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Abstract. We present a neural system that recognizes faces under
strong variations in pose and illumination. The generalization is learnt
completely on the basis of examples of a subset of persons (the model
database) in frontal and rotated view and under different illuminations.
Similarities in identical pose/illumination are calculated by bunch graph
matching, identity is coded by similarity rank lists. A neural network
based on spike timing decodes these rank lists. We show that identity
decisions can be made on the basis of few spikes. Recognition results on
a large database of Chinese faces show that the transformations were
successfully learnt.
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1 Introduction

Invariant recognition of objects is one of the most important features of the
visual system and a classical classification task for artificial neural networks.
However, invariance is not a natural generalization performed by known network
architectures.

Invariances can, to a limited degree, be learnt from real-world data based on
the assumption that temporally continuous sequences leave the object identity
unchanged [2, 6, 1, 13].

Nevertheless, successful recognition systems have the desired invariances built
in by hand. This includes elastic graph matching [7, 12], where the graph dynam-
ics explicitly have to probe all possible variations in order to compare an input
image with the stored models. Neural architectures that perform this matching
include [14, 8, 15], with the more recent ones being massively parallel and can
account for invariant recognition with processing times comparable to that of
the visual system. These methods work fine for the recognition of identity under
changes in translation, scale, and small deformations. The latter includes small
changes in three-dimensional pose.

Invariances for which explicit modeling is difficult, like large pose differences
or illumination changes, can be handled by elastic bunch graph matching only if
bunch graphs are supplied for a coarsely sampled set of variants, e.g., 10 different
head poses. This is problematic from a technical point of view [10], because for a
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Fig. 1. Bunch graphs for different poses in the CAS-PEAL database. Images in different
poses are not directly comparable because of different node numbers and strongly
distorted features.

recognition system for many persons it is infeasible to store and match all persons
in all possible poses or illuminations. It is also improbable that the brain would
employ such a strategy because of the same waste of memory resources.

We here present a system that can learn invariances in a supervised way from
a set of examples of individual objects in several instances of variations. For lack
of a better term, we refer to each coarsely sampled constant illumination or pose
angle as one situation. Invariant recognition generalizes to other objects that are
known only in one situation.

We have recently reported that such a recognition scheme can achieve pose-
invariance on the basis of similarity rank lists [9]. Here we extend this technique
by a neuronal network that implements these similarity rank lists by relative
spike timing [11]. This implementation on the one hand gives a plausible neural
network for recognition under learnt invariances. On the other hand, it suggests
a similarity function, which is different from the one used in [9]. We show that
this yields better recognition results for pose-invariant face recognition. In this
paper, we also tested the performance on illumination invariance.

2 Recognition by similarity rank lists

Recognition by graph matching [7, 12] compares a given probe image P with
gallery images Gg of all known persons. It first estimates the correspondences
between image points on the basis of N local features (Gabor jets) in a process
called landmark finding. Then, it calculates a similarity between persons by
adding (or averaging) local similarities SJ(P,Gg, n) of corresponding features (n
being a local feature index). The local similarity function is usually different
from the one used for landmark finding. The recognized person is then the Gg
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Fig. 2. Situation-independent recognition is mediated by a model database of some
persons in all situations. Probe and gallery images are coded into rank lists π and γ by
their similarities to the models. These rank lists are comparable, while the similarities
are not (feature indices have been dropped for clarity).

with

g = arg max
g

1
N

∑
n

SJ(P,Gg, n) . (1)

This cannot work between different situations, because the features are heav-
ily distorted by pose and illumination changes, for large pose differences some
feature points even disappear, leaving no visual features to compare with. In
order to overcome this problem we construct a system that can look up the
variations in a set of faces which are known in all situations. A number of NV

situations are coded into a model database with NM subjects. The respective
graphs are denoted by Mv

m, where m is an index of personal identity and v one
of situation. Graphs with the same value of m are derived from images of the
same person, the ones with the same value of v show the same situation. On the
basis of these examples the variations are learnt.

Each situation requires its own similarity Sv, because the correspondence be-
tween features in different situations can not be assumed. Especially, the graphs
in different poses contain different numbers of features Nv (see figure 1).

