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We present an object recognition system built on a combination of
feature- and correspondence-based pattern recognizers. The feature-
based part, called preselection network, is a single-layer feedforward
network weighted with the amount of information contributed by each
feature to the decision at hand. For processing arbitrary objects, we em-
ploy small, regular graphs whose nodes are attributed with Gabor am-
plitudes, termed parquet graphs. The preselection network can quickly
rule out most irrelevant matches and leaves only the ambiguous cases, so-
called model candidates, to be verified by a rudimentary version of elastic
graph matching, a standard correspondence-based technique for face and
object recognition. According to the model, graphs are constructed that
describe the object in the input image well. We report the results of
experiments on standard databases for object recognition. The method
achieved high recognition rates on identity and pose. Unlike many other
models, it can also cope with varying background, multiple objects, and
partial occlusion.

1 Introduction

This letter is concerned with the task of invariant visual object recognition.
The term recognition refers to the decision about an object’s unique identity
and requires discrimination between object identities and involves general-
ization across minor shape changes, as well as physical translation, rotation,
and so forth (Palmeri & Gauthier, 2004).

Computational models for invariant visual object recognition come in
two main types: feature-based and correspondence-based. Both start with
the extraction of features, which are chunks of information gathered from an
image that allow purposefully mapping that image into some feature space
of a dimension that is lower than the original pixel grid. Popular examples
of image features are color, shape, and texture elements. In feature-based
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recognition systems, invariance over parameter variation is achieved for
each feature separately, and different parameter values are combined with
a logical disjunction. Each feature detector passes its assessment of feature
presence in the image to master units that become activated if at least one
of its contributors has observed its reference feature. Master units thus rep-
resent parameter-invariant feature types. Object recognition is achieved by
comparing the list of activated master units to lists stored for known ob-
jects and picking the best match. The characteristic of this approach is that
information on the original parameter values, such as position, scale, and
especially the spatial arrangement of (local) features, is discarded. Examples
of feature-based systems include the Neocognitron (Fukushima, Miyake, &
Ito, 1983); the ones by Edelman (1995), Murase and Nayar (1995); SEEMORE
Mel (1997); Schiele and Crowley (2000); VisNet (Elliffe, Rolls, & Stringer,
2002); and those by Wersing and Körner (2003), and Serre, Oliva, and Poggio
(2007). There is little doubt that the mammalian visual system operates to
some extent in a feature-based manner. This assumption is backed by psy-
chophysical experiments in which signal propagation times and response
times have been measured (see, e.g., Oram & Perret, 1994; Logothetis &
Pauls, 1995). As a model for object recognition in the brain, feature-based
methods can be implemented as feedforward networks, which would ac-
count for the amazing speed with which these processes can be carried out
relative to the slow processing speed of the underlying neurons (Thorpe,
Fize, & Marlot, 1996; Thorpe & Thorpe, 2001). This assumption is in accord
with the available psychophysical data, but it can be doubted that object
recognition in the brain is entirely feature-based, as these models encounter
problems when confronted with more sophisticated recognition tasks, such
as images with structured backgrounds, multiple objects, and occluded ob-
jects. As especially the spatial arrangement of features is discarded, these
techniques are prone to the confusion of objects that agree in features but
differ in their spatial arrangement, scale, or orientation. It has, however,
been argued that nonambiguous representations can be achieved through
introduction of combination-coding units (see, e.g., Mel, 1997; Riesenhuber
& Poggio, 2000), but the unlimited introduction of such cells inevitably
leads to a combinatorial explosion that would soon exhaust the number of
cells available (Rosenblatt, 1962; Tsotsos, 1990; von der Malsburg, 1999).

In correspondence-based models, object views are represented as or-
dered arrays of local features. For instance, in elastic graph matching
(von der Malsburg, 1988; Lades et al., 1993; Wiskott, 1995; Wiskott, Fellous,
Krüger, & von der Malsburg, 1997), object views are represented by model
graphs, two-dimensional graphs in the image plane, whose nodes are la-
beled with local image features, usually the complex responses of a set of
Gabor filters, and whose edges express relations between two nodes. In elas-
tic graph matching, object models, represented by their associated model
graphs, are matched with an input image by solving the correspondence
problem, that is, through establishing an organized set of point-to-point
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correspondences between the input image and the object model. Further
examples of correspondence-based systems include Shapiro and Haralick
(1981), Bunke (1983), Ullman (1989), Würtz (1997), and von der Malsburg
and Reiser (1995). These techniques usually encounter problems when ap-
plied to larger repertoires of general objects, as object models are required
to be dynamic with respect to both shape and attributed features in order
to cope with object variations like changes in pose, illumination, and so on.
Graph-like structures, and model graphs in particular, inherently fulfill this
requirement. In other words, they allow for compositionality, defined by
Bienenstock and Geman (1995) as the ability to construct mental represen-
tations, hierarchically, in terms of parts and their relations. What needs to
be specified are the elementary parts and the rules of composition. Then
mental representations can be built starting from elementary features, com-
posing them to ever more complicated ones, until the complexity required
for the task is reached. The necessary depth of this composition hierarchy
influences processing time, with simple features being recognized nearly
instantaneously and each level of composition requiring extra time. It has
been shown psychophysically that recognition tasks that explicitly require
composition take distinctly longer than those for simpler objects. For in-
stance, in Treismann and Gelade (1980), human subjects were presented
combinations of green and red crosses and circles. Afterward, the subjects
were asked to give statements like, “I have seen a red cross in the left half
of the screen and a green circle in the right half.” If the presentation was
long enough, this was an easy task, but when the presentation times were
reduced below 50 milliseconds, the assignment of color to the cross or cir-
cle dropped to chance level. This finding supports the original assumption
that the construction of a suitable representation that correctly integrates
the visual features “cross,” “circle,” “red,” and “green,” a representation in
which, more generally, the binding problem (von der Malsburg, 1981, 1999)
has been solved, takes more time than the mere detection of uncombined
features. Another aspect in favor of correspondence-based processing is
that the recognition of object identity is usually not sufficient, and in or-
der to do anything useful to an object, like grasping or manipulating, the
locations of objects and object parts matter (Becker et al., 1999).

Different time requirements for different recognition tasks can be ex-
plained by the necessity to construct mental representations. They would
not occur naturally in feedforward architectures implementing a simple
stimulus-response scheme as, for example, in Pitts and McCulloch (1947),
Rosenblatt (1962), Fukushima et al. (1983), or Serre et al. (2007).

However, constructing object representations while recognizing objects,
and finding a solution to the binding problem in general, is a laborious
task that, in computer vision, has most often been disregarded in favor of
employing object models tailored to specific object categories like faces
in frontal pose. There is thus a jigsaw piece missing in the picture of
correspondence-based processing: a purposeful initialization that restricts
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it to model images really worth their while—to model candidates, as we will
call them from now on. We propose that fast feature-based preprocessing
is applied as far as it goes by excluding as many objects as possible and
that only ambiguous cases, the model candidates, are subjected to the more
accurate correspondence-based processing. The feasibility of this approach
has been proven in Westphal (2006). There, the accent was laid on the emer-
gence of model graphs, while in this letter, the benefit of combining feature-
and correspondence-based techniques will be highlighted.

