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Abstract

Digital image analysis of faces has been demonstrated to be effective in a small number of syndromes.
In this paper we investigate several aspects that help bringing these methods closer to clinical application.
First, we investigate the impact of increasing the number of syndromes from 10 to 14 as compared to an
earlier study. Second, we include a side-view pose into the analysis and third, we scrutinize the effect of
geometry information. Picture analysis uses a Gabor wavelet transform, standardization of landmark co-
ordinates and subsequent statistical analysis. We can demonstrate that classification accuracy drops from
76% for 10 syndromes to 70% for 14 syndromes for frontal images. Including side-views achieves an ac-
curacy of 76% again. Geometry performs excellently with 85% for combined poses. Combination of
wavelets and geometry for both poses increases accuracy to 93%. In conclusion, a larger number of syn-
dromes can be handled effectively by means of image analysis.
© 2007 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Syndrome diagnosis based on clinical examination of patients is a challenge in everyday
clinical practice [16]. Databases are an integral part of this process complementing clinical
expertise [14,17]. In the past we have shown that computer-based analysis of frontal pictures
of faces might be a helpful addition to this process. We introduced a method of computer-based
syndrome diagnosis based on 2D pictures processed by wavelet picture analysis and subsequent
statistical analysis [3,12]. By means of wavelet analysis, a sparse, yet informative, representa-
tion of a picture can be achieved [13,18,19]. To optimize face analysis, information is focused
on certain landmarks in the face (model graph; Fig. 1). Using model graphs, a classification
accuracy of ~75% can be achieved among 10 syndromes [3], which roughly equals the perfor-
mance of an ad hoc diagnosis by clinicians in a previous study [12]. As a consequence of grow-
ing data complexity accuracy decreases as more syndromes are included (compare [3,12]).
Therefore, it seems mandatory to enrich the data set with additional information. It is straight-
forward to include side-views of faces which harbor, both, unique clinical features like ear and
chin but also contribute three-dimensional information. An additional strategy is to include ge-
ometry information, which is based on landmark coordinates. Geometry seems to be an impor-
tant feature in human face recognition and processing [2,10,11] and should therefore contribute
to the distinction of syndromes. For example the stability of manual landmark placement has
been demonstrated [1]. Also, many distances in the skull bone structures show significant her-
itability [8,9,15]. Coordinates of landmarks have been successfully employed in the analysis of
3D representation of faces [6,7]. In the cited study geometry was the sole information source.
From these studies, it seems essential that landmark correspondence is good, i.e., the exact
positioning of nodes at predefined positions like nose-tip, lips, etc. [2,4,5]. This implies that
standardization is required and manual positioning of landmarks improves results [3]. We
have therefore opted to include geometry information into our data set by using coordinates
of manually placed landmarks, followed by standardization. We compare the relative impact
of wavelet information of frontal and side-views with coordinate information and consider

Fig. 1. Example pictures of used model graphs in front and side-view pose.
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the combined data set. Finally, we use a data set of 14 syndromes which furthers our evaluation
of the impact of the inclusion of more syndromes into our ongoing study.

2. Materials and methods
2.1. Probands

We acquired photographs of patients each being affected by one in 14 syndromes (Micro-
deletion 22q11.2, Wolf—Hirschhorn syndrome, Cri-du-chat syndrome, Cornelia de Lange syn-
drome, Fragile X syndrome, Mucopolysaccharidosis Type 1I, Mucopolysaccharidosis Type 111,
Noonan syndrome, Prader—Willi syndrome, Progeria, Smith—Lemli—Opitz syndrome, Sotos
syndrome, Treacher Collins syndrome, Williams—Beuren syndrome). Annual meetings of
parent support groups have been visited and written informed consent was given by the
probands or their responsible parents. In total n =200 probands were included. Probands’
ages ranged from 1 to 45 years. A breakup for individual syndromes is given in Table 1.
This extends our previous data set by four newly added syndromes (Wolf—Hirschhorn
syndrome, Mucopolysaccharidosis Type II, Progeria, Treacher Collins syndrome; Fig. 2; for
other syndromes c.f. [3]).