Personal identity is coded by a similarity rank list to the models of the same
situation. The rank list for a test subject T is created as follows. First, all local
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similarities Sv to all model images Mv
m are calculated. For each index n and

situation v a rank list rv
n is created, which contains the rank of similarity for

each model indexm, so that for each pair of model imagesMv
m,M

v
m′ the following

holds (rv
n(m) ∈ N0):

rv
n(m) < rv

n(m′) ⇒ Sv(T,Mv
m, n) ≥ Sv(T,Mv

m′ , n) . (2)

The most similar model candidate would be the one with rv
n(m) = 0, the follower-

up the one with rv
n(m) = 1, etc. These lists now serve as a representation of a

test image T . For varying T we will use the notation rv
n(T,m).

2.1 Invariant recognition

For the recognition of an arbitrary subject a large gallery database is created,
which contains all known subjects in a preferred situation v = 0. For practical
purposes, this situation will be a frontal pose under frontal illumination.

Each subject Gg in the gallery is assigned a rank list representation by match-
ing each of its landmarks to those of the model subjects in the preferred situation:

γg,n(·) = r0n(Gg, ·) . (3)

For recognition we assume that a probe P v image appears in the known
situation v. This probe is also represented as a similarity rank list for each
landmark of all models in situation v:

πv
n(·) = rv

n(P v, ·) . (4)

The requirement to know the situation beforehand will be removed in section 2.4.
Now the identity of the probe image is coded into the lists πv

n, and the gallery
images into γg,n. Each entry in a rank list is the rank of similarity of that model
image to the probe or gallery image.

As the model database contains the same persons in different situations the
rank lists should be similar for the same person. This is basically a continuity
assumption on the transformations between situations: People that are similar
in one situation are also similar in any other situations.

What is required now is a similarity function between rank lists. In contrast
to the function chosen in [9] we here construct one on the basis of a neural
network, which recognizes patterns on the basis of spike arrival times.

This similarity function enables the comparison of images under pose and
illumination variation. For identification tasks it is now sufficient to store a
single image of a person in a neutral view. Images taken in different situations
can be compared to this gallery image using the rank list similarity.

2.2 Neuronal rank list comparison

Thorpe et al [11] have proposed a neural network that can evaluate rank codes. A
set of feature detectors responds to an input pattern such that the most similar
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Fig. 3. Left: A neural circuit sensitive to the order of firing neurons, the preferred order
is stored in the weights wj (after [11]). Right; The same circuit is repeated for each
gallery image. The probe image is represented as a rank list π according according to
similarities with model images in the same situation. The similarities of the gallery to
the model images in neutral situation are coded in the weights wm,g.

detector fires first. The order in which the spikes arrive can then be decoded by
a circuit depicted in the left half of figure 3.

We assume a neuronal module that calculates the similarity of stored model
images to the actual probe image. Each gallery subject has one representing
neuron. The similarity influences the time a neuron corresponding to this subject
sends a spike. The higher the similarity the earlier the spike.

The activation in response to a spike train aj is calculated as

A =
K∑

j=1

exp
(

order(aj)
λ

)
wj , (5)

with λ determining the activity decrease per spike. This parameter has to be
optimized, it varies with the size of the rank list. If bj is the sequence to elicit
the largest activation the weights must be

wj =
1
K

exp
(

order(bj)
λ

)
. (6)

For our purposes, such a decoding circuit is required for each gallery image
Gg. π is the rank list or the firing order of a number of NM model neurons firing
according to their similarity of each model image with index m to the probe
image. The rank list γg of gallery image Gg is coded in the synaptic weights
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PM+45 FM+00 FM−45 FM−90

PM+00 FD+00 FD−45 FD−90

PM−45 FU+00 FU−45 FU−90

Fig. 4. Examples for pose variation (left column) and illumination variation in frontal
pose handled by the system.

wm,g as follows:

wm,g =
1
NM

exp
(
γg(m)
λ

)
. (7)

The activity Ag then becomes

Ag =
∑
m

exp
(
π(m)
λ

)
wm,g , (8)

=
1
NM

∑
m

exp
(
π(m) + γg(m)

λ

)
, (9)

and is interpreted as a similarity function between the rank lists π and γg.
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Srank(π, γg) =
1
NM

NM∑
m

exp
(
π(m) + γg(m)

λ

)
. (10)

Besides the neural interpretation, this similarity function has yielded better
recognition results than the one used in [9].

