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Abstract

Estimation of human body postures from video footage
is still one of the most challenging tasks in computer vision.
Even most recent approaches in this field rely strongly on
domain knowledge provided by human supervisors and are
nevertheless far from operating reliably under real-world
conditions. We propose to overcome these issues by inte-
grating principles of organic computing into the posture es-
timation cycle, thereby relegating the need for human in-
tervention while simultaneously raising the level of system
autonomy.

1. Introduction
Human beings effortlessly analyze and interprete body

motion of other individuals (see e. g. [11]). This distinct

skill is one of the mainstays of ’social perception’ [18], al-

lowing effective and smooth cooperation of human subjects

in a complex environment.

Over the last decades, there has been continuous struggle

to build artificial pose estimation (PE) systems that mimic

human skills in retrieving body postures from visual in-

put. Such systems would impact a broad market: appli-

cations in health care, surveillance, industry and sports (see

e. g. [9], [13], [17]) are obvious.

Yet, despite remarkable research efforts, actual pose

estimation systems (see e. g. [21] for a comprehensive

overview) are far from rivaling their biological paradigm:

while relying on a disproportionate, increasing amount of

human supervision, the vast majority of modern PE solu-

tions is unable to operate reliably on real-world scenarios.

In our project, we adress this annoying lack of com-

petetiveness by adopting organic computing [30] paradigms

into the PE domain. Our PE approach is designed as to

mimic human strategies of unsupervised, ’non-trivial learn-

ing’ [20]: upper body models combining human appear-

ance and limb kinematics are extracted ’from the input it-

self’ [10], while appropriate generalization strategies guide

application of the learned models to new situations.

As demonstrated in e. g. [29], analysis of non-rigid hu-

man motion behaviour is feasible: sparse models of the up-

per human body were learned in an unsupervised manner

from well-constrained, simple scenarios.

The contribution of the actual paper is three-fold: first,

we propose several methods to increase the performance of

the model learning process presented in [29] without sac-

rificing reliability. Second, the sparse, feature-based body

representations derived in [29] are fleshed out using appro-

priate multi-label image segmentation techniques. Third,

the limb templates resulting from the segmentation stage

are combined with kinematic constraints learned in [29] to

yield a 2D pictorial structure model (upper body) of the ob-

served human subjects; generalization potential of the con-

structed PE system is eventually assessed in scenarios of

varying complexity.

2. Enhanced limb proposal extraction

Following the basic limb proposal extraction scheme

presented in [29], our solution outperforms the former ap-

proach in several aspects; for completeness, we shortly re-

call the architecture of [29]: in a first step, image features

(patches of intensity distributions) are sampled sparsely

from given input video footage. These features are subse-

quently tracked by a differential optical flow scheme [27]

through all frames of a given input sequence. Obviously,

feature motion reflects human body motion: coherently

moving features are likely to represent single limbs. This

assumption is exploited by a follow-up ’self-tuning’ [16]

spectral clustering stage that groups features according to

the similarity of their motion trajectories. In a final step,

body kinematics are extracted by finding joint connections

between the segmented limb clusters. This skeleton extrac-

tion mechanism is based on a probabilistic maximum span-

ning tree (MST) algorithm proposed by [12].

2.1. Guided feature placement

Whereas the above feature sampling strategy sounds

straightforward in theory, its practical realization is far from
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Figure 1: Guided feature placement: foreground features

are indicated in yellow, background features are colored

blue

trivial: in [29], feature ’selection’ had been reduced to mere

feature placement, i. e. features were distributed homo-

geneously on incoming footage. Yet, this strategy yields a

tickler: scattering a large number of features wastes a sig-

nificant amount of processing power on bland background

structures. Contrarily, keeping the feature density too low

can easily cause tracking loss of important, yet weakly tex-

tured, fast-moving body parts (like bare forearms).

To avoid these problems, we employ a feature selec-

tion automatism that combines frame differencing strate-

gies, morphological operations and GraphCut [2] mecha-

nisms to concentrate features on the moving human body.