This letter is organized as follows. In section 2, a single-layer neural
network is introduced that allows rapidly selecting a relatively small sub-
set of model candidates from a much greater set of stored object views
in a strictly feature-based fashion. Throughout, model candidates are con-
sidered to be model images that are supposed to contain the same object
identity in a similar pose as the current input image. Section 3 is concerned
with the correspondence-based verification of model candidates, using a
rudimentary version of elastic graph matching. In section 4, the proposed
combination of feature- and correspondence-based methods is applied to
the task of visual object recognition and tested on publicly available stan-
dard databases. Finally, section 5 gives a summary and an outlook on further
research.

2 Feature-Based Preselection of Model Candidates

In this section we present a neural network for preselection of model im-
ages, so-called model candidates, for an input image at hand prior to their
correspondence-based verification. This network is called the preselection
network (Westphal, 2006). Its design is motivated by the well-established
finding that individual object-selective neurons tend to preferentially re-
spond to particular object views (Perret et al., 1985; Logothetis & Pauls,
1995). The preselection network’s output neurons take the part of these
view-tuned units (Riesenhuber & Poggio, 2000).

The preselection network (see Figure 3) is a single-layer feedforward
neural network with sparse connectivity. In the network’s input layer,
position-invariant feature detectors submit their assessments whether their
reference feature is present in an image to dedicated input neurons. As
(local) image features, we chose small regular graphs, so-called parquet
graphs, whose nodes are labeled with Gabor features. The output layer
comprises one neuron for each model image. Synaptic weights are chosen
such that the network conforms to Linsker’s infomax principle (Linsker,
1988). That principle implies that the synaptic weights in a multilayer
network with feedforward connections between layers develop, using a
Hebbian-style update rule (Hebb, 1949), such that the output of each cell
preserves maximum information (Shannon, 1948) about its input. Subject
to constraints, the infomax principle thus allows directly assigning synap-
tic weights. This network setup, in conjunction with the application of
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the winner-take-most or winner-take-all nonlinearity as decision function,
implements a weighted majority voting scheme (Lam & Suen, 1997) that
allows the desired preselection of model candidates.

The selection of model candidates is based only on feature coincidences
in the image and model domain. As their spatial arrangement is disre-
garded, false positives are frequent among them. To rule them out, similar
spatial arrangement of features will be asserted for the model to be selected
in the correspondence-based verification part (see section 3).

In this letter, we present a streamlined version of the preselection network
for the task of invariant visual object recognition. A more elaborated variant
is given in Westphal (2006).

2.1 Gabor Features. Gabor features are well suited for image repre-
sentation because of their information theoretical properties (Linsker, 1988;
Olshausen & Field, 1996) and their biological relevance (Hubel & Wiesel,
1962; Jones & Palmer, 1987). These features describe local texture in an im-
age. They are the complex responses of a set of Gabor filters applied to an
image at a position of interest. Gabor filters have the form of a plane wave
restricted by a gaussian envelope:

ψk (x) = k2

σ 2 exp
(

−k2x2

2σ 2

)[
exp
(
ik�x

)− exp
(

−σ 2

2

)]
. (2.1)

Fourier-transformed Gabor filters take the form of gaussians in the fre-
quency domain, that is, they are bandpass filters. A Gabor wavelet trans-
form of an image I at a point x with respect to a wave vector k is given by
the convolution with the Gabor kernel, the domain of integration being the
image plane:

Ik(x) =
∫

R2
I (x′)ψk(x − x′) d2x′. (2.2)

For actual calculations, a discrete and finite subset of wave vectors is nec-
essary. By rotating and scaling the wave vector k, a whole family of Gabor
functions can be derived. Each of them is parameterized in terms of its
orientation φl and frequency km:

km,l = km ·
(

cos φl

sin φl

)
. (2.3)

The finite set of filters is chosen such that the direction space is sampled
homogeneously, and the frequencies are sampled geometrically:

φl = π · l
L

with l ∈ {0, . . . , L − 1} . (2.4)
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km = kmax

(kstep)m
with m ∈ {0, . . . , M − 1}. (2.5)

The remaining parameters are chosen according to Lades et al. (1993) and
Wiskott (1995):

kstep = √
2, kmax = π

2 , L = 8, M = 5, σ = 2π.

The complex responses of this set of Gabor filters at a given location
x in an image constitute a so-called (Gabor) jet (Lades et al., 1993). These
are vectors of M · L complex numbers. In this letter, only their amplitudes
akm,l

are used (see equation 2.6). They are a model for complex cells in the
visual cortex and yield some local shift invariance, which is very useful for
matching. Whenever possible, we omit the position x and write J instead
of J (x):

J (x) = (∣∣Ikm,l
(x)
∣∣)

0≤m<M,0≤l<L =:
(
akm,l

)
0≤m<M,0≤l<L . (2.6)

Two jets may be compared with so-called similarity functions, which
usually map two given jets into the interval [0, 1]. A number of these func-
tions have been proposed (Lades et al., 1993; Würtz, 1995; Wiskott, 1995).
In this letter, we exclusively use the measure of similarity based on the
amplitudes of the filter responses, which is implemented as the normalized
scalar product between the amplitude vectors:

sabs (J ,J ′) =
∑

m,l akm,l
· a ′

km,l√∑
m,l akm,l

2 ·
√∑

m,l a ′
km,l

2
. (2.7)

This measure of similarity allows smooth similarity potentials with fairly
wide maxima.

2.2 Parquet Graphs. The feature-based part can work with any con-
venient feature type. A successful application employing color and mul-
tiresolution image information is presented in Westphal and Würtz (2004).
Also, higher features known to exist in the brain, such as end-stopped cells,
key points, shape, and curvature-selective cells, can be incorporated. For
the current combination of feature- and correspondence-based methods,
we chose small, regular graphs labeled with Gabor features. We call them
parquet graphs, inspired by the look of ready-to-lay parquet tiles. They work
as simple feature detectors for preselection and can be aggregated to larger
graph entities for correspondence-based processing. Throughout, parquet
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Figure 1: Example of a parquet graph. (a) A parquet graph on the object in the
given image. (b) The reconstruction from the parquet graph. (c) An enlarged
version of b. All reconstructions in this letter are computed with the algorithm
by Pötzsch, Maurer, Wiskott, and von der Malsburg (1996).

graphs consist of V = 9 nodes. A parquet graph f will be described with a
finite set of node attributes:

f = {(xv,Jv, bv) | 1 ≤ v ≤ V}. (2.8)

Each node v is labeled with a triple (xv,Jv, bv), where Jv is a Gabor jet
derived from an image at an absolute node position xv . In order to make use
of segmentation information, it is convenient to mark nodes residing in the
background as invalid and exclude them from further calculation. For this
purpose, the node attributes comprise the validity flag bv , which can take
the values 0 and 1, meaning invalid and valid. For the given parameterization
of the Gabor features, the horizontal and vertical node distances �x and �y
are set to 10 pixels. Figure 1 shows an example of a parquet graph. Where
appropriate, parquet graphs are simply referred to as features.

