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Abstract. We describe a posture estimation system based on Organic
Computing concepts, which learns a generic body model from video input
in a self-governed manner. We show experimentally that the constructed
model generalizes well to different attire and persons.

1 Introduction

Analyzing human body poses by mere observation is a topic of growing inter-
est in computer vision — with application potential ranging from surveillance
over man-machine communication to motion picture animation. Yet, the artifi-
cial pose estimation (PE) approaches developed over the last two decades are
nowhere close to matching human visual skills. This may be due to different
working principles of artificial and biological vision systems. In the following,
we aim at levelling these differences by Organic Computing (OC) concepts, in
short, the attempt to make artificial systems more self-organized in their be-
havior [1]. In particular, we propose a PE system that acquires knowledge in
a completely unsupervised manner directly from video input; this knowledge is
then generalized to novel situations, mimicking human skills in ‘non-trivial’ and
continuous learning [2]. We build on work done by [3,4] to assemble autonomously
acquired visual data into a higher-level meta model for the acquired knowledge.
After training on videos of a moving human’s upper body the resulting model
is shown to generalize well to different movements, attire, and individuals.

2 Method

In the following, we assume a segmentation method that reliably extracts non-
rigid upper human body parts in a completely autonomous manner from simple,
fronto-parallel, monocular input streams. The method is further presumed to
extract connections between the single limbs (the upper body skeleton) coevally
and to learn the distribution of relative body joint angles. We ignore the neck
joint here, as rotational motion orthogonal to the image plane is hard to cap-
ture in a monocular setting and significant in-plane motion of the head relative
to the torso is rare. Such a system has been proposed by [3] and [4]; other ap-
proaches (e. g. [5]) could, with modifications, also be employed for non-rigid limb
segmentation and skeleton construction.
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Let Mq = {Lq,Jq,Dq} describe an upper body model extracted from input
sequence q, where Lq =

{
Ll
q

}
with l = 0 . . . NL − 1 represents the NL body

part appearance templates acquired from sequence q. Information concerning
the kinematic skeleton structure of Mq (relative joint locations, connectivity)
is stored in Jq. Eventually, the distribution of relative joint angles for each
skeleton joint (learned from all frames of sequence q) is stored in Dq. Appearance
models are retrieved from all input frames between an initial frame fB and a
stop frame fE . Then each Ll

q holds a separate appearance representation of limb

l for each valid frame f of video stream q, such that Ll
q =

{
llq,f

}
, f ∈ [fB , fE ].

Moreover, pl
q,f contains the pose (x, y, orientation, scale) of limb l in sequence q

for frame f ; stored in world coordinates. By letting llq,f =
{
slq,f , c

l
q,f

}
, we point

out separation of limb appearance templates into a shape map slq,f and an RGB

color map clq,f defined for each valid input frame of sequence q. The shape map
with values in [0,1] measures the relevance of each pixel to the limb’s shape.

Assume that limb segmentation is applied to NQ input video sequences, re-
sulting in a data set M = {M0, . . . ,MNM−1} of NM = NQ separate upper body
models, which differ significantly w.r.t. clothing, motion patterns and slightly
w.r.t. illumination. Self-occlusion of the limbs and variation of the depicted sub-
ject are not allowed in this segmentation stage of the learning algorithm.

In the following, we consolidate the models in data set M into a single meta
model, that represents the upper human body on a more abstract level while
preserving pertinent features that characterize human appearance. Such a meta
model is predestined to show good generalization during matching: it focuses
on salient features typical for human beings (mean limb outline, persistent color
patches on head and hands), while generalizing well across meaningless details
like cloth color and deformation, illumination, and motion patterns.

Meta model generation is based on two subprocesses: intra-sequence limb
prototype generation and inter-sequence limb prototype construction ; borrowing
from the biological paradigm [6], formulation of these prototypes is based on the
evaluation of shape and color features in the input streams. Note that prototyp-
ing techniques are not unchallenged when it comes to body model construction
and matching; [7] proposes, for instance, an interesting exemplar-based approach
to detect animal or human body models in given image data. Furthermore, it is
still discussed if human concept building capabilities foot on mental prototypes,
exemplars or some different information management paradigm [8]. We decided
in favor of the prototype approach here, as it principally allows to handle unlim-
ited amounts of input data while keeping the memory footprint well-arranged
and information retrieval times rather small.

