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MANUEL GÜNTHER and ROLF P. WÜRTZ
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We present an integrated face recognition system that combines a Maximum Likelihood
(ML) estimator with Gabor graphs for face detection under varying scale and in-plane
rotation and matching as well as a Bayesian intrapersonal/extrapersonal classifier (BIC)
on graph similarities for face recognition. We have tested a variety of similarity functions
and achieved verification rates (at FAR 0.1%) of 90.5% on expression-variation and 95.8%
on size-varying frontal images within the CAS-PEAL database. Performing Experiment 1
of FRGC ver2.0, the method achieved a verification rate of 72%.
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1. Introduction

To be useful for practical applications face recognition systems must solve a variety
of tasks. Detection procedures must select single faces from images, excluding the
background. Matching or alignment estimates pairs of corresponding points in the
face image to be analyzed (subsequently called probe image for brevity) and stored
faces (called models), comparison calculates a similarity between probe image and
models, and a statistical decision about the identity is made on the basis of simi-
larities. Finally, for efficiency reasons the memory organization of the models is of
high relevance.

Elastic Bunch Graph Matching (EBGM)15 is one of the successful base tech-
niques for face recognition. It provides an integrated method for detection, match-
ing, comparison and decision. One of its strengths is the memory organization in
bunch graphs, which integrates the results of off-line matching between all models
for efficient alignment to the probe image and rapid comparison. Preprocessing with
Gabor wavelets yields basic invariance under small deformations and also illumina-
tion changes.

On the other hand, there are statistical learning approaches, which exploit the
statistics of many models to come to an optimal decision about identity. They go
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back to the work by Moghaddam and Pentland,7, 8 who applied them to so-called
eigenfaces, i.e. the principal components of facial images.

In this article, we present a method that combines the advantages of Gabor-
labeled graphs with statistical decision making into an integrated method. We also
improve the performance by scale and rotation correction of the Gabor features
and by the use of different distance measures for feature comparison. In Sec. 2,
we will define Maximum Likelihood estimators, and in Sec. 3, the novel method of
Gabor graph scaling and rotation is introduced. Sections 4 and 5 will present the
face detection and matching steps, while Sec. 6 describes decision making. Finally,
Secs. 7 and 8 show the results of either procedure on different databases. Section 9
gives a summary and outlook to future work.

2. Maximum Likelihood Estimators

2.1. Previous work

Maximum Likelihood (ML) classifiers for face detection and recognition have been
introduced by Moghaddam et al.7, 9 They defined ML classifiers on eigenfaces for
face detection, and maximum a posteriori (MAP) classifiers in a PCA subspace
of image differences for face recognition. For face detection,7 they transformed
image patches x of different sizes and from different positions in the input image
to eigenspace and estimated the Maximum Likelihood probability
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to find the patch that best covers the face. In Eqs. (1) and (2), y names the input
x transformed to eigenspace, while λi are the corresponding eigenvalues, M is the
number of eigenfaces used for estimation, and ε approximates the distance from
feature space (DFFS).7

For face recognition, Moghaddam et al.9 implemented the Bayesian intra-
personal/extrapersonal classifier (BIC) that classifies differences x between two
facial images into intrapersonal if it was created using two images of the same
person and extrapersonal for images of different persons. They defined the MAP
probability of being intrapersonal using Bayes rule on the Maximum Likelihood
estimates P (x|Ω) of the two classes ΩI and ΩE . Equation (1) is applied to approx-
imate the likelihoods P (x|ΩI) and P (x|ΩE), and one PCA subspace is trained for
each class. Teixeira13 simplified the ML probability of Eq. (1) by using its logarithm
as a similarity measure and showed that the MAP probability can be transformed
to the much simpler form

ST (x) = −
[
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where the subscripts I and E specify the parameters of intrapersonal and extra-
personal PCA subspaces, respectively. The ST similarity of Eq. (2) defines the MAP
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probabilities by the dimensionless Mahalanobis length of x in the corresponding
PCA subspaces, which is independent of the prior probabilities of ΩI and ΩE .

2.2. Refinement

We now present a method that estimates the ML probability without calculating a
PCA, but addresses the components xi independently. It uses ML estimations of the
mean µi and variance σ2

i for each dimension i = 1, . . . , N of x on its own. Therefore,
this algorithm can deal with less training images than dimensions (P < N) since
the correlations between components xi and xj need not be estimated.

The ML probability can be either used for face detection in the one-class-fashion

SML(x) =
N∑
i=1

− (xi − µi)
2

σ2
i

(3)

or on image similarities to classify image differences:
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In the training stage mean µi and variance σ2
i are evaluated statistically on the

basis of a training set {x(p)|p = 1, . . . , P} by assuming a Gaussian distribution:

µi =
1
P

P∑
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x
(p)
i i = 1, . . . , N (5)
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For the SBIC classification of image differences the parameters of the two classes ΩI
and ΩE have to be estimated using Eqs. (5) and (6). For this purpose two distinct
sets {x(p)

I |p = 1, . . . , PI} and {x(p)
E |p = 1, . . . , PE} are required. Each vector x(p)

I of
the first set is generated as the result of comparing two images of the same person,
the second set contains vectors x(p)

E created from different persons. Since no prior
probabilities are needed, the sizes PI and PE of the training sets can differ without
any problems.

As we apply the estimators to full feature vectors, no residual error ε needs
to be estimated. Equations (3) and (4) can be computed very fast because no
transformation mixing input data from different images is required. Thus, time
complexity O(N) is reached, in comparison to O(N ·M) when using PCA. Another
nice fact is that we have not lost the benefit of the Mahalanobis distance measure,
the resulting similarity value still relies on dimensionless data. Beyond that, SBIC

has the ability to detect outliers if both intrapersonal and extrapersonal distances
are high, but this property will not be discussed further in this paper.

Compared to Moghaddam et al.,7, 9 who used images or image differences for
face detection and face recognition, respectively, we will use Gabor graphs and
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Gabor graph similarities, which will be introduced in the next section, as input
vectors x.

3. Gabor Graphs

Mean-free Gabor wavelets are very useful for both face detection and face
recognition.5, 15 With the center frequency k as parameter, their form in image
and frequency domain is:

ψk(ξ0) =
k2

β2
e
− k2ξ2

0
2β2

[
eikξ0 − e−

β2
2

]
(7)

ψ̌k(ω) = e−
β2(ω−k)2

2k2 − e−
β2(ω2+k2)

2k2 . (8)

3.1. Gabor jets

A typical parametrization for face recognition employs a family of J = 40 Gabor
wavelets ψkj (j = 1, . . . , J) at five scale levels and eight directions. This family is
visualized in frequency domain in Fig. 1. As input images are real-valued only half
the frequency domain needs to be covered.