A parquet graph describes a patch of texture derived from an image
regardless of its position in the image plane. Particularly, this means that
the feature positions are irrelevant for the decision as to whether two im-
ages contain a similar patch of texture. Later, in the correspondence-based
verification part (in section 3), larger graphs are constructed dynamically
by assembling parquet graphs derived from earlier model images accord-
ing to their spatial arrangement. Then relative node positions will become
important.

The similarity between two parquet graphs f and f ′ is given by the
average similarity of the jets associated with the nodes with the same index
that are valid within both parquet graphs (Würtz, 1997; Shams, 1999):
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sgra ph( f, f ′) =



(

V∑
v=1

bvb ′
v

)−1

·
V∑

v=1

(
bvb ′

v

) · sabs
(
Jv,J ′

v

)
if

V∑
v=1

bvb ′
v > 0

0 otherwise

.

(2.9)

The factors (bvb ′
v) are 1 if both respective jets Jv and J ′

v are valid and
0 otherwise. These factors assert that only similarities between valid jets
be taken into account. If all products become 0, the similarity between
the two parquet graphs is 0. It is well worth noting that parquet graphs
provide a means to protect from accidentally establishing point-to-point
correspondences in that contiguous, topographically smooth arrays of good
correspondences are favored over good but topographically isolated ones.

2.3 Feature Detectors. A local feature detector yields a binary decision
whether two parquet graphs f and f ′ match according to a threshold ϑ :

ε
(

f, f ′, ϑ
) =
{

1 if sgra ph( f, f ′) ≥ ϑ

0 otherwise
. (2.10)

Since many parquet graphs are taken from each model image, the total
number of extracted parquet graphs is huge, and a method to compress the
given data is needed. To this end, a simple variant of vector quantization
(Gray, 1984) is used. While learning new objects from model images, every
parquet graph gathered from the current model image is compared to all
other parquet graphs in the database. The parquet graph at hand is added
to the database only if all comparisons yield subthreshold similarity values
(i.e., if it represents a novel piece of texture). After learning, we consider
the database to contain T parquet graphs ft .

It is important to know the number of parquet graphs required for
coding a growing number and, finally, all possible images. This has two
aspects: a geometrical one and one about the structure of natural im-
ages. Geometrically, the parquet graphs are feature vectors of dimension
K = L · M · V = 480, with normed scalar product as similarity. Keeping the
similarity between any vector in RK and its closest stored parquet graph
below ϑ requires covering the hypersphere of unit radius in K dimen-
sions with K -dimensional balls of radius

√
2(1 − ϑ) with centers on the

hypersphere. As the hypersphere has a finite K − 1-dimensional surface,
the number T(ϑ, K ) of required centers is finite for every positive ϑ . If all
components are positive (as the Gabor amplitudes used in our case), only
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0

50

100

150

200

250

300

0 1000 2000 3000 4000 5000

ALOI
COIL 100

A
ve

ra
g

e 
N

u
m

b
er

 o
f 

F
ea

tu
re

s 
[ 

   
   

] 
   

   
  

Number of Model Images         

3
10

Figure 2: Number of extracted features as a function of the number of model
images. The given numbers are the average numbers of extracted features cal-
culated in five test runs. In each test run, the respective number of images was
randomly picked from the original image databases. For both COIL 100 and
ALOI databases (see section 4.1 for details), the number of features depends
linearly on the number of model images with very small variance.

one sector of the hypersphere needs to be covered, and a slight modification
of the argument by von Luxburg, Bousquet, and Schölkopf (2004) yields

⌈
1

2
√

2(1 − ϑ)

⌉K−1

≤ T(ϑ, K ) ≤ 4

⌈
π

4
√

2(1 − ϑ)

⌉K−1

, (2.11)

where �x	 denotes the smallest integer larger than x.
The upper bound in equation 2.11 again proves the finiteness, but the

lower bound is certainly prohibitive for any useful feature dimensionality
if ϑ > 0.875 and the base exceeds 1. This leaves the hope that the number
of features required for coding only natural images would be much lower.
It can, however, be suspected that an arbitrary instance of a parquet graph
will be part of some natural image (think of turning it into a texture by
repetition and decorating an object with that texture). If this is correct, the
number of stored model features will indeed grow within the calculated
bounds when all possible images need to be accounted for. For relatively
few model images, Figure 2 shows that the number of extracted features is



Feature- and Correspondence-Based Object Recognition 1961

linear in the number of model images with a slope roughly proportional
to the image resolution. The saturation predicted by equation 2.11 is not
observed with the number of images tested in this study.

On the other hand, the total number of extracted features is problematic,
because the recognition time will be proportional to it. Therefore, care must
be taken to store only the most discriminative features. Following a (rather
drastic) reduction from a full codebook to one model feature per model
image, a typical recognition rate dropped from 99% to 76% (Westphal, 2006).
We are planning to incorporate a better reduction strategy in a future study.
The selection of features with high measures of information has proven
to be a good approach (Ullman, 2007). In a way, it makes the value of ϑ

data-dependent and allows covering relevant regions of the feature space
with more examples than others.

Next, a position-invariant feature detector examines whether a (reference
or model) feature ft appears in an image regardless of its position:

τt (I ) =



1 if
∑

f ∈F(I )

ε ( f, ft, ϑ) ≥ 1

0 otherwise
, (2.12)

with F (I ) being the set of all parquet graphs extracted from the image I .
From now on, we use the term feature detector only for the position-invariant
version.

Due to vector quantization, several features, possibly from different
model images, are represented by a single parquet graph. Therefore, the
existence of a given parquet graph in the test image has varying relevance
for the selection of possible model candidates: the more often a feature ft

appears in different model images, the less important is the fact that it also
appears in the test image at hand. In order to take that into account, an
entropy-based measure of information (Shannon, 1948) is assigned to each
feature detector:

it = ln D +
D∑

d=1

P [Id | ft ] · lnP [Id | ft ], (2.13)

with Id being the dth model image. D denotes the number of model images.
These measures quantify the information contribution of the feature detec-
tors to the decision about picking model images as model candidates. They
range between 0, for (irrelevant) features that appear in all model images,
and ln D, for (highly significant) features that appear in exactly one model
image.
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The conditional probabilities that the genuine object is the one in image
Id given that feature ft has been observed are calculated using Bayes’ rule,

P [Id | ft ] = nt (Id )∑D
d ′=1 nt (Id ′ )

, (2.14)

with nt(Id ) =∑ f ∈F(Id ) ε( f, ft, ϑ) being the total number of occurrences of
feature ft in the model image Id .