Besides lowering computational efforts and rendering fea-

ture tracking more reliable, this practice provides fore-

ground/background labelings for each feature. Fig. 1 de-

picts exemplary results of the enhanced feature placement

scheme.

2.2. Revisiting spectral clustering

In [29] a complex heuristic functional was proposed to

guide the spectral clustering stage. Here, we were able

to reduce the heuristic complexity while keeping up seg-

mentation quality by introducing a fully automatic post-

processing stage: spectral clustering now works according

to the well-established, comprehensive ’normalized cut’ cri-

terion proposed by [23]. This baseline technique generates

a segmentation structure that reflects the true body part con-

figuration already quite well: let each feature cluster in the

generated segmentation be henceforth termed a limb frag-
ment .

However, the achieved segmentation is not perfect: ex-

cess ’rogue’ fragments might be detected due to cloth

stretching or joint activity as depicted in fig. 2a. By em-

ploying a fully autonomous merge/split scheme in a sepa-

rate post-processing stage, these rogue fragments are elimi-

nated: during the merging phase, all rogue fragments which

approximately keep their relative rotation (±15 degrees) in

all frames of the sequence are fused; this simple heuristic

effectively counters rogues induced by cloth motion.

Treating rogue fragments resulting from joint activity

requires a different approach: each potential joint rogue

fragment (each fragment having exactly two neighbor frag-

ments) is putatively split and divided amongst its neighbor-

ing fragments; after each split, the skeletal tree is recon-

structed. The split that optimally preserves skeletal qual-

ity (measured heuristically as the sum of logarithmic edge

plausibilities in the skeletal MST, w. r. t. the initial fragment

configuration) is then put into practice and the process iter-

ates, starting from the new fragment configuration. This

greedy scheme is stopped if elimination of any potential

joint rogue would significantly deteriorate the overall skele-

tal quality.

The effectiveness of our rogue annihilation solution is

depicted in fig. 2b.

2.3. Single-shot sequence analysis

Adding up to the above enhancements, performing ex-

pensive spectral clustering in each input frame (as suggested

in [29]) turned out to be unnecessary: since the last frame

of an input sequence integrates motion information from all

previous frames, limiting spectral clustering efforts to this

last frame does not degrade overall segmentation results.

Yet, system performance is significantly boosted: whereas

sparse limb learning in [29] took ≈ 10 hrs. for a standard

input sequence, our strategy solves the problem in a couple

of minutes.

3. Limb refinement
The constructed sparse limb proposals give only a very

approximate idea of true human body (limb) shape. To set

up a full-fledged 2D model of the upper human body, flesh-

ing out the body part approximations becomes mandatory.

This problem essentially turns out as a multi-label image

segmentation task: based on information stemming from

the KP sparse limb proposals which passed the rogue frag-

ment elimination stage, all unclassified image pixels have

to be assigned to a dedicated body part; to simplify further

discussion, the background is treated as an additional ’limb’

in the following.

Binary (two-label) image segmentation problems can

globally be solved from within a fast graph-cut-based en-

ergy minimization framework [2]; Veksler ([28]) extends

this graph cut segmentation concept to multiple labels: her

α-expansion and αβ-swap algorithms internally bank on bi-

nary graph cut mechanisms [25] to find quickly a ’strong lo-

cal minimum’ of the selected, multi-label objective (energy)

function.

To apply Veksler’s ideas to the limb segmentation prob-

lem (as done in similar form by [15]), appropriate set-up

of the mentioned energy function is essential; to begin with,

assume that segmentation is performed in a dedicated frame

at time t0 (henceforth, this frame is also called reference
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(a) Fragments as received from the spectral

clustering stage

(b) Fragment configuration after post-

processing; cloth and joint rogues are

annihilated

Figure 2: Rogue cluster removal by heuristic post-processing, skeleton overlaid

frame), let X = {x0, ...,xNP
} identify all pixels in the

processed frame. S be a multi-label segmentation vector,

with components Si = l if pixel xi is currently assigned

to limb l. As we operate on full color images, let vector

I(xi, t) paraphrase the RGB-value of pixel xi at time t.
Then, the energy E(S) corresponding to a dedicated

configuration of the segmentation vector (such a single con-

figuration of S is called a ’labeling’ of the image pixels) can

appropriately be formulated as follows (adopted from [15]

and [1]):