The convolution of an image with a Gabor wavelet ψkj at image position ξ0

results in a complex-valued response aj · eiφj . The responses from all J Gabor
wavelets taken at the same position ξ0 in the image are called a Gabor jet J , which
codes the texture information around the offset point. It is common to normal-
ize Gabor jets according to Eq. (9) to unit length, which leads to local contrast
normalization.

aj =
aj√∑J
j′=1 a

2
j′

j = 1, . . . , J. (9)

3.2. Model graphs

Gabor jets Jl (l = 1, . . . , L) are taken at different landmark positions Ll in the
image and combined into a face graph G = (J ,L,E), where E denotes the links
between neighboring nodes. An example for hand-labeled face graphs with 52 nodes,
which are called model graph,15 is shown in Fig. 3 in Sec. 4.

Fig. 1. The usual family of Gabor wavelets in frequency domain. Each circle depicts one Gabor
wavelet, i.e. a Gaussian with radius β/|k|. The dotted red line encircles the Gabor wavelet family.
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Model graphs incorporate associational information on the one hand, giving the
possibility to distinguish between faces and non-faces, and distinctive information
that can be used for identity recognition on the other hand. The Graph similarity
function:

SG(G,G′) =
L∑
l=1

Sa(Jl,J ′
l ) (10)

witha:

Sa(J ,J ′) =

∑J
j=1 aj · a′j√

(
∑J

j=1 aj
2) · (∑J

j=1 a
′
j
2)
, (11)

which originated from Lades et al.5 and is used for both face detection and face
recognition, disregards this fact. Beyond that, it neglects the landmark position
and edge information completely. With a ML estimator from Sec. 2, it is easily
possible to combine node position information L or edge information E with jet
information J in the landmark positioning and in the recognition algorithm, which
are presented in Secs. 5 and 6, respectively. Furthermore, we are able to filter out
the incorporated information, i.e. we use only the consistent parts of the model
graphs to locate the face in the image.

3.3. Model graph scaling and rotation

To be able to detect faces at various scales and rotated in-plane we need training
model graphs with different scales and angles, see Sec. 4 for details. To scale and
rotate a model graph G first the node positions L are transformed linearly using the
center of gravity of the graph nodes as transformation center. The second step is to
update the Gabor jets J . There are two ways of rotating and scaling Gabor jets.
The first way — optimal, but slow — is to rotate and scale the image, again using
the center of gravity of the graphs nodes as transformation center, and afterwards
extract the new Gabor jets Jl from the scaled image at each of the L node positions
Ll of the transformed graph.

The second way is to interpolate the values from the available complex-valued
Gabor wavelet responses. For scaling factors below 1, the whole subband in fre-
quency domain that is covered by the Gabor wavelets (cf. Fig. 1) is radially moved
to higher frequencies, for factors above 1, the subband is radially moved in the
direction of the frequency domain center ω0 = (0, 0)T . To accomplish rotation, the
subbands have to be rotated around ω0.

To achieve rotation and scaling of an unnormalized Gabor jet more than the
usual 5 levels of Gabor wavelets are needed. The wavelets have to fill up the entire
frequency domain, besides the center ω0, i.e. the mean gray valueb and the highest
frequency parts. In Fig. 2, scaling and rotation of a long Gabor jet J of size J = 9·8

aThe denominator of Eq. (11) vanishes when using normalized Gabor jets with Eq. (9).
bThe mean gray value cannot be reached because all Gabor wavelets are mean-free.
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Fig. 2. Rotating and scaling of a Gabor jet. This figure visualizes the rotation by −55◦ and
scaling with factor 1.6 of a long Gabor jet J to a usual Gabor jet J . The black circles display the
responses of the usual family of Gabor wavelets, the green circles indicate the supplemental levels
of Gabor wavelets. The blue circles show the second half of the frequency domain, which could be
calculated from the other Gabor wavelet responses. Finally the red border marks the rotated and
scaled Gabor jet J .

to a usual Gabor jet J of size J = 5 · 8 is visualized. The black circles adumbrate
the usual set of 5 levels and 8 directions of Gabor wavelets, the green circles stand
for the new Gabor wavelet levels and the blue ones indicate the second half of the
frequency domain, which could be calculated from the other half. The partition
outlined in red indicates the position of the rotated and scaled Gabor jet J , which
again consists of 5 · 8 approximated complex-valued Gabor wavelet responses. Each
of these values is estimated as an interpolation of the surrounding 4 Gabor wavelet
responses, the interpolation is done linearly in angular and logarithmically in radial
direction and totalizes the real and imaginary parts of the complex responses.

The scaling factor is bounded below by 0.5 because in spatial domain Gabor
kernels keep their size, independent of the size of the input image. At scaling factor
0.5, the responses of Gabor wavelets with the highest possible frequency π, i.e.
wavelength 2 pixels are used. An upper bound for the scaling factor of the jets does
not exist, but the size of the image limits the possibilities of scaling the graphs nodes
L. Additionally, the Gabor wavelets in frequency domain get very small near ω0.

4. Face Detection

In this section, we define an estimator for face detection that is built upon the
ML estimator from Sec. 2 on model graphs as representations for faces. For face
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detection only the absolute values of the Gabor jets are taken into account and the
phases are discarded. The absolute values of Gabor wavelet responses are stable a
few pixels around the landmark, but the phases are varying fast. It is crucial that
the training images, especially the training model graphs, have about the same size
because Gabor jets taken at the same landmark in two different images are only
comparable if the underlying landmark texture patches are of comparable size.

4.1. Training image preprocessing

In the training set the scales and in-plane rotations of two facial images of the
same person may differ. Therefore, we implemented an image preprocessing step
that converts colored images to grayscale if needed and normalizes size and angle
of the images and the corresponding hand-labeled graphs. Rotation normalization
is done using the outer corners of the eyes so that the vertical positions of the
eyes become equal. The scale factor s is calculated according to Eq. (12), where
<original graph area> specifies the number of pixels covered by the graph in the
original image and <preprocessed image size> is the number of pixels in the pre-
processed image. Our choice for resolution of the preprocessed image is 168 × 224
pixel2 and the graph is chosen to cover 45% of it.

s =

√
< preprocessed image size > · 0.45

< original graph area >
. (12)

After the image is scaled, rotated and cut to the new size — padding missing
pixels with noise — the analogously transformed graph is placed in the center of the
preprocessed image. An example for the preprocessing step can be found in Fig. 3.

(a) original hand-labeled (b) preprocessed hand-labeled

Fig. 3. Image and graph preprocessing. This figure shows a hand-labeled training graph in the
original image, cf. Fig. 3(a), and the result of the preprocessing, see Fig. 3(b). In the lower part
of the preprocessed image noise-padding was performed.
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4.2. Training

In the training stage, the P preprocessed training images are convolved with J = 72
Gabor wavelets in the usual 8 directions, but to accommodate scale changes the
number of scale levels is increased to 9. At each hand-labeled landmark position
Ll the J Gabor kernel responses are taken and combined into a training model
graph G(p), which consists of long Gabor jets J (p)

l . With this family of J kernels,
scaling factors between 0.5 and 2 and arbitrary rotation angles can be achieved,
when Gabor jets Jl of the common dimensionality J = 40 are created with the
graph transformation defined in Sec. 3.3.