Each time a feature detector has found its reference feature ft in the input
image, we add a pair of matching features ( f, ft) to a table Fmatch (I ), where
f belongs to the input image:

Fmatch (I ) ← Fmatch (I ) ∪
⋃

f ∈F(I )

{( f, ft) | ε( f, ft, ϑ) = 1}. (2.15)

That table is used for efficient construction of image and model graphs
in the correspondence-based verification part (see section 3). The table is
cleared before each image presentation.

2.4 Preselection Network. For the selection of model candidates, a
single-layer feedforward neural network is employed. Called the preselec-
tion network, it consists of T neurons in the input layer, one for each feature
in the database, and D neurons in the output layer, one per model image.
We use generalized McCulloch and Pitts neurons (McCulloch & Pitts, 1943)
with identity output function (i.e., the output of a neuron equals its input).
The tth input unit receives its input from the feature detector with the same
index, and the dth output neuron is assigned to model image Id . The neu-
rons are connected via synapses with entropy-based weights taken from a
T × D weight matrix,

W = (τt(Id ) · it) 1≤t≤T
1≤d≤D

=: (wtd ) 1≤t≤T
1≤d≤D

,

with wtd being the strengths of the synaptic weights. These weights are zero
if the feature ft does not occur in image Id . Therefore, the matrix is sparse
and also implemented as such. Neither memory nor biological synapses are
required for zero weights.

The outputs of the postsynaptic neurons are given by the product of the
weight matrix and the vector of feature detector responses:

s(I ) = W� · (τt(I ))1≤t≤T =
(

T∑
t=1

wtd · τt(I )

)
1≤d≤D

=: (sd (I ))1≤d≤D.

(2.16)
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Figure 3: Preselection network. The preselection network is a single-layer feed-
forward neural network. It consists of T neurons in the input layer and D
neurons in the output layer. Each input neuron is associated with a feature
detector and each output neuron with a model image. The synapses between
pre- and postsynaptic neurons carry entropy-based weights. The outputs of the
postsynaptic neurons are called activations.

These neural outputs are termed model activations or simply activations.
For a given image I , the activation sd (I ) of a model image Id codes
the accumulated information contributions of those feature detectors that
have a coincidental model feature in the image and model domain. Thus,
the activation scales proportionally with the probability that the input and
the respective model image contain the same object (in a similar pose). The
preselection network is given in Figure 3.

The selection of reasonable model candidates for an input image I , col-
lected in a set M, can be defined in different ways. For example, one could
use a given number of strongly activated model images. In this letter, we
select all model images whose activation exceeds a relative threshold θ :

M(I, θ ) =
{

Id

∣∣∣ sd (I ) ≥ θ max
1≤d ′≤D

{sd ′ (I )}; 1 ≤ d ≤ D
}

. (2.17)

This threshold determines the number of model candidates passed to
the correspondence-based verification part (see section 3). For θ = 1, only
one model candidate is selected, the maximally activated model image,
while for low values of θ , the set of model candidates may encompass a
large number of the original model images. Thus, this parameter allows
smoothly adjusting the balance between the feature- and correspondence-
based parts.

The performance of the preselection network is exemplarily given in
Figure 4. That figure gives the average number of model candidates in
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Figure 4: Performance of the preselection network. The average number of
model candidates in dependence on the relative threshold θ . The learning set
was composed 5600 images taken from the COIL-100 database (Nene et al.,
1996). We observe that, first, the average number of model candidates is small
relative to the total number of model images and, second, that this number
grows rapidly with decreasing relative thresholds.

dependence on the relative threshold θ . The experiment was carried out
with the object recognition application proposed in section 4. The learning
set was composed of 5600 images taken from the COIL-100 database (Nene,
Nayar, & Murase, 1996). The results show that on average, the preselection
network favorably rules out most irrelevant matches. The average numbers
of model candidates are small relative to the total number of model images,
and the average number of model candidates grows rapidly with decreasing
relative thresholds.

2.5 Modifications for Acceleration. In order to speed up the search of
model candidates, two sets of vector-quantized features are used instead of
one. The first set is created using a low threshold, ϑ1 = 0.9, which results
in a low number of representatives. Due to its limited size, this set can be
scanned linearly. The second set of quantized features is created using a
higher-similarity threshold, ϑ2 = 0.95, which results in a large number of
representatives. Once the first set has been scanned for a specific feature in
an input image, only those features of the second set are investigated that
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appear in the database images selected by the first set. The modifications
are explained in detail in Westphal (2006).

3 Correspondence-Based Verification of Model Candidates

Thus far, the selection of model candidates has been based on the mere
detection of feature coincidences in the image and model domains. The
spatial arrangement of features, parquet graphs in our case, has been fully
ignored, which can be particularly harmful in cases of multiple objects or
structured backgrounds.

In the following, model candidates are further verified by checking that
the features be in similar spatial arrangement for the model to be selected.
More specifically, they are verified with a rudimentary version of elastic
graph matching (von der Malsburg, 1988; Lades et al., 1993; Wiskott et al.,
1997). For each model candidate, an image and a model graph are dynam-
ically constructed through composing corresponding features into larger
graphs according to their spatial arrangement. For each model candidate,
the similarity between its image and model graph is computed. The model
candidate whose model graph attains the best similarity is chosen as the
model for the object contained in the input image. Its model graph is a good
representation of that object with respect to the features in the database.

3.1 Construction of Graphs. Construction of graphs proceeds in three
steps. First, from the table of matching features, equation 2.15, all feature
pairs whose model feature stems from the current model candidate are
transferred to a table of corresponding features. Second, templates of an
image and of a model graph are instantiated with empty bunches of Gabor
jets. Third, at each node position, separately for image and model graph, a
bunch is assembled whose jets are taken from the respective parquet graph
nodes located at that position, and the nodes are attributed with these
bunches.

3.1.1 Table of Corresponding Features. During calculation of the model
activations, pairs of matching features have been collected in a table of
matching features Fmatch (I ) (see equation 2.15). Given a model candidate
M ∈ M (I, θ ) for the image I at hand (see equation 2.17), all feature pairs
whose model feature appears in M are transferred to a table of correspond-
ing features,

Fcorr (I, M) =
{(

f I
n , f M

n

) ∈ Fmatch (I ) | 1 ≤ n ≤ N(M)

∧ H


 ∑

f ∈F(M)

ε
(

f, f M
n , 1

) = 1

}
, (3.1)
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of length N(M), which will be used for efficient aggregation of parquet
graphs into larger model and image graphs. Let f I

n denote the image and
f M
n the model parquet graph of the nth feature pair, n = 1, . . . , N(M).

Note that from now on, we speak of corresponding rather than of matching
parquet graphs and assume that those graphs establish local arrays of
contiguous point-to-point correspondences between the input image and
the model candidate. These tables may differ considerably between model
candidates: a pair of corresponding features need not necessarily occur
in the tables of corresponding features of two distinct model candidates.
Therefore, model and image graphs may vary between model candidates
with respect to number of feature correspondences N(M), graph topology,
and attributed features.

