss of neurons). It is also compatible

with neurophysiological findings about distributed repre-

sentations the brain’s object recognition system.

3.2 Intelligent Feature Matching

Finding the best matching model features for a set of

novel features FR extracted from test object views is at the

core of the object recognition system [14] and the catego-

rization system [13]. In our work, they are matched through

a recall procedure, where the previously learned informa-

tion inferred from the self-organized Neural Map favors the

selection of some model features over others until the best

matching one is found.

This recall procedure is accomplished by a classifier,

which decodes the responses of the neurons from the self-

organized Neural Map for each novel feature F ′ ∈ FR as

follows. Initially, it calculates the novel feature code ac-

cording to Equation 3. Subsequently, it obtains the set of

candidate model features FC closest to the novel feature:

FC =
{F ∈ FT : |C (F) − C (F ′)| ≤ μ + 10−5

}
(4)

μ = min
F̄∈FT

(∣∣C (F̄)− C (F ′)
∣∣) (5)

Then, it chooses the model feature from the set FC with the

highest similarity to the novel feature as the best matching

one model feature F ′′:

F ′′ = argmax
F∈FC

(S (F ,F ′)) . (6)

Finally, the classifier produces a set of matched image fea-

tures FM , which represent the decoding process of the neu-

ronal responses for the novel features set FR.

4 Object Recognition and Categorization

We now assess the performance of the procedures from

Section 3 for representing the visual object knowledge de-

rived from the image feature types described in Section 2.
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Figure 3. Partitioning for the view point invari-
ance test: the first row depicts a subset of 8 views
used for learning; the second row shows the corre-
sponding testing subset.

During these experiments the training parameters of the

GNG algorithm are empirically defined based on the ones

proposed in [1] together with the ones resulting from GNG

learning tests. All results are obtained by averaging sev-

eral trials with the same experimental set-up under different

starting conditions.

4.1 View Point Invariance Test

The first experiment tests the view-point invariance of

the Neural Map. All possible objects are available during

learning and recall procedures, their respective training and

test sets are produced from an intercalated view-point based

partition of all object views. Accordingly, test object views

from 21 view-points are selected by rotating horizontally

the training object views from 20 view-points by 22.5◦ plus

the ones from one extra view-point; Figure 3 shows an ex-

ample of a subset of this partitioning.

The image features from the training object views are

used to shape a self-organized Neural Map as described in

Section 3.1. After this learning stage, the image features

extracted from a test object view are matched against Neu-

ral Map’s model features as described in Section 3.2. The

matching responses are recorded in the three different levels

of the object taxonomy detailed in Section 2.1. Then they

are subjected to a winner-take-all voting scheme, which de-

termines from coarse to fine the matched object labels based

on the majority of labels found in the object taxonomy. Ini-

tially, the superordinate label is established, then the basic

level one is selected, and finally the object identity is rec-

ognized, depending on the taxonomy sub-tree. When the

vote counts of the winner and the second best candidate

differ by less than 30%, further voting is calculated over

the registered responses in both taxonomy sub-trees. This

diminishes the propagation of early made incorrect deci-

sions. Categorization is considered successful in the super-

ordinate and basic levels when their respective matched ob-

ject labels coincide with the ones from the test object view.

Recognition is successful when the identity labels of test

and matched object are equal. Categorization and recogni-
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Animals 94.11% 76.3% 76.37%

Fruits and vegetables 89.22% 100% 99.83%

Human made big 90.33% 89.56% 75.5%

Human made small 78.83% 96% 88.63%

Cows 44.67% 54% 43%

Dogs 55% 46.67% 36%

Horses 45% 41% 28.38%

Apples 32% 98.5% 97.5%

Pears 83.67% 88.56% 82.38%

Tomatoes 57.5% 99.5% 99%

Cars 90.33% 94.94% 82.75%

Cups 78.83% 97.56% 94.38%

Figure 4. Summarized (top) and detailed (bottom)
categorization and recognition rates for the levels
of the object taxonomy using Grid, Square, and
Node image features, respectively.

tion are repeated for all the test object views. The experi-

mental results for the three different types of image features

are shown in Figure 4.

4.2 Leave-one-object-out Cross-validation

In this experiment a Neural Map is combined with a

voting scheme to form a novel feature-based categorization

system. The overall performance of this system is measured

using the leave-one-object-out cross validation. The Neu-

ral Map is trained using the image features from all object

views of 79 objects, and the ones derived from the views of

the remaining object are used for testing. Categorization is

considered successful under the same conditions as before.

This is repeated for all 80 partitions of the database, and the

rates are averaged over all tests. The results are shown in

Figure 5. Recognition can not be be performed with this

partitioning.

5 Discussion and Further Research

We have introduced a memory framework for object

recognition and categorization systems based on dynam-
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Animals 100% 96.67% 100%

Fruits and vegetables 99.58% 100% 100%

Human made big 100% 100% 100%

Human made small 91.25% 90% 80%

Cows 60% 80% 60%

Dogs 65% 40% 37.14%

Horses 65% 60% 20%

Apples 75% 100% 100%

Pears 98.75% 100% 90%

Tomatoes 85% 100% 100%

Cars 100% 100% 100%

Cups 93.75% 100% 80%

Figure 5. Summarized (top) and detailed (bottom)
categorization rates of novel objects using Grid,
Square, and Node image features, respectively.

ically assembled object models [14]. Its properties in-

clude the unsupervised structural organization of object

components according to their visual resemblance, and the

use of this structure for matching novel components. We

have tested its performance using image features of dif-

ferent granularity. The results indicate that the medium-

sized Square image features yield the highest recognition

and categorization rates, and slightly outperform the results

from [6]. This suggests that these image features maximize

the informativeness and distinctiveness derived from the ob-

ject views.

We also observe a gradual decrease of accuracy from the

abstract to the concrete levels of the object taxonomy, rein-

forcing the expectation that the categories from higher ab-

straction levels are more easily distinguishable. The mech-

anism to minimize propagation of early made errors in the

coarse to fine voting process proves to be successful.

Generally, the lowest basic level categorization rates are

found within the animals taxonomy sub-tree, but the false

positives are concentrated in the same sub-tree, in agree-

ment with [6]. This reveals difficulties to distinguish sim-

ilar objects with complex global shapes. We are currently

trying to confirm this hypothesis on larger databases.

The categorization experiments presented here are ob-

tained through a best case analysis, because novel object

views are processed under the same viewing conditions as

during training, with near-perfect object segmentation and

known scales. For recognition and categorization in more

realistic scenes we will have to use Neural Maps to dy-

namically create object models, which can be subjected to

correspondence-based recognition methods.
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