For the detection of faces in all possible scales and angles a ML estimator (see
Sec. 2) has to be trained for each single transformation. Additionally, different
horizontal and vertical scaling factors sx and sy are introduced to be able to detect
slender as well as broad faces. Thus, each ML estimator is responsible for a pair of
scaling factors (sx, sy) and one rotation angle α and consisting of L = 52 Gabor jets
Jl with each J = 40 absolute values of Gabor kernel responses. In total L ·J = 2080
means and variances are estimated for every (sx, sy, α) triplet.

To train the estimator with scaling factors sx and sy and rotation angle α,
training databases are generated by rotating and scaling the Gabor jets of the
training model graphs G(p). This is only done for the scale factor s = √

sx · sy.
For each training model graph G(p), the Gabor jets of all nodes are interpolated
according to s and α, resulting in L jets Jl with each J components, which are
then normalized to unit Euclidean length using Eq. (9).

The training database of size P ·L ·J is now fed into the ML estimator training.
Mean µl and variance σ2

l are calculated for each node l = 1, . . . , L and each jet
component j = 1, . . . , J :

µl,j =
1
P

P∑
p=1

a
(p)
l,j , (13)

σ2
l,j =

1
P − 1

P∑
p=1

(a(p)
l,j − µl,j)2. (14)

The second part of the training stage is the approximation of the node positions
M of a mean model graph using Eq. (15). At the node positions of M, the Gabor
jets will be extracted in the estimation stage. To calculate M, the center of gravity
C(p) [cf. Eq. (16)] of the node positions of model graph G(p) is subtracted from each
node position, such that the center of gravity of M vanishes.

Ml =
1
P

P∑
p=1

(L(p)
l − C(p)) l = 1, . . . , L (15)

C(p) =
1
L

L∑
l=1

L(p)
l . (16)
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4.3. Estimation of scale, angle and location of a face

In the evaluation stage a probe image is searched for a face with specific position,
scale and in-plane rotation. It is first Gabor transformed, i.e. the responses of all
wavelets are calculated at every position in the image by multiplying its Fourier
transform with each Gabor kernel ψ̌kj out of the common family of 40 Gabor
wavelets and applying an inverse Fourier transform to the results.

The goal is to find the best fitting parameter tuple (ξ∗, s∗, α∗) out of a finite
set. This tuple must maximize the Maximum Likelihood similarity value SML over
each position and each trained estimator:

(ξ∗, s∗, α∗) = arg max
(ξ,s,α)

{S[s,α](J ξ,s,α)}, (17)

where J ξ,s,α are the Gabor jets taken at the positions Lξ,s,α with

Ll = ξ +
(

cosα − sinα
sinα cosα

)
·
(Ml;x · sx
Ml;y · sy

)
. (18)

Thus, the landmark positions of the mean model graph M are rotated and scaled
according to (s, α) and moved to the current position ξ in the image. S[s,α] (J )
depicts the SML value for the estimator that is responsible for (s, α). It is calculated
according to Eq. (19), which is similar to the ML estimator similarity measure of
Eq. (3).

S[s,α](J ) = −
L∑
l=1

J∑
j=1

(al,j − µl,j)
2

σ2
l,j

. (19)

We implemented a three step search algorithm for the optimal parameter tuple
(ξ∗, s∗, α∗). The first step tries to locate the face in the image using a global search
with only very few scales and angles at sparse grid positions. The second and third
steps refine the parameters found in the previous step with a local search, i.e. only
the neighborhood of the previously found position is considered. The best found
parameter tuple, i.e. the tuple with the highest estimated SML value is now used
for landmark positioning, which is described in the next section.

5. Landmark Finding

After detection of the face the probe image is rotated and scaled according to the
optimal parameters α∗ and s∗ =

√
s∗x · s∗y, respectively, and cropped to the size

of the preprocessed training images. Then an accordingly rescaled version of M
is placed into the center of the rotated and scaled images. An example for this
automatic image processing step can be found in Fig. 4(b). This image is again
Gabor transformed using Gabor kernels with, in turn, the common 5 levels and 8
directions, resulting in one Gabor jet at each pixel. To avoid the time-consuming
recalculation of the Gabor transformation, it is also possible to use the found graph
in the original image [cf. Fig. 4(a)] directly, but this should be considered only
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(a) original image (b) detected face (c) placed landmarks

Fig. 4. Face detection. This figure displays an example for the two steps of face detection and
landmark localization. (a) The original image and (b) the detected face and the starting model
graph for landmark localization. Finally, (c) presents the automatically placed landmarks.

when s ≈ 1 and α ≈ 0 for all images in the database. These Gabor jets are
normalized according to Eq. (9) and used for landmark localization by the ML
estimator described in Sec. 5.1. The second estimator, which will be introduced in
Sec. 5.2, uses the edge information E of the graph to calculate a score that estimates
the plausibility of the current graph structure.

5.1. Local Gabor jet estimator

The first landmark placement ML estimator is quite similar to the ML estimator
used for face detection, but additionally to the absolute values aj of the normalized
Gabor jets, also the phases φj are taken into account.

In the training stage the mean absolute values µa and the mean phases µφ, as
well as the variances of the absolute values σ2

a and the phases σ2
φ over all training

Gabor jets are calculated. These four vectors are evaluated separately for each
landmark l, but the landmark index is discarded for legibility. The mean µa and
the variance σ2

a of the absolute values are calculated in the same manner as for
the face detection ML estimators, see Eqs. (13) and (14). The estimation of the
mean phase µφ;j is more difficult. It is not calculated as the mean over all training
phases, but as the phase of the mean complex value:

µφ;j = arg

(
1
P

P∑
p=1

J (p)
j

)
. (20)

Also the phase variance σ2
φ;j is calculated differently:

σ2
φ;j =

∑P
p=1(dφ(φ

(p)
j − µφ;j))2 · a(p)

j

(P − 1) · µa;j , (21)
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with dφ being the phase difference normalization function, i.e. (φ− µφ) is reduced
modulo 2π into [−π, π]. The square of this phase difference is multiplied with the
absolute value because phases are very unreliable when corresponding absolute
values are low.

The estimation stage is again similar to the ML estimation of the face position
in Eq. (19). The estimated likelihood score Sφ of the local jet estimator of Eq. (22)
is a modification of Eq. (3), where again the phases of low absolute values are
depreciated. Additionally, the value is normalized by the number of elements in the
Gabor jet to ensure dimensionlessness and, thus, comparability with the results of
the graph structure estimator that is described in the next section.

Sφ (J ) = − 1
2J

J∑
j=1

[
(aj − µa;j)

2

σ2
a;j

+
(φj − µφ;j)

2 · aj
σ2
φ;j · µa;j

]
. (22)

5.2. Graph structure estimator

The second landmark placement estimator does not deal with the Gabor jets, but
uses the links E between the landmark positions L of the graphs (cf. Fig. 3) to
estimate the correctness of a node position in correlation to its linked nodes. Each
landmark Ll is connected to a couple of neighboring landmarks Lle , where El
denotes the count of links for node Ll and e = 1, . . . , El. The graph-theoretic order
El may vary between different nodes, but is usually three or higher.