E(S) =λ
∑
xi∈X

Rxi
(Si)

︸ ︷︷ ︸
EO

+
∑

(xi,xj)∈N
B(xi,xj) · (1− δ(Si, Sj))

︸ ︷︷ ︸
EB

(1)

with

δ(Si, Sj) =

{
1 if Si = Sj

0 otherwise

and

B(xi,xj) ∝ e−
(I(xi,t0)−I(xj ,t0))2

2σ2 · 1
‖xi − xj‖

N here identifies the complete set of pixel pairs defined un-

der a standard 4-neighborhood system (see e. g. [1]). Even-

tually, note that λ = 0.01 and σ = 10.0 in all our experi-

ments.

Interpretation of eq. 1 is straightforward: the observation

energy term EO takes on minimum values iff a current la-

beling S complies with model knowledge gained from the

limb proposals; thus, Rxi
(l) describes how well observa-

tions stemming from a certain reference frame pixel xi can

be explained by the lth limb model. The boundary term EB

is minimized iff S comprises spatially extended, coherent

limb templates; the B(xi,xj) term additionally constrains

inter-limb boundaries to coincide with natural image inten-

sity boundaries.

To further quantify Rxi , we draw inspiration from [12],

exploiting the motion , color and shape cues each limb pro-

posal provides.

Without any further domain knowledge, it is convenient

to assume the RGB color distribution of each limb to be

approximately Gaussian [12]; thus

MC
l (xi) =

1√
(2π)3

∣∣ΣC
l

∣∣ ·
e−

1
2 (I(xi,t0)−μC

l )T (ΣC
l )−1(I(xi,t0)−μC

l ) (2)

constitutes an appropriate limb color model for each body

part l; the RGB-mean μC
l and the full covariance matrix

ΣC
l are learned by ML estimation from the corresponding,

sparse limb proposals.

As well, the spatial distribution of all pixels assigned to

each limb is assumed to be of Gaussian type [12], yielding

the limb shape model

MS
l (xi) =

1√
(2π)3

∣∣ΣS
l

∣∣e− 1
2 (xi−μS

l )T (ΣS
l )−1(xi−μS

l )

(3)

where μS
l and ΣS

l are again derived from the limb proposals

by ML estimation.

Eventually, observe that pixels moving coherently with

the lth limb proposal are likely to belong to the lth body part.

The degree of motion coherence between a single reference

frame pixel and a certain limb l is readily assessed: given

the positional and rotational changes that limb proposal l
undergoes when transiting from time t to time t0, a transfor-

mation T t→t0
l (x) can be set up which maps pixels from any

frame at time t to the reference frame, inherently hypoth-

esizing that each transformed pixel moves coherently with

body part l. It should be immediately clear that this warping

process causes the difference
∣∣I(xi, t0)− I(T t→t0

l (xi), t)
∣∣

to become small only if the above hypothesis holds and the

projected pixel xi is truly part of the lth limb. This insight
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Figure 3: Limb templates automatically extracted from some input sequences

allows to establish a forward motion model [12]

MM+
l (xi) =

t0+R+∏
t=t0+1

1√
2πσ2

M

e
− 1

2
|I(xi,t0)−I(T

t→t0
l

(xi),t)|2
σ2

M

(4)

that is based on image intensity information from R+

frames following the reference frame; note that σM is set

to 10.0 in all our experiments; R+ is set to a low value (3)

to keep motion blur at bay.