2.2. Picture acquisition and selection

Arrangement of the equipment and illumination of the photographic setting were standard-
ized and reproduced as accurately as possible at the different meetings. Three lighting sources
created a soft illumination and reduced shadows in the faces, which could otherwise affect later
analyses. A homogeneous background was used throughout. We acquired, both, frontal and
side-view pictures taken with a digital camera (Nikon Coolpix 950, Nikon Coolpix 4500)
and a video sequence of a rotation of the proband around a vertical axis (Panasonic NV-
MX350EG). Videos allowed for subsequent extraction of still pictures to achieve optimal pic-
tures for both poses. Final picture selection was based on pose, sharpness and facial expression.
For each individual a single picture was selected per pose.

Table 1

Characterization of the data set

Condition Age range Number of probands
Microdeletion 22q11.2 (22q-) 1.7-16.4 26
Wolf—Hirschhorn syndrome (4p-) 1.1-40.5 8
Cri-du-chat syndrome (5p-) 1.0—16.8 9
Cornelia de Lange syndrome 7.1-33.7 12
Fragile X syndrome 4.6—13.8 12
Mucopolysaccharidosis 11 4.3-20.4 7
Mucopolysaccharidosis IIT 45—15.5 8
Noonan syndrome 0.6—37.2 15
Prader—Willi syndrome 5.0—20.9 12
Progeria 5.7-8.4 5
Smith—Lemli—Opitz syndrome 0.3—16.3 12
Sotos syndrome 1.0-20.3 15
Treacher Collins syndrome 1.6—45.3 12

Williams—Beuren syndrome 2.9—45.0 43




Fig. 2. Example pictures of the newly included syndromes in front and side-view pose (top to bottom: Wolf—Hirschhorn syndrome, Mucopolysaccharidosis Type I, Progeria,
Treacher Collins syndrome).

E5—#F (8007) IS $oU2u2D) [PIIPay Jo (pumor uvado.ng | Ip 12 ADWjIOA "

Ly



48 T. Vollmar et al. | European Journal of Medical Genetics 51 (2008) 44—53
2.3. Picture preparation and analysis

Pictures were converted to a standard format (gray scale, resolution 256 x 256 pixels). In
a two-step analysis pictures are re-represented by model graphs which contain Gabor wavelet
transforms of important facial features. Details of this process are given elsewhere [12,18]. In
short, landmarks of the face are located in the picture based on similarity with independent ex-
ample pictures and Wavelet coefficients are extracted at each landmark (48 landmarks, 40 co-
efficients each). Wavelet representation can be viewed as a form of image compression that
allows to approximate the original image based alone on the coefficients and the position of
the corresponding landmark (i.e., the model graph) [19].

We have also created versions of the model graphs for which landmarks have been as-
signed by a human investigator (hand-labeled model graphs). Previous work has shown
that manual intervention in landmark placement is highly accurate [1] and improves classifi-
cation results [3].

2.4. Statistical analysis

In the statistical analysis we used both versions of model graphs (hand-labeled and auto-
matic) of frontal and side-views. We have conducted separate and combined analyses of the
two poses. Additionally, we have also analyzed the geometry and the wavelet components of
model graphs separately and in combination.

Coordinates were standardized prior to ensuing analysis. Graph coordinates were rotated
to a standard angle, centered and scaled to unit size. Because of the complexity of the data
set (points and wavelets of both poses comprise 2 x 1920 + 2 x 96 = 4032 coordinates per
sample), dimension reduction techniques have to be employed. We used principal compo-
nent analysis (PCA) to reduce dimensionality to ca. 100 coordinates depending on the par-
ticular data set. Recall, that PCA orders the resulting coordinates (principal components;
PCs) by their relevance in explaining variance of the data set. Whenever we combined
coordinates and wavelets we combined data after conducting PCA separately on the two
components.

We have employed several classification techniques to assess classification accuracy. These
methods were linear discriminant analysis (LDA), support vector machines (SVM) and k-th
nearest neighbors (kNN). These methods differ in complexity and robustness. LDA uses a hy-
perplane to separate different classes. By contrast, SVM uses a maximum-margin hyperplane in
conjunction with a non-linear transformation, which allows for non-linear decision boundaries.
kNN uses a majority vote of the classes of the k nearest training samples to assign a class to an
independent sample. Classification accuracy was defined by conducting a 10-fold cross valida-
tion procedure. Ten-fold cross validation assesses accuracy by repeatedly splitting the data set
into train/test pairs, predicting unseen test samples from the training data and averaging accu-
racy over runs. We have averaged accuracy over 20 cross validation runs to minimize effects of
random fluctuations due to hold out sample selection. We have used two model selection
schemes to select PCs for classification. First, we selected the first k£ PCs in the &-th step (block
selection). This allows to compare results with our previous study [3,12]. A more sophisticated
but also more demanding algorithm in terms of computation time is forward selection. Each
step adds a new PC to the set of class predictors by choosing the PC that best improves clas-
sification accuracy. Forward selection was applied to the first 90 wavelet PCs and the first 60
coordinate PCs.
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3. Results
3.1. Block selection