The graph structure estimator consists of two parts, namely, the horizontal and
vertical components of the distance vectors δl,le = Ll − Lle . Again, the means
µx;l,le , µy;l,le and variances σ2

x;l,le
, σ2
y;l,le

of the variables δx;l,le , δy;l,le are estimated
from the training data set. This is done for all landmarks l and their links le
independently. This is better than considering only the Euclidean distance ‖δl,le‖
between the two linked nodes because landmarks can have very different tendencies
for horizontal and vertical movements, respectively.

In the estimation step, the Sδ similarity value is calculated as another modifi-
cation of Eq. (3):

Sδ (Ll) = − 1
2El

El∑
e=1

[
(δx;l,le − µx;l,le)

2

σ2
x;l,le

+
(δy;l,le − µy;l,le)

2

σ2
y;l,le

]
. (23)

5.3. Landmark localization

Exact landmark localization is done by local search for each node l = 1, . . . , L
independently. In a small region R around the current landmark position Ll the
best displacement vector d∗

l of maximal similarity score is computed according to
Eq. (24), the constant c is defined below.

d∗
l = arg max

d∈R
{Sφ(JLl+d) + c · Sδ(Ll + d)}. (24)

The node positions are updated after all displacements are calculated. This update
is done off-line because changing node positions on-line would interfere with the
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Sδ score and the order of position updates would become important. We use an
R-step iterative local search, where the influence of the graph structure, i.e. c =
r
R (r = 0, . . . , R − 1) is increasing in each iteration. For the first round c = 0 is
chosen so that, e.g. all nodes of one eye can move freely. In the last round c is
near 1, so solitary outliers are recaptured. Finally, the Gabor jets at the detected
landmark positions are extracted to a model graph G. An example for a resulting
model graph is shown in Fig. 4(c).

6. Face Recognition

The model graphs that were found with the face detection and landmark localization
algorithms are now recognized. The similarity between two graphs is calculated
using the SBIC estimator introduced in Sec. 2.2 based on a comparison between
two graphs. We implemented several methods to compare two model graphs. Each
of these comparison functions f(·) takes graphs G and G′ as input and returns
a vector x[f ]. The dimensionalities of these vectors differ between the proposed
methods, but this does not disturb the BIC classification. The components of x[f ]

can be the results of any kind of measure between G and G′, in our case we use
similarity measures S(·) as well as distance metrics D(·).

In this section, we first present some comparison functions, namely, Sa, DC and
Dψ, which use the absolute values of the normalized Gabor jet information (J ,J ′)
of the two graphs, and later we introduce the metrics DL and DE, which deal
with landmark positions (L,L′) and edges (E ,E ′), respectively. Finally, the S[f ]

BIC

similarity measure will be constituted and the combination of different comparison
functions is displayed.

6.1. Jet similarity

The first comparison function Sa is the Gabor jet comparison function defined
in Eq. (11). The dimensionality N [Sa] of x[Sa] is the number of nodes L and the
coefficients are x[Sa]

l = Sa(Jl,J ′
l ). The distribution of these jet similarities cannot

be precisely Gaussian because they are confined between 0 and 1, which would
violate one assumption of the Maximum Likelihood estimator training. Empirically
however, the distribution of the similarity values is Gaussian shaped. An example
for the intrapersonal and extrapersonal distribution of the Sa-measure can be found
in Fig. 5(a).

6.2. Gabor kernel response distance

The second metric Dψ goes one step further and uses all entries al,j of the jets
independently, resulting in a vector x[Dψ ] of dimensionality N [Dψ ] = L · J . The
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coefficients are calculated according to Eq. (25):

x
[Dψ ]
i = Dψ(al,j , a′l,j) i = (l − 1) · J + j (25)

with

Dψ(a, a′) =




|a− a′|
|a| + |a′| , if |a| + |a′| > 10−6

0, else
. (26)

Again, these distance values lie between 0 and 1, Fig. 5(c) shows a sample of their
distribution. Apparently, this is quite different from all other distributions from this
section because the overlap of intrapersonal and extrapersonal distribution is large
and the maximum of both distributions is similarly near 0.

6.3. Canberra jet distance

The last comparison function dealing with Gabor jet information is the Canberra
distance metric DC shown in Eq. (27), which is a mixture of the two functions
above. It uses the Dψ distance from Eq. (26) totalized over all jet components to
calculate x[DC ]

l = DC(Jl,J ′
l ), a sample distribution can be seen in Fig. 5(b).

DC(J ,J ′) =
J∑
j=1

Dψ(aj , a′j). (27)

6.4. Landmark position distance

The landmark position distanceDL uses the landmark positions L and L′ of the two
graphs to define a distance measure. According to Eq. (28), the distance of the nodes
of corresponding landmarks x[DL]

l = DL(Ll,L′
l) is calculated, the determination of

the mean movement R between L and L′ is given in Eq. (29). Figure 5(d) displays
a sample distribution of DL.

DL(L,L′) = ‖L − L′ +R‖ (28)

R =
1
L

L∑
l=1

(L′
l − Ll). (29)

Another approach uses — comparably to the graph structure ML estimator from
Sec. 5.2 — the distance of Ll and L′

l in horizontal and vertical directions inde-
pendently, denoted as DL:h/v. This accounts for the fact that some node position
changes are typically horizontal or vertical, e.g. opening the mouth will usually shift
the lower lip node in vertical direction only.

6.5. Edge length distance

The last function DE does not use the landmark positions directly, but calculates
the length difference of the edges E that links neighboring nodes. The components
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Fig. 5. Sample distributions for comparison functions. This figure displays histograms of sample
distributions for the introduced comparison functions generated from the ground truth positions
of the FaceGen database (cf. Sec. 7.1) with 1000 intra- and 1998, 2000 extrapersonal training pairs.
Histograms (a)–(d) were generated using right mouth corner landmarks (and the responses of a
vertical Gabor wavelet at this position in case of the Dψ metric), (e) and (f) show the distribution
of the edge from nose-tip to the right alar wing of the nose. The bin-widths of the histograms are
set to 0.01 for the functions Sa, DC and Dψ, and to 0.1 for DL, DE and DE:h/v.

x
[DE ]
e = DE(Ee, E ′

e) with e = 1, . . . , N [DE ] and N [DE ] = E are calculated according
to Eq. (30). One advantage of this measure is the independence of graph rotation.

DE(E , E ′) = |‖E‖ − ‖E ′‖|. (30)

Like in the DL measure we use the edge length in horizontal and vertical directions
independently, denoted by DE:h/v. Figure 5(e) shows the distribution of DE , while
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Fig. 5(f) displays the distribution of DE:h/v in horizontal direction only. One dis-
advantage of the DE comparison function is that x[DE ]

e can represent only a few
distinct values, x[DE:h/v]

e is even limited to integer values. Thus, the Gaussian distri-
bution precondition is not met at all.

6.6. Recognition

Each of these comparison functions f(·) is now used to calculate the S[f ]
BIC similarity

value for two given graphs G and G′. Therefore, the x[f ] is determined as presented
in the previous sections and the SBIC similarity value in Eq. (31) is calculated as a
variant of Eq. (4).