By plugging the above partial models together, a com-
bined limb model

Ml(xi) = MC
l (xi) ·MS

l (xi) ·MM+(xi) (5)

can be formulated, whose negative logarithm plays the role

of the sought-after observation cost function in eq. 1, such

that

Rxi
(Si) = −ln(MSi

(xi)) (6)

With that, the above energy functional is fully defined and

Veksler’s alpha expansion algorithm (for details concerning

this algorithm, see e. g. [28], [25]) can be lauched on the

reference frame data. To cancel out potential motion blur

caused by temporal integration in eq. 4, we follow [12] and

repeat the above segmentation process after replacing the

forward motion model in eq. 5 with a similar backward mo-

tion model

MM−(xi) =
t0−R+∏
t=t0−1

1√
2πσ2

M

e
− 1

2
|I(xi,t0)−I(T

t→t0
l

(xi),t)|2
σ2

M

(7)

that integrates information from R− frames preceeding the

reference frame; for reasons of symmetry, R− = R+ = 3.

Binarized forward/backward segmentation masks for

each limb (derived from the forward/backward segmenta-

tion vectors) are then merged through a logic ’and’, thereby

reliably eliminating motion blur.

Finally, morphological opening and closing operators are

applied to the resulting limb templates, removing minor seg-

mentation artifacts and annealing small hiatuses found in

the extracted limb layers, while leaving the overall limb

shape largely unaltered.

Limb templates extracted from our video footage are

shown exemplary in fig. 3. While the above techniques

yield acceptable results in our trials on simple backgrounds,

future implementations offer chances for improvements:

esp. the unimodal Gaussian used to define the limb color

models is quite restrictive and could be replaced by a Gaus-

sian mixture model. This strategy would allow to employ it-

erative, GrabCut-like [22] methods for color model adapta-

tion, potentially increasing segmentation precision in more

complex scenarios with stronger background clutter.
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4. Pose estimation
In general, PE systems can be classified according to

many criteria, see [9] or [21]; the system we propose is most

closely related to 2D bottom-up solutions (like e. g. [24])

and baseline techniques from this domain are integrated in

our approach, allowing for autonomous pose inference from

still images or single frames of a video sequence. However,

the body model needed in standard bottom-up pose finding

is generally provided by a human supervisor; this manual

intervention clearly abates systemic self-reliance.

We completely abandon human supervision from the

process loop: the sought-after model of the upper human

body is generated automatically by combining the extracted

kinematic skeleton with the learned limb layers.

4.1. The human body model

In bottom-up PE approaches, a 2D body model com-

bining limb appearance information and skeletal kinematic

constraints is often formulated as a ’pictorial structure’

(PS) [7] model graph: nodes in the graph represent the sin-

gle limbs, whereas the graph edges enforce kinematic rela-

tionships between the body parts.

Appearance cues encoded in the extracted limb tem-

plates span cloth color, texture, illumination conditions and

limb shape. Yet, PS body models built on color, texture

or illumination become highly subject- and/or scenario-

specific, rendering their generalization capabilities negligi-

ble. Contrarily, prohibiting excessive limb foreshortening

and ensuring stable subject-camera distances, limb shapes

can be expected to remain rather invariant with respect to

the captured (adult) subject and environmental conditions.

As a consequence of these insights, we base our PS

model on limb shapes, temporarily discarding other sources

of information. Note, however, that the color information is

not lost, but stored for later use. The resulting shape-based

PS model displays good generalization capabilities in the

experiments described below.

4.2. Inferring 2D human body poses

Pictorial structures naturally unify apperance and kine-

matic constraints of a modeled subject/object: in the current

context, the employed upper body model comprises a tree-

like graph G(V, E), with its vertices V = {v0, ...,vKP
}

representing shape of the KP single body part templates

that result from limb refinement. The vertices are connected

by edges E = {e0, ...} which encode pairwise kinematic re-

lations (joint constraints from the skeletal MST) between

the identified parts. Loosely, tree edges can be imagined as

’springs’, keeping together the limbs at the body joint posi-

tions [6]. Edge weights are employed to encode stiffness of

the springs and inherently control model flexibility.

Assume that each body part i stored in the model

tree obeys a rigid motion model, allowing for translation

(xi, yi), rotation (θi) and scaling (si); let a dedicated point

in the corresponding limb state space be henceforth termed

a location [6] li of the considered body part. The set

L = {l0, ...lKP
} of locations for all body parts is hence-

forth termed a model configuration [6]. Each location is

allowed to take on only discrete values; a fine discretization

grid is employed to mimic the continuous nature of limb

parameter spaces (an idea borrowed from [8]).