Results for block selection in Table 2 can be directly compared to our previous study [3].
These classification results do not use coordinate information. Using LDA, classification accu-
racy for hand-labeled wavelets is 70.1% for 14 syndromes as compared to 76% for 10 syn-
dromes in the previous study. Side-view pictures alone performed at 62.7% and the
combination of both poses performed at 76.1%. Wavelets extracted from the automatic process
performed considerably worse at 52% for frontal views. For side-views an accuracy of 42% was
achieved. We note, however, that we have not updated the process locating the landmarks with
more examples as compared to the previous study. SVM and kNN performed at 63% and 58%,
respectively, and are thus worse than LDA as was the case in the previous study. For SVM st
degree polynomials were used. kKNN is the worst classifier in this study (front, side-view pic-
tures or combination; data not shown) with the best accuracy achieved with k= 6 neighbors.

Breaking up results for individual syndromes, Fragile X syndrome (100%), progeria (99%)
and Williams—Beuren syndrome (90.9%) were the syndromes with best results. Interestingly,
progeria performs at only 63% for side-views alone. Syndromes with the worst accuracies
were Mucopolysaccharidosis Type III in frontal pose (6.3%) and Cri-du-chat syndrome, which
holds for both poses (frontal: 11%, side-view 48%). Interestingly, accuracy of Cri-du-chat syn-
drome performs better using only side-views.

3.2. Pairwise comparisons

For deeper insight into which distinctions are difficult to learn for the computer in the cur-
rent data set we conducted pairwise classifications for all syndrome pairs. Table 3 reports

Table 2

Classification accuracies using different data sets and classification methods

Classification method LDA SVM kNN
Picture pose Combined Frontal Side-view Frontal Frontal Frontal
Model graph Manual Manual Manual Automatic Manual Manual
Overall (%) 76.1 70.1 62.7 525 63.8 58.2
22q- (%) 88.1 75.4 65.0 54.2 79.6 69.8
4p- (%) 53.1 433 50.0 254 225 12.5
5p- (%) 322 11.7 48.9 18.3 16.1 0.6
Cornelia de Lange (%) 83.8 74.6 65.4 82.1 58.3 434
Fragile X (%) 100.0 94.6 97.5 87.8 91.7 97.6
Mucopolysaccharidosis II (%) 57.9 59.3 60.0 94.3 40.7 32.1
Mucopolysaccharidosis III (%) 6.3 35.6 6.3 0.0 8.1 17.5
Noonan (%) 77.0 79.0 51.0 51.0 58.0 78.3
Prader—Willi (%) 83.3 712 75.0 74.3 712 45.4
Progeria (%) 99.0 98.0 63.0 52.0 67.0 47.0
Smith—Lemli—Opitz (%) 59.2 59.6 20.4 25.0 55.4 44.6
Sotos (%) 80.0 71.0 71.7 63.3 61.3 37.3
Treacher Collins (%) 64.2 39.2 34.6 50.8 24.2 35.8
Williams—Beuren (%) 90.9 91.0 84.2 70.6 933 82.0

The third row indicates whether manually corrected or fully automatically created model graphs were used. Results for
SVM use 1st degree polynomials, kNN k= 6 neighbors.
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Table 3

Results of pairwise classification of frontal views using 26 PCs gained from wavelet coefficients for Microdeletion 22q
(22q-), Wolf—Hirschhorn (4p-), Cri-du-chat (5p-), Cornelia de Lange (CDL), Fragile X (FraX), Mucopolysaccharidosis
II (MPS2), Mucopolysaccharidosis III (MPS3), Noonan, Prader—Willi (PWS), Progeria, Smith—Lemli—Opitz Sotos
(SLO), Treacher Collins (TCS) and Williams—Beuren (WBS)