S
[f ]
BIC(x[f ]) =

1
N [f ]

N [f]∑
i=1


− (x[f ]

i − µ
[f ]
I;i)

2

σ
[f ]
I;i

2 +
(x[f ]
i − µ

[f ]
E;i)

2

σ
[f ]
E;i

2


 . (31)

Since the SBIC similarity values are dimensionless, it is easily possible to com-
bine the results of different comparison functions. Especially, the combination of
Gabor jet dependent and graph structure dependent similarity values might enhance
the recognition. Equation (32) exemplarily shows the combination of the Canberra
distance DC and the landmark position distance DL.

Stotal = S
[DC ]
BIC (G,G′) + S

[DL]
BIC (G,G′). (32)

7. Face Detection Experiments

In this section, we present the results of our face detection and landmark positioning
experiments and compare them with the results of Elastic Bunch Graph Matching
(EBGM).15 To ensure comparable results, we used the same training graphs for the
bunch graph and for the training of our maximum likelihood estimators. For the
node positioning step of the EBGM algorithm the so-called disparity move, which
uses the phases of the Gabor jets to estimate the displacement, has been replaced
by an iterative local search because the latter generated better results.

7.1. FaceGen

The first database is the FaceGen database of artificial images that was also used
by Müller10 because it provides exact ground truth (GT) node position information.
The database consists of 1000 identities each with two frontal images and medium
random pose changes, the image size is 128 × 128 pixel2, throughout. Some of the
images including ground truth model graphs are shown in Fig. 6. The face detection
estimators are trained with the first 100 identities,c which also make up the bunch
graph used for the EBGM algorithm. The images of the remaining 900 identities
are used for testing both algorithms.

cThe preprocessing step (cf. Sec. 4.1) was left out because the data set is not much scaled or
rotated in-plane.
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Fig. 6. FaceGen images. This figure shows exemplary images of two FaceGen identities including
the graphs with ground truth (GT) node position information.

(a) EBGM (b) ML

Fig. 7. Node positioning errors. In this figure the average node positioning errors on the FaceGen
database can be inspected. (a) shows the results for the EBGM node positioning, (b) those of the
Maximum Likelihood estimators.

Figure 7 shows the mean positioning errors, i.e. the average distance between
found and GT node positions in horizontal and vertical directions for the two
tested algorithms. One can see that the positioning errors for the ML approach
[cf. Fig. 7(b)] are in general smaller than the positioning errors of the EBGM algo-
rithm shown in Fig. 7(a). The nodes on landmarks with high structure information,
e.g. the eye nodes or the mouth nodes are found more precisely than the others.
Especially, the nodes on the outer rim are hard to localize, the EBGM algorithm
seems to have even more problems with finding these landmarks.

The execution time of the face detection algorithms also differed a lot. While the
ML detection algorithm — reusing the original images in the landmark positioning
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step — needed only 21min to detect all 1800 test faces of the FaceGen database,
the EBGM algorithm calculated 7.5 h on a Intel Xeon 3.2GHz desktop PC with
2GB of memory. Taking into account that the Gabor transformation, which was
executed in both algorithms, took about 6min of that time, the ML algorithm is
about 30 times faster than the EBGM algorithm. Furthermore including that ML —
in opposition to EBGM — also detected scale and in-plane rotation, the speedup
factor is in the order of the number of training items, i.e. 200.

7.2. CAS-PEAL

The second inspected database is the CAS-PEAL database,4 which consists of a
large number of facial images of Chinese people. The images from the database were
downscaled from their original size of 360×480 pixel2 to 192×256 pixel2 to reduce
computation time. The database provides different kinds of image variations, in this
study we used the sets with expression variation and size differences. The expression
set EXPR provides frontal facial images with three different expressions per person:
a neutral and a surprised expression and one with closed eyes. The second set SIZE
contains frontal facial images in up to three different sizes, all showing a neutral
expression.

The face detection training for the EXPR set was performed on 18 hand-labeled
graphs of six people, three men and three women. The remaining 1113 images of
371 persons have been used for face finding experiments. The time required by the
ML detection algorithm was 53 min, split up into 35 min needed for the Gabor
transformation,d 14 min for the face detection and 4 min for landmark position-
ing. The needed time for the EBGM algorithm was 45 min and, thus, less, but the
distribution is different: 12 min for Gabor transformation and 33 min for detection
and landmark positioning. Since the CAS-PEAL database4 does not provide ground
truth information for all landmarks, there is no direct way to measure the correct-
ness of the found positions. Therefore, it is only possible to compare the recognition
results on this database with the recognition results of another algorithm — the
EBGM algorithm — on the same set. This is done in Sec. 8.2.

The training of the face detection and landmark positioning ML estimators for
the SIZE set was also performed on 18 hand-labeled graphs on preprocessed images,
but unlike the EXPR set each image contained a different person in frontal pose
with neutral expression. The remaining 524 images of 254 persons — none of them
in the training set — were used for face detection. To display the results of the
face detection and landmark positioning on the SIZE set all three found graphs
of one person are shown in Fig. 8. In Fig. 8(a), the found graphs were placed into
the original images, Fig. 8(b) contains the same results that were automatically
scaled, rotated and centered using the scale, angle, and position obtained in the face

dThe difference in Gabor transformation time is due to the additional transformation of the
automatically scaled images after the face detection step, cf. Sec. 5.
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(a) original size images

(b) automatically scaled and rotated images

Fig. 8. Face detection results. This figure shows exemplary results of the face detection and
landmark positioning ML algorithm on the SIZE set of the CAS-PEAL database, where (a)
presents the found graphs in the original images, and (b) displays the results in the automatically
transformed images.

detection step, cf. Secs. 4 and 5. Except for minor scale and angle variations all faces
were detected correctly. Since the landmark positioning step is executed on images
normalized for scale and rotation [as shown in Fig. 8(b)], the node placement errors
are — apart from possible misdetections and image scaling artifacts — independent
of the size of the face in the original image.

7.3. FRGC

The last inspected database is the Face Recognition Grand Challenge (FRGC)
database11 in the version FRGC ver2.0, which provides a huge collection of
high resolution facial images — sizes of the images are 1200 × 1600 pixel2 or
1704 × 2272 pixel2 — including hand-labeled eye, nose and mouth positions as
well as standardized training, gallery and probe sets for different experiments. We
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here process Experiment 1, comparing each two images with controlled lighting
conditions, i.e. studio portrait images, and Experiment 4, where the gallery images
are controlled, but the probe images are taken under uncontrolled lighting con-
ditions in landscape format. The FRGC ver2.0 database furthermore includes a
baseline algorithm based on an eigenface approach and the recognition results of
this algorithm are supplied.

The 12,776 colored training images of Experiments 1 and 4 of the FRGC ver2.0
data set11 include facial images of 222 identities with both controlled and uncon-
trolled lighting conditions. For training purpose, the faces in the images were pre-
processed as described in Sec. 4.1 using the provided eye positions, i.e. the faces
are fitted into 168 × 224 pixel2 images. The faces in the preprocessed images have
a height of about 180 pixel. The model graphs of the training subset are gener-
ated automatically using our face detection and landmark positioning algorithme

with little scale variations. Since there are no hand-labeled graphs for the FRGC
database, the face detection ML estimators were trained on hand-labeled graphs
of the CAS-PEAL database. Figure 9 shows an example for the automatic train-
ing image preprocessing and the detected face graph. As the ML estimators were
trained on Chinese people only, some node placement errors occurred.