2.3 Recognition

So far, the feature index n has been omitted from the rank list derivations.
Clearly, the above circuit can be repeated for each feature, and the resulting
similarities are averaged over all features for a similarity between the persons.

Srecog(g) =
1
Nv

Nv∑
n=1

Srank(πv
n, γgn) . (11)

As usual, the recognized person is the one with the index g that maximizes this
similarity.

2.4 Automatic estimation of situation

In a realistic setting, the situation of the probe image is, of course, unknown. It
can be estimated by matching with bunch graphs of all situations, and assigning
the situation with the highest similarity:

vest = arg max
v

1
Nv

1
NM

Nv∑
n=1

NM∑
m=1

Sv(T,Mv
m, n) . (12)

In case of v situations, bunch graph matching leads to v graphs for a given
test image T . For each situation, the average similarity of that graph to all
corresponding graphs of the model is calculated. The highest similarity indicates
the estimated situation vest, which is used instead of the known situation in the
above procedure.

3 Experimental setup

The network was tested on the CAS-PEAL face database [4]. The landmarks
are found by elastic bunch graph matching, starting from very few images, that
were labeled by hand. 24 subjects have been set aside for manual labeling. From
these, the basic bunch graphs have been built (12 for pose, 8 for illumination).

The remaining 1015 subjects have been split up into model sets and testing
sets (500 model and 515 testing for the pose case, and 100 model and 91 testing
for illumination).

From the basic bunch graphs the landmarks on the model set database have
been determined by incremental bunch graph building [9, 5]. After EBGM was
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Table 1. Recognition rates (all in %) with known situation are only slightly impaired
when the situation is estimated.

Pose Illumination

Recognition rate with given situation 99.02 89.01

Rate of correct situation estimation 99.89 ± 0.09 91.96 ± 0.89

Recognition rate with automatically
determined situation

97.75 ± 0.50 89.97 ± 1.36

Best recognition rate reported in [3] 71 51
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Fig. 5. Cumulative match score with known situation for pose (left) and illumination
variation (right). A recognition rate of 100% is reached at rank 8 out of 515 (for pose)
and 36 of 91 (for illumination). Rank-1 recognition rates are 99% and 89%, respectively.

performed on one situation of the model set, good matches have been added
to the bunch graph to achieve also a good match on previously poor matches.
Each situation creates a separate bunch graph. After landmarks for all model
images have been found and each bunch graph has grown to a convenient size
(15 model graphs have been added in 3 iterations), gallery registration could
begin. For registration of a gallery image, a single match has to be performed
with the bunch graph of the corresponding situation. After that, similarities to
the model images are calculated and the rank lists are created.

Identifying a probe image works as follows. A single match with the bunch
graph of the appropriate situation has to be done for landmark finding. A com-
parison with each model subject is done to calculate the rank lists. Then the
rank lists can be compared to the ones in the gallery in a cross run.

4 Results

Figure 5 shows the cumulative match scores for recognition under pose and
illumination variations. 100% recognition rate has been achieved at rank 8 for
pose and 36 for illumination. To estimate the uncertainty in the recognition
rate, the available subjects have been assigned to model or test in 100 randomly
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Fig. 6. This curve shows the recognition rates when a recognition decision is made
before the spikes from all gallery representations are in. It can be seen that the first
10 spikes suffice to make the correct decision and even the first one is usually a good
guess.

chosen partitions. The resulting recognition rates with error bars are shown in
table 1.

In a final experiment, the decision was made on the basis of subsets of the k
most similar model candidates. This means, a decision was already made when
the first k spikes had reached the gallery neurons. The resulting recognition rates
are shown in figure 6. This shows that recognition rates are not impaired if only
the 10 most similar model candidates are used.

5 Discussion

We have presented a neural network based on spike timing, which is capable of
learning the variations caused by pose and illumination changes on the basis of
examples. Decisions are made from spike timing with the most similar template
firing first. The model database holding the variations for a limited number of
persons allows the generalization of identities known only in a single situation.
The high recognition rates in comparison with previously published recognition
results on the CAS-PEAL database demonstrate that a usable model of the
variations due to pose and illumination changes has been learnt from examples.
The recognition decision can be made using early stopping, which makes the
system very fast in a parallel architecture.
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