Given a single input frame of a video sequence (or a sin-

gle still image) with image observations I, let mi(li, I) be

a ’match cost function that measures how well body part i
matches the image observations I when placed at location

li’ (loosely adopted from [6]).

As we base our PS model on limb shape, calculation of

mi(li, I) naturally builds on image edges. To construct ap-

propriate observations I, the input image has to be converted

into an edge map; necessary edge extraction could be done

by fast, gradient-based schemes (like Canny detection [3]).

However, the results produced by such basic edge detec-

tors often depend on careful, manual finetuning of systemic

parameters (which conflicts with OC principles). Further-

more, excess edges (e. g. in textured image areas) consti-

tute a severe problem in baseline edge detection and can

significantly deteriorate the reliability of the limb match-

ing process. For this reason, we employ the more sophisti-

cated JSEG [5] edge extraction scheme that combines color

and texture cues to find salient image edges. This practice

effectively reduces excess edges and the need for manual

intervention. Thus, I describes the edge observations de-

rived from the input image by applying the JSEG algorithm.

Note, for completeness, that other promising edge extrac-

tion schemes exist (e. g. [4]) which could also be employed

for edge analysis in the current context.

The limb templates are then matched to a chamfer dis-
tance image (cf. e. g. [26]) derived from these edge ob-

servations; this widespread practice yields good matching

results in general.

In addition to the above matching cost term, set up a de-
formation cost function [6] dij(li, lj); this function eval-

uates graph edge information and takes on low values iff

placing body parts i and j at locations li, lj does not violate

any kinematic model constraints; in other words, dij(li, lj)
penalizes model configurations that do not comply with

valid human body assemblies (w. r. t. the learned kinematic

skeleton).

Putting the above cost functions together yields the en-

ergy/cost functional [7]

EPS(L) =

⎛
⎝ ∑

vi∈V
mi(li, I) +

∑
(vi,vj)∈E

dij(li, lj)

⎞
⎠ (8)

that sums up the total cost for matching a dedicated config-
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(a) Sequence A (b) Sequence B

(c) Sequence C (d) Sequence D

(e) Sequence E (f) Sequence F

(g) Sequence G (h) Sequence H

Figure 4: Analyzing novel sequences: original images on the left, JSEG edge images on the right. The best matching result

is overlaid to the JSEG images.

uration of the given PS model to the provided image obser-

vations I.

It is readily seen [6] that a model configuration

L∗ = arg min
L

EPS(L) (9)

is the globally optimal solution to the pose inference prob-

lem at hand.

Due to the enormous complexity of the given minimiza-

tion problem, finding a globally optimal solution is far from

trivial: for arbitrary graphs, algorithm runtime becomes

O(mn), with m being the number of allowed discrete loca-

tions per limb and n representing the number of graph ver-

tices [6]. As m typically grows large [6], an exact solution

of the general pose inference problem quickly becomes un-

wieldy on availiable computer hardware. Yet, in the current

context, there is no need to handle arbitrary model graphs,

as we constrain the kinematic skeleton to be tree-structured.

For such simplified, tree-like graphs, [6] proposes to findL∗
in O(mn) time by employing dynamic programming tech-

niques; we follow this approach and use a variant of the
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Viterbi algorithm to perform fast upper-body pose inference

in all captured scenarios. For a detailed description of the

applied Viterbi method, [6] and [7] are recommended.

5. Assessing generalization capabilities
Using the techniques described above, it remains to ana-

lyze to what degree the resulting PE system is able to gen-

eralize, i. e. to ’apply what has been learned from limited

experience to new situations’ [20]. We assess generalization

capabilities by first learning a single PS model of the upper

human body from one of our training sequences. During the

following experiments, the learned model is overlaid to the

corresponding JSEG edge images; individual body parts are

marked in different colors.