The gallery subset of Experiments 1 and 4 consists of 16,028 controlled images.
These images are down-scaled to 246 × 328 pixel2 without cutting away the back-
ground, the faces shown there are about 150 pixel high. Experiment 4 furthermore
uses 8014 uncontrolled images, which are downscaled to 560× 420 pixel2, as probe
subset. For gallery and probe subsets, the face detection ML estimators are re-
trained on the previously found graphs of the FRGC ver2.0 training subset. In the
detection step the global move is enabled, the inspected scales are in the range
[0.5, 1] and the tested angles are between −10◦ and 10◦. Hence, in opposition to the
baseline algorithm,2 we do not use the provided positions, but our only assumption
is that there is exactly one face with height between circa 90 and 180 pixel. After
face detection the original size images are scaled and rotated — according to the
detected graphs scale and angle — to image size 168×224, cf. Sec. 5. Two examples
of the fully automatic detection, scale and angle normalization and landmark posi-
tioning are shown in Fig. 10. Although the ML estimators were trained on partly
poorly labeled landmark positions, the node placement errors seem to be small,
besides a couple of misdetected faced in the uncontrolled images.

The execution time of the ML face detection for one of the controlled images
is about 10 s, which are split up into 4.6 s of Gabor transformation, 4.1 s for face
detection and finally 0.75 s for landmark positioning. The training of all needed ML
estimators, which had to be done only once, with all 12,776 training graphs took
about 4 h.

eTo avoid misdetections in the training subset the global move step was not used, but the center
of the image was taken as the center of the face.
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(a) original training image (b) training image with graph

Fig. 9. FRGC training image preprocessing. This figure shows the semi-automatic preprocessing
of the FRGC training images. In (a) one training image with uncontrolled lighting conditions is
presented, (b) displays the preprocessed image with the semi-automatically found face graph.

(a) gallery image (b) gallery graph (c) probe image (d) probe graph

Fig. 10. FRGC gallery and probe image processing. This figure shows the fully automatic pro-
cessing of FRGC gallery and probe images. (a) and (b) contain a controlled gallery image and
the automatically found, rotated and scaled face graph, while (c) and (d) display an uncontrolled
probe image and the detected graph.

8. Face Recognition Experiments

In this section we present the recognition results of our SBIC similarity function
when using the comparison functions f(·) introduced in Sec. 6. These results are
compared with the recognition results that could be achieved by the model graph
similarity function SG from Eq. (10), which is adapted to f , depicted by S[f ]

G . The
adaptationf of SG to the Canberra distance comparison function DC is given in
Eq. (33). It is easy to see that S[DC ]

G and S[Dψ]
G refer to the same similarity function:

S
[DC ]
G (G,G′) = −

L∑
l=1

DC(Jl,J ′
l ) = −

L∑
l=1

J∑
j=1

Dψ(al,j , a′l,j) . (33)

fThe negative sign is included to convert the distance metric to a similarity measure.
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To determine the performance of the algorithms the commonly used Receiver
Operating Characterics (ROC) is calculated by computing the Verification
Rateg (VR) over the False Acceptance Rate (FAR). To provide a single number
for easy comparison the VR at FAR 0.1% is used.

8.1. FaceGen

We first tested the SBIC similarity function on the FaceGen database using
the test set from the landmark detection step, which contains 1800 graphs of
900 identities. This set is again split up into three distinct subsets: training,
gallery and probe. 100 FaceGen identities, which offer 100 intrapersonal and
19800 extrapersonal pairs, are used for training. With these pairs, the BIC esti-
mators for the different comparison functions are trained, i.e. mean and vari-
ance vectors for the intrapersonal and extrapersonal classes are calculated. For
the remaining 800 identities one graph per identity is used as gallery and one as
probe.

The recognition results of the different comparison functions are presented
in Table 1. The first three columns display the Gabor jet comparison functions,
whereas the second block contains the functions that only compare graph struc-
tures. Table 1(a) shows the verification rates for the adapted graph similarity func-
tion, where S[Sa]

G refers to the original graph similarity function from Eq. (10). One
can see that the Gabor jet-dependent comparison functions are not reliant on pre-
cise node positioning since the verification rates are about the same for the three
investigated node position algorithms GT, EBGM and ML. The ground truth node
positions GT give — as suggested — the best verification. For the graph structure
comparison functions, the correct landmark placement is much more important.
While GT can achieve verification rates around 45% — besides the malfunction-
ing DL:h/v measure — the automatically found positions of ML and EBGM lead to
about one-third of these rates.

Table 1(b) contains the results for the trained SBIC function. Nearly all rates
increased. Again, the choice of the node positioning algorithm does not change the
Gabor jet-dependent verification rates remarkably, the slightly better algorithm for
Sa and DC is ML. The advantage of the Dψ comparison function over DC and Sa
is most probably due to the nature of the FaceGen data because the texture of the
images is very smooth and there is no noise in it. The verification rates of the graph
structure comparison functions of the ML detection algorithm are comparable with
the results of the EBGM algorithm when using the untrained SG function [see
Table 1(a)]. In Table 1(b), this changes the ML positions outperform the EBGM
positions. Seemingly, the landmark detection errors of the ML algorithm are more

gThe Verification Rate is calculated as 100% — False Rejection Rate (FRR) and is equal to the
Correct Acceptance Rate (CAR).
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Table 1. FaceGen verification results. This table shows the verifica-

tion rates at FAR 0.1% for the recognition experiments on the FaceGen
database when using comparison functions f(·) and different landmark
positioning algorithms.

Sa DC Dψ DL DL:h/v DE DE:h/v

(a) Adapted graph similarity function S
[f ]
G

GT 49.3% 66.9% 66.9% 44.1% 16.3% 45.8% 46.9%
EBGM 48.3% 63.4% 63.4% 17.4% 6.6% 13.6% 14.5%

ML 48.4% 66.2% 66.2% 18.7% 6.0% 13.6% 15.5%

(b) BIC similarity function S
[f ]
BIC

GT 85.4% 88.8% 92.3% 82.9% 50.3% 75.0% 79.8%
EBGM 85.4% 88.5% 90.4% 29.0% 5.0% 15.1% 18.9%
ML 86.4% 88.9% 92.0% 37.6% 9.5% 23.5% 25.4%

Table 2. Combination of comparison functions. In this table, the veri-
fication rates for the combination of the DC comparison function with
the node position comparison functions DL, DL:h/v , DE and DL:h/v are
displayed. The verification results were calculated using graphs of the
three different node positioning algorithms GT, EBGM and ML. The last
column repeats the results for the single DC comparison function.