Nodes of parquet graphs are attributed with a triple consisting of an abso-
lute image position, a Gabor jet derived from an image at that position, and
a validity flag (see section 2.2). To globally address node label components,
the following notation is introduced: nodes of image parquet graphs are at-
tributed with triples (xI

n,v,J I
n,v, b I

n,v), where n specifies the feature pair in the
table of corresponding features and v specifies the node index. The same no-
tation is used for model parquet graphs, with a superscript M for distinction:

f I
n = {(xI

n,v,J I
n,v, b I

n,v

)∣∣ 1 ≤ v ≤ V
}

f M
n = {(xM

n,v,J M
n,v, bM

n,v

)∣∣ 1 ≤ v ≤ V
}
.

(3.2)

Storing absolute feature positions is just a conveniently simple implemen-
tation. For the graph assembly, only relative positions are required; more
precisely, coincident invariant features must be composed with coincident
ones if they are neighbors in the input image.

3.1.2 Graph Templates. First, templates of an image and of a model graph
are instantiated without node labels. Number and positioning of nodes are
determined by the valid-labeled nodes of image and model parquet graphs.
Their positions are collected in sets X

I and X
M, respectively:

X
I =⋃n,v

{
xI

n,v

∣∣ b I
n,v = 1

}
X

M =⋃n,v

{
xM

n,v

∣∣ bM
n,v = 1

}
.

(3.3)

The creation of graph templates is illustrated in Figure 5.

3.1.3 Node Labels. The nodes of model and image graphs become at-
tributed with bunches of Gabor jets: nodes of image graphs become labeled
with bunches of Gabor jets that stem from node labels of valid-labeled
nodes of image parquet graphs located at a given position x in the input
image. The same applies to the nodes of model graphs, in which, of course,
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Model Candidate

(a)

Model Candidate

(b)

Figure 5: Construction of model graphs. (a) A side view of the setup (b) A top
view of the same setup. For clarity, both figures show only two overlapping
model parquet graphs f M

1 and f M
2 drawn from the table of corresponding

features. For illustration of the overlap, the graphs are drawn in a stacked
manner. Number and position of the model graph’s nodes are determined by
the valid-labeled model parquet graph nodes (dark gray nodes). Nodes that
reside in the background have been marked as invalid (white nodes). (b) The
spatial shape of the emerging model graph can be seen. Compilation of bunches
is demonstrated with two bunches only. Like stringing pearls, all valid Gabor
jets at position xM

1 are collected into bunch βM(xM
1 ), and those at positions xM

2
become assembled into bunch βM(xM

2 ). From a , we learn that bunch βM(xM
1 )

comprises two jets, while bunch βM(xM
2 ) contains only one jet. Image graphs are

constructed in the same fashion.
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the jets are taken from the model parquet graphs. Let β I (x) denote a bunch
assembled at an absolute position x in the input image. The same notation
is used for the model graph’s bunches, with a superscript M for distinction:

β I (x) =⋃n,v

{
J I

n,v

∣∣ xI
n,v = x ∧ b I

n,v = 1
}

βM (x) =⋃n,v

{
J M

n,v

∣∣ xM
n,v = x ∧ bM

n,v = 1
}
.

(3.4)

Whenever possible, we omit the position x and write β I and βM. The as-
sembly of Gabor jets into bunches is also illustrated in Figure 5.

For the assessment of whether a point in the image corresponds to a
point in the model candidate, a measure of similarity between two bunches
is needed. It is defined as the maximal similarity between the bunches’
jets, which is computed in a cross run. If one of the bunches is empty, the
similarity between them yields 0. The jets are compared using the similarity
function given in equation 2.7, which is based on the Gabor amplitudes:

sbunch (β, β ′) =
{

max
J∈β,J ′∈β ′

{sabs (J ,J ′)} if β = ∅ ∧ β ′ = ∅
0 otherwise

. (3.5)

3.1.4 Graphs. Like parquet graphs, image and model graphs are specified
by a set of node labels:

G I =⋃x∈XI {(x, β I (x))}
GM =⋃x∈XM {(x, βM(x))}.

(3.6)

Node labels comprise an absolute position in the input or model image
drawn from the sets of node positions (see equation 3.3) and the bunch
assembled at that position (see equation 3.4). The image graph is decorated
with a superscript I , while the model graph receives a superscript M.

Model graphs of highly activated model candidates provide an approx-
imation of the object in the input image by features present in the database.
Figure 7 shows a number of model graphs (third column) that have been
constructed for the input image given in the first column. The reconstruc-
tions from the model graphs of the first two model candidates in column 4
demonstrate that the emerged model graphs describe the object in the input
image well.

3.2 Matching. In order to verify that a constructed model graph rep-
resents the object in the given image well, it is matched with the input
image. It is moved as a template over the entire image plane in terms of
maximizing the similarity between model and image graph. This action can
be compared with the scan global move, which is usually performed as the
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first step of elastic graph matching (Lades et al., 1993; Wiskott et al., 1997).
For each translation of the model graph, the similarity between model and
image graph is computed. The translation vector that yields the best similar-
ity defines the optimal placement of the model graph in the image plane. In
the process, the model graph’s absolute node positions are transformed into
relative ones by subtracting a displacement vector t0 from the positions of
the model graph’s nodes. That vector is chosen such that after subtraction,
the smallest x and the smallest y coordinate become zero. However, the y
coordinate of the left-most node and the x coordinate of the upper-most
node are not necessarily 0:

t0 = (min
n,v

{(
xM

n,v

)
x

}
, min

n,v

{(
xM

n,v

)
y

})�
. (3.7)

The similarity between model and image graph with respect to a given
translation vector t is defined as the average similarity between image and
model bunches:

s(I, M, t) = |GM|−1 ·
∑

(xM,βM)∈GM

sbunch (β I (xM − t0 + t), βM). (3.8)

In order to find the object in the input image, the model graph is it-
eratively translated in the image plane so that the measure of similarity
between model and image graph becomes maximal. In the process, model
graphs of suitable model candidates move to the object’s position in the
input image. Let

sbest (I, M) = max
t∈G

{s(I, M, t)} (3.9)

denote the similarity attained at that position. The displacement vectors
t come from a set G of all grid points defined by the given distances �x
and �y between neighbored parquet graph nodes (see section 2.2). The
matching setup is given in Figure 6.

Executing the global move is important in cases where the average sim-
ilarity between matching individual features is high but the similarity be-
tween the image and model graph is low. This can happen due to erroneous
feature coincidences or multiple matches of the same image or model par-
quet graph. To obtain even better correspondences, graph matching includ-
ing local optimization is certainly necessary.