The generated model is then used for pose estimation

in all residual testing scenarios in fig. 4: from fig. 4a -

fig. 4e it can be deduced that the system generalizes well

over the type of worn apparel, cloth color and texture. Fur-

thermore, changing motion patterns and soft cloth deforma-

tion (fig. 4b) are coped with quite satisfactorily. Note one

matching subtlety in fig. 4d and 4h: though the right fore-

arm is matched to the correct position, the limb appears con-

torted. As our system currently does not probe out-of-plane

rotations of the body parts, such behavior is expected; fu-

ture system versions will remedy this by allowing for limb

flipping in addition to pure 2D rotation. Fig. 4f eventu-

ally demonstrates matching capabilities in scenarios with

increased background clutter.

Eventually, as demonstrated in fig. 4g and fig. 4h, the

matching scheme generalizes acceptably across different in-

dividuals, given changing environmental conditions.

6. Conclusions and future perspectives
We proposed an artificial PE system that overcomes en-

trapments of conventional PE solutions by integrating prin-

ciples of organic computing: the system learns models of

the upper human body w. r. t. limb appearance and kinemat-

ics without human supervision. The learned model is suc-

cessfully applied to retrieve body postures in novel input

footage.

Compared to other systems that perfom limb learn-

ing from video footage, our solution has several advan-

tages: [12], though acting as a basis for our approach, dis-

plays several issues w. r. t. system autonomy. Krahnstoever

relies on human intervention to purport the correct number

of retrieved limbs and learns scenario-specific 3D models

that display minor generalization capabilities. In contrast,

the number of limbs is found automatically in our solution

(as a side-effect of post-processing), while the learned 2D

body models are kept quite generic, yielding, in combina-

tion with bottom-up techniques, acceptable generalization

performance.

A remarkable, layer-based limb extraction scheme has

recently been proposed by [15]. Though showing promising

segmentation results for quite generic scenarios, the role of

non-rigidity is not explicitly explored yet, furthermore, the

presented system structure becomes quite complex. On the

other hand, our system handles moderate non-rigidity effi-

ciently in the heuristic post-processing stage, while keeping

the system architecture complexity low.

To be understood as a possible extension to [15], the

bottom-up model matching method found in [14] works

on complete model graphs and attaches no importance to

finding a ’correct’, tree-like kinematic skeleton. While this

strategy is sufficient for pure detection of articulated enti-

ties, our approach steps further and aims at exact posture

retrieval of articulated human bodies.

Still, several issues have to be adressed in future re-

search: currently, generalization had been tested for one

training sequence and a variety of test sequences. It will

be interesting to see, in how far generalization capabilities

withstand changes of the model training sequence (e. g. us-

ing a shirt with long sleeves for model training).

Furthermore, the model used so far is quite oversimpli-

fied; besides limb shape, hand and face color distribution

could be exploited as another rather invariant cue, making

limb matching more reliable (disregarding camouflage at-

tempts). The question to be answered by follow-up research

is how to learn such pertinent color distributions automati-

cally from a multitude of extracted models. Similarily, by

combining multiple models, it should be possible to learn

an average prototype shape for each observed body part.

Such prototypical shapes are likely to provide a good trade-

off between preservation of important shape characteristics

and limb matching performance. Eventually, limb symme-

tries (e. g. both forearms display a similar color distribution)

might be exploited to render matching more robust.

From the model registration point of view, two enhance-

ments are planned: first, it is obvious that some body parts

(torso, forearms) can be matched more reliably to new im-

age content than other limbs. Learning such limb saliency

automatically and exploiting it during model matching shall

be explored in future research. Furthermore, joint limits can

be inferred from given input footage; knowing these limits

allows to prevent pose estimation to return implausible body

poses.

Finally, replacing the simple Viterbi algorithm with

more complex Belief Propagation (cf. e. g. [31]) schemes

would allow for models with loops (necessary for occlusion

handling and intersection prevention, see [24] and [19]).

Another future option is to integrate more complex sce-

nario analysis strategies (e. g. [15]) into our own approach,

thereby allowing for model learning from less restricted sit-

uations.
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