22q- 4p- Sp- CDL FraX MPS2 MPS3 Noonan PWS Progeria SLO Sotos TCS

4p- (%) %43 - - - - - - - — - - - -
5p- (%) 850 918 — — - - - - - - - - -
CDL (%) 958 98.0 826 — - - - - - - - - -
FraX (%) 995 982 905 760 — - - — - - - - -
MPS2 (%) 91.6 985 928 832 971 — - - - - - - -
MPS3 (%) 84.1 900 635 935 935 547 — - - - - - -
Noonan (%) 84.8 934 813 852 937 877 80 — - - - - -
PWS (%) 955 91.8 80.0 933 63.1 968 880 817 - - - - -
Progeria (%) 91.6 823 850 959 991 935 556 980 986 —
SLO (%) 96.2 965 82.6 89.8 987 894 844 815 97.7 989 —  — -
Sotos (%) 869 96.1 654 726 969 850 741 592 93.1 904 812 -— -
TCS (%) 87.7 80.0 89.6 84.0 892 925 722 793 773 990 954 749 —
WBS (%) 955 981 951 972 982 987 975 973 946 1000 975 919 958

accuracies for a hand-labeled data set and wavelet information from frontal pictures. Classifi-
cation rates range from 54.7% (MPS II vs. MPS III) up to perfect discrimination (e.g. Progeria
vs. Williams—Beuren syndrome). Most rates range between 80% and 100%. Mucopolysacchar-
idosis III is difficult to discriminate from MPS II, Progeria and Cri-du-chat with accuracies
below 70%. Cri-du-chat discriminates poorly from MPS III and Sotos syndrome.

3.3. Forward selection

Forward selection was applied to geometry information, wavelets and the combination. We
here report only on data sets including both poses. Table 4 summarizes the results. It is notable,

Table 4
Classification accuracies for coordinates and wavelets for combined poses (frontal and side-view)
Geometry (%) Wavelets (%) Geometry + wavelets (%)

Overall 85.7 76.9 93.1
Microdeletion 22q 87.7 86.9 94.6
‘Wolf—Hirschhorn 80.0 57.5 97.5
Cri-du-chat 78.9 47.8 72.2
Cornelia de Lange 73.3 78.3 82.5
Fragile X 91.7 91.7 100.0
Mucopolysaccharidosis 11 70.0 70.0 82.9
Mucopolysaccharidosis 11T 70.0 22.5 61.3
Noonan 97.3 80.0 93.3
Prader—Willi 81.7 76.7 91.7
Progeria 96.0 64.0 100.0
Smith—Lemli—Opitz 78.3 63.3 97.8
Sotos 92.0 91.3 89.3
Treacher Collins 83.3 65.8 93.7
Williams—Beuren 91.2 91.6 97.1

Classification method is LDA using forward selection and model graphs were hand-labeled.
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that geometry information performs excellently and an overall accuracy of 85.7% is achieved.
Wavelets perform at 76% and the combination at 93%. This indicates that non-overlapping in-
formation is contained in coordinates and wavelets, respectively. Cri-du-chat syndrome per-
forms at 78% for geometry thereby improving over wavelet results at 47%. Also in MPS III,
geometry performs well at 70% as compared to 22% with wavelets. Except for Wolf—Hirsch-
horn syndrome (improvement from 57% to 80%), progeria (64%, 96%) and Smith—Lemli—
Opitz syndrome (63%, 78%) results were similar when comparing geometry with wavelets.

4. Discussion

One future goal of this study is to enhance databases with capabilities of image analysis. To
be usable, a large number of syndromes have to be supported. This study gives some insight
into the feasibility of this task. Our previous study performed at 75% for 10 syndromes. Taking
into account that the probability of a correct diagnosis by random choice is 10%, this means
a ratio of 7.5 comparing a-posteriori and a-priori probabilities. In the present study this ratio
ranged from 8.8 (side-views, hand-labeled wavelets) to 13.0 (combined frontal side-view to-
gether with coordinates) supporting the view that significant information is carried by both
side-views and geometry. Also we have shown that classification accuracy does not have to de-
teriorate as more syndromes are included — which is a prerequisite to moving forward to the
clinical application.