3.3 Model Selection. For selection of the model, the most similar model
image for the given input image, an image and a model graph are con-
structed for each model candidate. The model candidate that attains the
best similarity between its model and image graph is chosen as the final
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Input Image

Model Candidate

Figure 6: Matching setup. The setup consists of the input image, the model
candidate, and the graphs constructed using the proposed method. For clarity,
only two pairs of corresponding parquet graphs have been taken from the
table of corresponding features. Parquet graph f I

1 corresponds to f M
1 and f I

2
corresponds to f M

2 . As in Figure 5, dark gray nodes represent nodes that have
been marked as valid, and white nodes represent nodes that have been marked
as invalid for residing in the background. Since only model images provide
figure-ground information, invalid nodes appear only in the model parquet
graphs. The compilation of bunches is illustrated for two sample positions xI

1
and xI

2 in the input image, and xM
1 and xM

2 in the model candidate. In order to
find the object in the input image, the model graph is iteratively moved over
the entire image plane and matched with the image graph.

model for the input image:

Mbest = arg max
M∈M(I,θ )

{sbest (I, M)}. (3.10)

In Figure 7, four model candidates (column 2) have been computed
for the given input image (column 1). The similarities attained through
matching image against model graphs are given next to the reconstructions
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Model
Graphs

Image

Recon-
structions

Model

0.931
0.928

0.904
0.860

Model
Candidates

Figure 7: Selection of the model. Given the input image in the first column,
the preselection network selects four model candidates (second column). For
each model candidate, a model graph is dynamically constructed by assembling
matching model features into larger graphs according to their spatial arrange-
ment (third column). The fourth column shows the reconstruction from the
model graph. Each model candidate is verified using a rudimentary version
of elastic graph matching. Model graphs are optimally placed on the object
contained in the input image in terms of maximizing a measure of similarity
(third column). The attained similarities between the model candidates, repre-
sented by their model graphs, and the image graph, are indicated next to the
reconstructions. The model candidate that attains the best similarity to the input
image is chosen as the recognized model (fifth column).

from the model graphs (column 4). Since the first model candidate yields
the highest similarity, it is chosen as the final model for the object in the
input image (column 5).

4 Experiments

We present the results of three experiments. The first experiment (see
section 4.2) was concerned with the recognition of single objects with re-
spect to object identity and pose. Furthermore, the average execution times
were measured. In the second experiment (see section 4.3), recognition per-
formance was evaluated in the case of input images that contained multiple,
nonoverlapping objects. Finally, the third experiment (see section 4.4) dealt
with the recognition of partially occluded objects.
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(a) (b)

(c) (d)

Figure 8: Example images of the COIL-100 and the ALOI image databases.
(a, b) The images stem from the COIL-100 (Nene et al., 1996). (c, d) The images
stem from the ALOI database (Geusebroek et al., 2005).

4.1 Experimental Setting. Experiments were conducted on two pub-
licly available image databases for object recognition: the well-known
Columbia Object Image Library (COIL-100) (Nene et al., 1996) and the
more recent Amsterdam Library of Object Images (ALOI) (Geusebroek,
Burghouts, & Smeulders, 2005). The COIL-100 database contains images
of 100 objects. Images were acquired by placing the physical objects on a
motorized turntable in front of a plain black background. In order to vary
object pose with respect to a fixed color camera, the turntable was rotated
through 360 degrees around the vertical axis, sampled in steps of 5 degrees.
This corresponds to 72 poses per object identity and 7200 images for the
whole collection. All images are 128 × 128 pixels in size. The images are
normalized in size (i.e., the object always covers a maximal fraction of the
image). The ALOI database contains images of 1000 objects with 72 poses
per object identity. The mode of image acquisition was about the same as
for the COIL-100 database. All images are 192 × 144 pixels in size. We se-
lected a subset of 100 objects from the database. Since the images of the
first 200 objects were considered too dark, we decided on objects numbered
200 to 299. The chosen subset consists of 7200 images. Compared to the
COIL-100 database, the creators of the ALOI database invested less effort
in image preprocessing. Especially, the images are much darker, the objects
are not normalized in size, and the objects cover a much smaller fraction
of the image, which results in larger number of parquet graphs from the
background relative to the COIL-100 images in the case of unsegmented
images. Therefore, experimental results attained with the ALOI database
fall short compared to the COIL-100 database. Especially, they are subject
to increased mean variations, as the experiments will show. Some example
images of both databases are given in Figure 8.
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(a) (b)

Figure 9: Input images of a single object. The figure shows an object from the
COIL-100 database (Nene et al., 1996) as a (a) segmented and (b) unsegmented
image.

Experimental results were obtained with fivefold cross-validation
(Witten & Frank, 2000). In N-fold cross-validation, the data are split into
N partitions of equal size; we decided for N = 5 partitions. Each is used
once for testing, while the remaining N − 1 partitions are used for learn-
ing. This procedure is repeated N times such that every example has been
used exactly once for testing. In this fashion, we created five pairs of dis-
joint learning and testing sets for each database, except where mentioned
otherwise. Each learning set comprised 56, each testing set 14 views per
object, for a total of 5600 and 1400 images, respectively. The images in both
databases are perfectly segmented, that is, the objects are placed in front
of a plain black background. In some experiments, we added structured
backgrounds to the test images before presentation.

In the following, we present recognition results computed within the
cross-validation and their dependence on the relative weighting of the
feature- and correspondence-based parts. Each data point was averaged
over 5 · 1400 = 7000 single measurements. Weighting of the feature- and
correspondence-based parts was controlled by the relative threshold θ

(equation 2.17) that ranged between 0.1 and 1, sampled in steps of 0.1.

4.2 Recognition of Single Objects. In this experiment, we presented
images containing a single object and evaluated the recognition per-
formance with respect to object identity and pose for segmented and
unsegmented images. Furthermore, the average execution times for one
recognition attempt were measured. Since the images of both databases
were perfectly segmented, unsegmented test images were manually cre-
ated by pasting the object into a cluttered background before presenta-
tion. Backgrounds consisted of arbitrarily chosen image patches of random
size derived from images of the current testing set. This is a challenging
background for feature-based systems due to the multitude of ambiguous
feature coincidences. Figure 9 shows an example of a segmented and an
unsegmented test image.
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4.2.1 Recognition of the Object Identity. Recognition performance with re-
spect to object identity is shown in Figure 10. We considered the object
in the test image to be correctly recognized if the test and model images
showed the same object identity regardless of the object’s pose. Through-
out, better recognition rates were attained if segmented images were pre-
sented. Most interesting, a well-balanced combination of the feature- and
correspondence-based parts led to optimal performance. Only for such well-
balanced combinations was the selection of model candidates optimally
carried out in the sense that neither too few nor too many model images
became chosen as model candidates. If the number of model candidates was
too small, the spectrum of alternatives the correspondence-based part could
choose the final model from becomes too limited. This is especially harmful
if false positives were frequent among model candidates. Conversely, the
number of false positives among model candidates unavoidably increased
with overemphasis of the correspondence-based part: for too low values
of the relative threshold, even weakly activated model images became se-
lected as model candidates. Accordingly, the mere probability of choosing
a false positive as the final model increased and, consequently, the average
recognition rate decreased.