DL DL:h/v DE DE:h/v None

GT 92.1% 89.3% 90.0% 89.8% 88.8%
EBGM 86.4% 86.8% 86.4% 86.9% 88.5%
ML 86.8% 85.8% 87.0% 87.5% 88.9%

predictable.h Accessorily, the 82.9% verification rate of S[DL]
BIC on the GT data shows

that the landmark positions hold nearly as much identity determining information
as the texture does.

The verification rate of the Sa and DC comparison functions can be increased
when they are combined with graph structure information. This can easily be
achieved by summing up the SBIC similarity values from different comparison func-
tions, as shown in Eq. (32) in Sec. 6. Table 2 shows the recognition results of
the combination of the DC function with each graph structure comparison func-
tion. When using the GT landmark positions, the combination of DC with DE ,
DL or one of their h/v modifications outperforms the verification rates of the sin-
gle DC comparison function. The node positions of both positioning algorithms
EBGM and ML are, however, not precise enough to enhance the recognition rate
of DC .

hThe predictability of the error is a possible cause of the fact that the recognition rate on the

ML graphs is higher than on the ground truth node positions for S
[Sa]
BIC . The dependency of the

recognition on systematic positioning errors will be investigated in future work.
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8.2. CAS-PEAL

For the EXPR set of the CAS-PEAL database the recognition results on the graphs
found with ML are compared to the recognition results attained with the EBGM
algorithm, too. To assure a fair comparison the graphs from the ML algorithm that
are placed in the original images are taken. Similar to the FaceGen experiments,
the two similarity functions SG and SBIC are tested using the comparison functions
defined in Sec. 6. The test subset from the face detection step, which contains the
automatically found graphs of the EXPR set, is split up into training, gallery and
probe subsets. The training set contains all graphs of 100 random persons. For the
remaining 271 persons, the graph of one random expression is put into the gallery
set, the graphs of the other two expressions are accumulated in the probe subset.

The verification rates — averaged over 10 recognition experiments with different
random training/gallery/probe-subsetsi — are presented in Table 3. The Gabor jet
comparison functions show the same trend as in the experiments with artificial
images. The Canberra distance DC is able to outperform Sa in all tests, the graphs
generated with ML are better suited for face recognition than the EBGM graphs.
The SBIC-training further improves the verification rate, butDψ is no longer able to
exceed DC . The automatically found node positions, however, are not good enough
since the verification rates only reach 15%.

The graphs in the SIZE subset of the CAS-PEAL database are easier to rec-
ognize when they were found correctly since they all enclose the same neutral
expression. The EBGM algorithm is not designed to find faces on different scales.
Therefore, it is not reasonable to compare our ML algorithm with it. Thus, in
Table 4 only, the recognition results of the ML approach are shown, again using
the different comparison functions and the two similarity measures SG and SBIC.
As done for the EXPR subset, training, gallery and probe subset for face recogni-
tion were created from the face detection test set by putting random 100 identities
into training set. For the remaining identities one random graph per identity was
put into the gallery and the other graphs were used as probes. The recognition
experiments were repeated ten times with different random training/gallery/probe
subsets.

Table 4(a) displays the average verification rate generated from the found graphs
taken from the unpreprocessed images, examples are shown in Fig. 8(a). All com-
parison functions are not designed to compare graphs of different sizes. Thus, the
verification is very poor for the untrained SG function. Nevertheless, the intra-
personal/extrapersonal training is able to enhance the verification rate to 43% for
the Dψ comparison function. The results from Table 4(b) are generated with the
found graphs that were automatically transformed to fit into 168×224 pixel2 images,
see Fig. 8(b) for some examples. The achieved verification rates for the Gabor jet
comparison functions are much higher now, S[Sa]

G is the best function. Also the

iThe same ten random subset splits were used in all experiments.
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Table 3. CAS-PEAL EXPR verification results. This table shows the verifi-

cation rates for the experiments on the EXPR set of the CAS-PEAL database
when using comparison functions f(·) with SG [cf. Table 3(a)] and SBIC [see
Table 3(b)] and the two landmark positioning algorithms EBGM and ML.

Sa DC Dψ DL DL:h/v DE DE:h/v

(a) Verification rates for the adapted graph similarity function S
[f ]
G

EBGM 58.2% 69.0% 69.0% 15.7% 12.5% 12.1% 12.9%
ML 63.2% 77.0% 77.0% 7.9% 5.9% 8.8% 10.9%

(b) Verification rates for BIC similarity function S
[f ]
BIC

EBGM 66.9% 86.4% 85.1% 14.6% 14.3% 12.1% 14.2%
ML 77.9% 90.5% 89.9% 8.6% 10.3% 6.4% 9.2%

Table 4. CAS-PEAL SIZE verification results I. This table shows the
verification rates from the SIZE subset of the CAS-PEAL database
using the graphs found with the ML algorithm on the original images
[see Fig. 8(a)] and on the automatically scaled and rotated images [cf.
Fig. 8(b)].

Sa DC Dψ DL DL:h/v DE DE:h/v

(a) original size images

SG 1.5% 2.7% 2.7% 0.0% 0.0% 0.0% 0.0%
SBIC 32.4% 38.0% 43.0% 2.5% 2.3% 1.8% 3.3%

(b) automatically scaled images

SG 89.3% 86.7% 86.7% 20.8% 13.7% 19.0% 21.1%
SBIC 87.1% 86.0% 91.0% 17.4% 15.6% 20.6% 23.2%

verification rates on the graph structure increased, but the False Rejection Rate is
always above 75% for FAR = 0.1%.

The size of the images is an important factor for recognition since Gabor wavelets
cover a fixed region that does not scale with the image. Thus, for different image
sizes different patches of texture information are coded in the Gabor jets. In Table 5,
the recognition results for different resolutions are presentedj. Astonishingly, the Sa
comparison function is pretty stable for all investigated image resolutions, whereas
the DC comparison function declines with increasing resolution. Nevertheless, DC

is the better comparison function since the verification rate of 95.8% for resolution
120×160 pixel2 is higher than the 92.5% of the Sa comparison function. The impact
of image processing artifacts and node position rounding errors, which were induced
in the scaling step, on the recognition remains to be investigated. The trained SBIC

similarity is not able to beat the verification rate of the SG function, besides S[DC ]
BIC

and S
[Dψ]
BIC for higher resolutions. If the variations in the image are too small, i.e.

jThe landmark and edge dependent comparison functions are left out because the verification
rates can only get worse when the graphs are scaled.



May 8, 2009 8:34 WSPC/115-IJPRAI SPI-J068 00721

Face Detection and Recognition Using ML Classifiers on Gabor Graphs 457

Table 5. CAS-PEAL SIZE verification results II. This table dis-

plays the verification rates from the SIZE subset of the CAS-PEAL
database, using the graphs found with the ML algorithm on the auto-
matically scaled and rotated images of different resolutions.