It is interesting to look at the different components of the data set that were used in the clas-
sification process. Side-views seem to harbor less information than frontal views in terms of
classification accuracy. However, this might not be a genuine finding but due to a particular
property of our data set. For example, hair is an uncontrolled source of noise in our data set.
Side-views seem to be more severely affected by this factor. Here, of course, physical exami-
nation of a patient could assess relevance much better. It should be mentioned that Prader—
Willi syndrome and Sotos syndrome are more accurately classified using side-views than fron-
tal views. Since the combination of frontal and side-views performs best, non-overlapping,
complementary information should be contained in these two parts of the data set, as is ex-
pected (ears, side profile). In particular, three-dimensional information about the face can be
derived from a pair of frontal and side-view pictures.

The second addition in this study was the inclusion of coordinates after standardization. As-
tonishingly, coordinate information results in excellent classification accuracy. This result was
unexpected, since non-standardized coordinates completely failed to classify. There are two
main consequences of this result. Firstly, coordinates do not harbor any texture information.
In classification studies that are based on samples not drawn randomly from the population
but sampled from subgroups, hidden correlations can give rise to spuriously accurate results
in classification experiments. For example, subtle differences in the picture acquisition process
could be systematically present in one of the groups of patients and could be the true factors for
the correct classification decision. We have gone to great lengths to exclude these factors by
inspecting summary statistics of pictures, plausibility checks and visualizations of the decision
process [3]. The geometry result is an independent support for the correctness of the previous
analyses. The second aspect is standardization. We have so far not standardized pictures by geo-
metric transformation, since Gabor wavelets have some properties that make them robust
against such transformations [18,19]. Since we want to apply our methods on pictures that
are not as accurately controlled for as the ones we used in this study, we are going to rely
on this robustness even more. The geometry results, however, indicate that accuracy using
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wavelets can also be increased by strict standardization. Such a standardization is possible,
when landmarks are positioned by hand, since this reveals the true geometry of the face. It re-
mains to be seen how well an automated procedure can work, but we consider this to be a prom-
ising improvement.

Automatically labeled pictures have not performed well in this study.

To explain this result, two aspects are important. Firstly, in rare instances the face was not
localized at all in the automatic process, thereby representing a data point with complete noise.
This fact becomes more relevant as more syndromes are included, since the chance that such
a point of noise lies close to one of the other syndromes increases. Therefore, mistakes like
these should be avoided in the training data set that could be used in practice. Secondly, we
have not optimized the localization of landmarks, since for the reasons just mentioned we
have performed manual labeling, anyway. Locating landmarks can be improved by several
means, including a well-chosen training set, including faces with variation in syndrome, sizes
and rotation. Also algorithmic improvements are possible and currently under investigation. In
conclusion, a completely automatic analysis is not feasible at the moment and landmark place-
ment should always be checked and corrected to achieve best results.

In clinical practice, it is certainly possible to adjust landmarks for a single pair of facial pic-
tures that is to be analyzed by hand, however, there are additional challenges that have only
partially been covered thus far. One important issue is the composition of the training data
set. Should only very characteristic probands be included or should also mild phenotypes be
included? On the one hand, this could drive down classification accuracy in studies like this,
on the other hand in practice a ranking of syndromes could be more helpful than a single de-
cision. For example, the classifier could be indecisive between several syndromes but could be
able to exclude a large number of syndromes. This could also be helpful in practice, and there-
fore measures other than pure classification accuracy could be useful.

This study is the first to include geometry information of 2D-pictures. It was astonishing to
see, that accurate standardization can lead to excellent classification results. 3D studies that are
solely based on geometry information, have shown similar results, although the data sets and
analyses are not directly comparable. Combining coordinates from frontal as well as side-views
seems to recover 3D-information as well, since similar results are achieved with 3D and 2D
coordinates. It should be noted that 3D coordinates have not been standardized to a unit vol-
ume, which seems to be an option for a re-analysis of the 3D data set. One advantage of the
3D-approach is that coordinates are absolute, i.e., sizes can be accurately reconstructed. In
our data set we have to rely on surrogate information, like age, for size.

In conclusion, we believe that the current results are promising in terms of improving syn-
drome diagnosis in practice. Main outcomes, that are expected by us to reach clinical practice
soon, are that result lists from database queries can be made more significant by excluding syn-
dromes that are prototypically too dissimilar and giving meaningful order to lists of suggested
syndromes. A high level of expertise of the clinician will still be indispensable for an accurate
and reliable diagnosis.
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