4.2.2 Recognition of the Object Pose. The same findings apply for the per-
formance with respect to object pose, which is given in Figure 11. The
average pose errors were calculated over the absolute values of angle dif-
ferences of correctly recognized, nonrotation-symmetric objects. Note that
two consecutive model images of the same object were at least 5 degrees
apart. The same applies for the objects in the test images. The pose errors
contain all errors due to pose ambiguity, which are negligible in practice.
For robot grasping (see, e.g., Schmidt & Westphal, 2004), the number of
misclassified poses is more relevant than the mean pose error.

4.2.3 Average Execution Time. The average execution time of a single
recognition attempt as a function of relative weighting of the feature- and
correspondence-based parts is given in Figure 12. It is rather remarkable
that they are almost independent of the number of model candidates. Thus,
correspondence-based techniques do not automatically imply slow execu-
tion relative to feature-based approaches: The difference in processing time
is negligible if the correspondence-based verification part is restricted to
only a few model candidates, which is achieved here by a feature-based
preselection.

4.3 Recognition of Multiple Objects. This experiment was concerned
with the recognition of multiple, simultaneously presented, nonoverlap-
ping objects (i.e., input images showed simple visual scenes). Only the
recognition performance with respect to object identity was evaluated.
The experiment was subdivided into six test cases per database. In the
first three test cases, we simultaneously, presented N = 2, 3, or 4 objects
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Figure 10: Recognition of single objects (identity). The figure shows the recog-
nition performance with respect to object identity. (a) Results attained with
the COIL-100. (b) Results attained with the ALOI database. The recognition
performance is shown as a function of relative weighting of the feature- and
correspondence-based parts controlled by θ . The best results are indicated next
to the respective data points. Optimal performance was attained using a well-
balanced combination of the feature- and correspondence-based parts.
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Figure 11: Recognition of single objects (pose). Recognition performance with
respect to object pose: (a) COIL-100, (b) ALOI database. As in the identity
case (see Figure 10), optimal performance was attained with a well-balanced
combination of the feature- and correspondence-based parts.
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Figure 12: Recognition of single objects (execution time). The average execu-
tion times of a single recognition attempt depending on relative weighting of
the feature- and correspondence-based parts is given. (a) COIL-100. (b) ALOI
database. It is rather remarkable that they are almost independent of the number
of model candidates.
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(a)

(b)

Figure 13: Input images of multiple objects. An example of (a) a segmented
and (b) an unsegmented input image containing four objects drawn from the
COIL-100 database. Backgrounds were constructed in the same fashion as in
the first experiment.

placed in front of a plain black background, in the last three test cases,
cluttered background was manually added. The procedure of background
construction was the same as in the first experiment. Figure 13 shows two
images containing four objects with and without background. Objects
were randomly picked, a test image contained only different ones, and
each object appeared at least once. The system returned the N most
similar models. Each coincidence with one of the presented objects was
counted as a successful recognition response; the correctness of position
was not checked. Mixing up of objects appears improbable given the good
recognition rates of single objects. Accounting problems would occur with
input images containing multiple instances of the same object identity,
which we have excluded in the construction of the test images. The average
recognition rates were calculated over all responses.

The result of this experiment is given in Figures 14 and 15. It shows that
compared to the single-object experiments (see section 4.2), the point of opti-
mal recognition performance considerably moved to the right: putting more
emphasis on the correspondence-based verification part improved recogni-
tion performance. This finding can be explained with the assumption that
solving the binding problem (von der Malsburg, 1981, 1999) is required
in the case of multiple objects. Presentation of segmented images yielded
better results. For both segmented and unsegmented images, the system’s
performance degraded smoothly with the number of simultaneously pre-
sented objects. Especially in the test cases conducted on the ALOI database,
one can expect that recognition rates could have been improved further by
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Figure 14: Recognition of multiple objects (segmented images). The recognition
performance with respect to object identity in the case of multiple nonoverlap-
ping objects where the objects in the input images were placed in front of
a plain black background. (a) Results for the COIL-100 database. (b) Results
for the ALOI database. Compared to the first experiment (in section 4.2), the
point of optimal recognition performance moved considerably to the right:
correspondence-based verification is more important in the case of multiple
objects. Performance degraded smoothly with the number of simultaneously
presented objects.
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Figure 15: Recognition of multiple objects (unsegmented images). Recognition
performance with respect to object identity in the case of multiple nonover-
lapping objects where the objects in the input images were placed in front of
a structured background. (a) Results attained with the COIL-100. (b) Results
attained with the ALOI database. As in the case of segmented input images
(see Figure 14), recognition performance degraded smoothly with the number
of simultaneously presented objects.
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(a) (b)

Figure 16: Input images of a partially occluded object. (a) A segmented and (b)
an unsegmented input image of a partially occluded object. In this example, the
occluding object covers about 50% of the occluded object.

putting more emphasis on the correspondence-based part through choosing
θ < 0.1. For performance reasons, this was not carried out.

4.4 Recognition of Partially Occluded Objects. While in the previous
experiment (in section 4.3) the objects were presented in a nonoverlapping
manner, this final object recognition experiment was concerned with recog-
nition of partially occluded objects. Only the recognition performance with
respect to object identity was evaluated. The experiment was organized
into 12 test cases per database. In the first 6 test cases, we simultaneously
presented two objects where 0 to 50% of the object on the left was occluded
by the object on the right. The amount of occlusion was sampled in 10%
steps. Occluded and occluding objects were different and randomly picked,
and each object appeared at least once as occluded. In the remaining 6 test
cases, cluttered background was added. The procedure of background con-
struction was the same as in the first experiment. Accounting of recognition
responses was the same as in the experiments with multiple objects, again
without checking the objects’ positions. Figure 16 shows sample input im-
ages of a partially occluded object with and without added background.

The result of this experiment is given in Figures 17 and 18. In Figure 17 the
objects in the input images were placed in front of a plain black background,
while the result given in Figure 18 was attained with unsegmented images.
As in the previous experiment, emphasis of the correspondence-based part
improved recognition performance: a solution of the binding problem is
also important in the case of partially occluded objects. Moreover, presen-
tation of segmented images yielded better results. For both segmented and
unsegmented images, the system’s performance degraded smoothly with
the amount of occlusion. Experimental results for the test cases with no
occlusion were taken from the first test case of the previous experiment,
in which the input images contained two nonoverlapping objects. As in
the experiment with multiple objects, one can expect that recognition rates
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Figure 17: Recognition of partially occluded objects (segmented images).
Recognition performance with respect to object identity in the case of partially
occluded objects placed in front of a plain black background. (a) Results attained
with the COIL-100 database. (b) Results obtained with the ALOI database. As
in the case of multiple objects (see section 4.3), emphasis of the correspondence-
based verification of model candidates considerably improved recognition per-
formance. Performance degraded smoothly with the number of simultaneously
presented objects.
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Figure 18: Recognition of partially occluded objects (unsegmented images).
Recognition performance with respect to object identity in the case of partially
occluded objects placed in front of a structured background. (a) Results attained
with the COIL-100 database. (b) Results attained with the ALOI database. As
in the case of segmented input images (see Figure 17), recognition performance
degraded smoothly with the amount of occlusion.
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could in some cases have been improved further by putting more emphasis
on the correspondence-based part by choosing θ < 0.1.