SG SBIC

Resolution Sa DC Sa DC Dψ

90 × 120 89.8% 94.8% 87.2% 94.4% 91.8%
120 × 160 92.5% 95.8% 90.6% 94.6% 92.0%

168 × 224 89.3% 86.7% 87.2% 86.0% 91.0%
240 × 320 89.0% 69.4% 87.3% 70.5% 93.2%
300 × 400 85.2% 51.3% 84.6% 52.5% 92.2%

Table 6. CAS-PEAL recognition rates. For comparison with Refs. 3 and 4, we
also give the recognition rates for parts of the conditions of the EXPR set from
Table 3 in Table 6(a). The recognition rates of the SIZE set [see Table 6(b)]
employed the resolution 120 × 160 pixel2 (cf. Table 5). Table 6(c) shows the
recognition rates from Ref. 4 without illumination normalization, the value for
LGBPHS has been estimated from Fig. 15 in Ref. 3.

Sa DC Dψ

(a) ML graphs on EXPR

SG 81.9% 88.6% —
SBIC 90.1% 95.9% 95.7%

Sa DC Dψ

(b) ML graphs on SIZE

SG 98.2% 99.5% —
SBIC 97.6% 99.4% 98.2%

PCA PCA+LDA Gabor PCA+LDA LGBPHS

(c) Recognition rates for other algorithms

EXPR 53.7% 71.3% 90.6% 95%
SIZE 74.2% 93.5% 100.0% 99%

the variances of Gabor jet similarities are low, the BIC training does not seem to
be profitable.

The CAS-PEAL database3, 4 is well suited for comparison of our method with
other classical methods, namely eigenfaces (PCA),14 fisherfaces (LDA),1 the com-
bination of LDA with Gabor coefficients,6 and the novel Local Gabor Binary Pat-
tern Histogram Sequences (LGBPHS).16 Table 6(c) shows the recognition results
of these algorithms on the EXPR and SIZE sets as reported in Refs. 3 and 4.
Using our ML algorithm on the EXPR set [cf. Table 6(a)] with the SBIC similarity
function and either DC or Dψ yields significantly higher recognition rates than all
baseline algorithms, only LGBPHS shows a comparable performance. Our results
on the SIZE set are as shown in Table 6(b), below the very high recognition rates
in Refs. 3 and 4.

All those results are only partly comparable because our experiments had more
difficult conditions than the ones in Ref. 3 and 4 in the following respects:

• Geometric normalization was fully automatic.
• No masking has been performed.
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• Identities used for training have not been used for gallery or probe set.
• For the EXPR set the expression used for the gallery was chosen randomly for

each identity.

Thus, the system presented here performs better or equal with fewer manual inter-
actions.

8.3. FRGC

The recognition experiments on the FRGC ver2.0 database11 are executed using the
common experimental setup provided by the database. To train the BIC classifiers
we redetected the training graphs by training the face detection ML estimators with
the previously found training graphs and redo the face detection from Sec. 7.3 on
the preprocessed training images. This step was included to assure that training and
gallery/probe graphs were detected similarly. The BIC training, finally, was applied
on all pairs of training graphs generated from controlled and uncontrolled images for
Experiment 1, whereas for Experiment 4 the BIC training used only pairs where a
controlled graph is compared to an uncontrolled. Hence, the training was performed
on 371,052 intrapersonal and 81,235,648 extrapersonal pairs for Experiment 1 and
188,719 intrapersonal and 40,617,824 extrapersonal pairs for Experiment 4.

For executing Experiment 1 all controlled gallery graphs are compared to each
other, resulting in a 16,028 × 16,028 similarity matrix. Experiment 4 has differ-
ent gallery and probe sets generating 16,028 × 8014 similarity scores. Parts of
these similarity matrices are selected to create the Receiver Operating Characterics
ROC III, which are defined by the FRGC ver2.0 database.11 The performance, i.e.
the verification rate for FAR 0.1% of the baseline PCA algorithm on ROC III is
about 66% for Experiment 1 and 12% for Experiment 4.

Figure 11 shows the ROC III curves of the different comparison functions for
Experiment 1. With 72%, DC is outperforming the Sa measure and the baseline
performance of 66% is outrivaled by the DC comparison function, too. The graph
structure comparison functions are — due to the indirect landmark detection train-
ing — nearly worthless. The execution time of the BIC classifier are — compared
to the number of calculated similarities — quite low. The BIC training — using
over 81 million graph pairs — took 26min for Sa, 55min. for DC and 1.1 h for Dψ,
whereas the 256million similarity scores were calculated in 1.4 h, 3.1 h and 3.8 h,
respectively. The calculation of the untrained SG similarities needed about the same
time: 1.4 h for Sa and 3.1h for DC .

The results of Experiment 4 on ROC III are as shown in Fig. 12, worse and
the baseline performance of 12% cannot be reached. There are a couple of possible
reasons for that, e.g. misdetections of some probe graphs. Nonetheless, the BIC
training is able to boost the verification rate for Sa, DC and Dψ. The Dψ measure is
obviously most appropriate to learn uncontrolled lighting changes since it processes
the (normalized) responses of each Gabor kernel independently.



May 8, 2009 8:34 WSPC/115-IJPRAI SPI-J068 00721

Face Detection and Recognition Using ML Classifiers on Gabor Graphs 459

(a) ROC curve (b) VR at FAR 0.1%

Fig. 11. FRGC Experiment 1. This figure encloses the verification results for Experiment 1 of
the FRGC ver2.0 database, generated on ROC III. (a) shows the ROC curves on logarithmical
FAR axis for the Gabor jet dependent functions, while (b) holds the verification rates for FAR
0.1%.

(a) ROC curve (b) VR at FAR 0.1%

Fig. 12. FRGC Experiment 4. This figure shows the verification results for Experiment 4 of
the FRGC ver2.0 database, generated on ROC III. (a) holds the ROC curves with logarithmical
FAR and logarithmical VR axis for the Gabor jet comparison functions, while (b) displays the
verification rates for FAR 0.1%.

9. Summary and Outlook

We have presented fully automatic face detection and face recognition
algorithms based on Maximum Likelihood estimators and Bayesian intra-
personal/extrapersonal classifiers that work with Gabor graphs. We have shown
that the face detection algorithm is able to detect faces with different scales and
in-plane rotation angles. We have tested this algorithm on artificial facial images
as well as on the CAS-PEAL and the FRGC databases. We implemented sev-
eral comparison functions on Gabor graphs and showed that the trained intra-
personal/extrapersonal classifier outperforms the common15 and the adapted graph



May 8, 2009 8:34 WSPC/115-IJPRAI SPI-J068 00721

460 M. Günther & R. P. Würtz

similarity function as well as the eigenface baseline algorithm on Experiment 1
of FRGC ver2.0.11 The verification rates of commercial systems as reported in
Ref. 12 could not be reached. On the expression data of CAS-PEAL our algorithm
clearly performs better than all algorithms tested in Ref. 4 and is comparable to
LGBPHS.16

We showed that combining Gabor jet and node position information is able
to beat the verification rates of the Gabor jet when ground truth node position
information is available. We also tested the recognition algorithm on different image
resolutions.

In future work, we will investigate the dependence of the BIC algorithm on
correct scale and angle detection as well as on correctly placed nodes. Another
study will further determine the best image size for face recognition when using the
Bayesian intrapersonal/extrapersonal classifier on different Gabor jet dependent
comparison functions.
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