4.5 Comparison with Other Techniques. Our system performed favor-
ably compared with other techniques. The original system by Murase and
Nayar (1995), which performs a nearest-neighbor classification to a mani-
fold representing a collection of objects or class views, attained a recogni-
tion rate of 100% for segmented images of single objects drawn from the
COIL-100 database. Our system attained a recognition rate of 99.13% in
the same test case (see section 4.2). The recognition performance of the sys-
tem by Murase and Nayar is, however, unclear if it would be confronted
with more sophisticated recognition tasks, such as images with structured
backgrounds, multiple objects, or occluded objects.

Wersing and Körner (2003) compare their method of setting up the fea-
ture extraction layers in an evolutionary fashion with the performance of
the one in Murase and Nayar (1995). The authors conducted their exper-
iments on the COIL-100 database. In the case of segmented images, their
system and ours performed about equally well (see Figure 4b and Table 1
in Wersing & Körner, 2003, and Figure 10a).

In the case of unsegmented images, our system outperformed the system
by Wersing and Körner (2003). (see Figure 6a in Wersing & Körner, 2003,
and Figure 11a.) Our system attained a recognition rate of 92.25%, while
the system from Wersing and Körner achieved a recognition rate slightly
below 90%. It is, however, worth mentioning that the experimental setting
differs considerably in the compared experiments. Wersing and Körner
performed their experiment on the first 50 objects of the COIL-100 database
and constructed structured backgrounds out of fairly big patches of the
remaining 50 objects. In contrast, we conducted the experiment on all objects
and pasted them into a cluttered background consisting of arbitrarily chosen
image patches of random size derived from the other test images.

5 Summary and Future Work

We presented a method for invariant visual recognition of objects that em-
ploys a combination of rapid feature-based preselection with self-organized
model graph creation and subsequent correspondence-based verification of
model candidates. This hybrid method outperformed both purely feature-
based and purely correspondence-based approaches, especially for more so-
phisticated recognition tasks, such as images with structured background,
multiple objects, or partially occluded objects. Throughout, a well-balanced
combination of the feature-based and correspondence-based parts pro-
duced optimal results in terms of recognition rate and pose error. In all
test cases, the system’s performance degraded smoothly with the increas-
ing complexity of the recognition tasks. In a qualitative sense the results
attained with the COIL-100 database are comparable to those attained with
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the ALOI database. Because of the poorer quality of the ALOI images rel-
ative to the COIL-100 images, which was especially harmful in the case
of structured backgrounds and occlusion, the results achieved with that
database are subject to an increased mean variation relative to those at-
tained with the COIL-100 database.

As an intermediate result, the system also produces model graphs, which
are representations of a presented object in terms of the memorized features.
A variety of further processing can build on these graphs. The simple graph
matching employed here can be replaced by the more sophisticated meth-
ods from Lades et al. (1993), Wiskott et al. (1997), and Tewes (2006), which
should lead to increased robustness under shape and pose variations.

In the existing state, the method can also be used for the purposeful ini-
tialization of sophisticated but slow techniques. For instance, it can produce
a coarse pose estimation followed by refinement through correspondence-
field evaluation. Another promising extension will be to use diagnostics
from the classification process for novelty detection and subsequent au-
tonomous learning.

The computational model we have described here can be criticized on
several grounds; we discuss three of them. First, the testing data can be
seen as insufficient. It has been remarked that available object databases
do not address the important problems of object recognition because they
do not contain enough invariances (Pinto, Cox, & DiCarlo, 2008). As the
authors correctly state, real-world images contain much more variability
than can be captured by reasonably sized databases. However, a mechanism
that dynamically constructs object representations from correspondences
can greatly alleviate problems with varying backgrounds and allows a
whole range of invariances like background clutter and partial occlusion,
as we have demonstrated. Furthermore, the use of standard databases is
the only way to compare different algorithms beyond speculation on how
they would perform on arbitrary images.

Second, the features used can be regarded as too simple for recogni-
tion under hard real-world conditions. We are using a hierarchy of features
starting with complex cell responses, composing them into jets, and jets
into parquet graphs, and these into model and image graphs, according
to matching dynamics. A more flexible feature hierarchy like the one pro-
posed by Ullman (2007), Bart and Ullman (2008) would certainly improve
recognition in our system. We think that the invariance under local shifts
exhibited by the complex cell responses while keeping essential image in-
formation (Wundrich, von der Malsburg, & Würtz, 2004) is an advantage
of our feature types over gray-value patches. Further invariances can be
achieved by assuming that objects with similar features in one view will
also have similar features in another view. This allows learning depth-
rotated versions of features from examples (Bart & Ullman, 2008; see also
Müller, Heinrichs, Tewes, Schäfer, & Würtz, 2007). In the future, we will
incorporate relational networks into our system, which code, for example,
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that different views belong to the same object, which is the basis of using
this information for invariant recognition.

Third, it may be doubted that the brain actually works this way. At the
current state, experimental evidence for correspondence-computing circuits
in the brain is sparse. Their necessity can, however, be argued on the basis
of computational theory; this letter is an example. Recently, detailed models
have been presented that allow fast correspondence estimation in a neural
system (Lücke, Keck, & von der Malsburg, 2008).

Another point with weak biological motivation is the use of a maximum
operator in the calculation of a relative threshold for the selection of model
candidates (see equation 2.17). Stimulation of cells in the inferotemporal cor-
tex reveals that invariant responses to the presence of several objects are well
described by the average of the responses to single objects (Zoccolan, Cox,
& DiCarlo, 2005), meaning that the maximum operation cannot be the final
nonlinearity used for a recognition decision. However, if the computational
goal is that all present objects lead to superthreshold responses in “their”
neurons, this behavior is actually compatible with the application of a rel-
ative threshold. It is also what we require for preselection of local features.

To conclude, this letter proposes that a combination of feature- and
correspondence-based methods for the task of invariant visual object recog-
nition is a good computational strategy. Here, it has been modeled as
a two-stage process. First, feature-based processing is applied as far as
it goes by excluding as many objects as possible and, second, the am-
biguous cases, the model candidates, are subjected to correspondence-
based processing. Within the more biology-inspired dynamic link matching
(DLM) framework (von der Malsburg, 1981, 2002; Wiskott, 1995), the result
of the feature-based stage would supply a suitable initialization of the
correspondence-based part, that is, an initialization of the dynamic links.
The final decision of an appropriate model for the object contained in the
input image is then subjected to the DLM machinery. This will be the topic
of a forthcoming publication.
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