2.1 Intra-sequence limb prototypes

Intra-sequence limb prototypes are rather straightforward to construct; for a
dedicated limb l̂ in input sequence q̂, they unify the content of shape and color

information memories ll̂q̂,f from all valid frames f = [fB . . . fE ].



Shape prototypes Formulating a shape prototype for a structure that deforms
as vividly as a dressed limb is not trivial. Landmark-based methods, which are
quite standard to derive mean shapes and deformation modes from deformable
objects (e. g. point distribution models [9]) are not applicable in the current
context, as landmark finding would have to rely on human intervention, thereby
spoiling any previous attempts to maximize system autonomy. Further, auto-
matic landmark finding procedures are, due to significant deformation of the
body parts, not reliable enough to replace manual annotation. For these rea-
sons, we choose a different approach to arrive at a fuzzy ‘mean’ shape of the
observed limb templates; our method is based on Gaussian voting and remotely
inspired by the approach presented in [10]; inherently capitalizing on knowledge
of limb poses in each valid input frame.

For the following discussion, focus, without loss of generality, on a single limb

l̂ in a given sequence q̂; it is quite natural to treat pl̂
q̂,fB

as the reference pose
of the processed limb. With that, set up two different operators: first, let G (·)
define a Gaussian blur operator with standard deviation σB = 5.0. Applying

this operator to an arbitrary shape map sl̂q̂,f dilutes the formerly crisp body
part outline. Additionally, install a registration operator R (·) that projects limb

shape map sl̂q̂,f from any valid frame f back to frame fB .

Given this foundation, setting up the intra-sequence shape prototype s∗ l̂q̂ for

limb l̂ in sequence q̂ can be formulated as a ‘Gaussianized voting’ procedure:

s∗ l̂q̂ = G
(
sl̂q̂,fB

)
+

fE∑
f=fB+1

G
(
R
(
sl̂q̂,f

))
. (1)

While the ‘voting’ terminology had been lent from [10], the ‘Gaussian’ tag em-
phasizes our method of blurring the limb shapes prior to summation. This pro-
cedure to some degree compensates for the vivid cloth deformation behavior and
results in smooth, naturally looking prototypical intra-sequence shapes. Eventu-
ally, the shape prototype is normalized (i.e., rescaled, such that the maximum
summed voting value becomes 1.0), then the 25% weakest votes are removed to
exclude spurious shape elements from further consideration. The resulting final
intra-sequence shape prototype is re-normalized.

Color prototypes To arrive at the intra-sequence color prototypes, a different

strategy is employed: first, given the reference pose pl̂
q̂,fB

, reuse registration

operator R (·) to project a limb color map cl̂q̂,f from any valid frame f back to
frame fB . Let the intra-sequence color prototype be

c∗ l̂q̂ =
1

(fE − fB + 1)

cl̂q̂,fB +

fE∑
f=fB+1

R
(
cl̂q̂,f

) . (2)

i.e., the intra-sequence color prototype for limb l̂ is the mean of all sampled
color observations for this body part. Note that this procedure necessarily blurs



the prototype, due to slight tissue and more significant cloth deformation. Yet,
this blur does not severely distort the fundamental color distribution of the
prototypical limb and is tolerated henceforth.

Given the intra-sequence limb prototypes, we combine these relatively spe-
cialized descriptors into more abstract inter-sequence body part prototypes that
show better generalization capabilities.

2.2 Inter-sequence limb prototypes

We now return to the meta model announced above: the limbs of this generic
body description essentially represent the sought-after inter-sequence prototypes.
To avoid notational confusion, let these limbs henceforth be termed meta limbs,
whereas the joints of the meta model are termed meta joints from here on.

Initially, the meta limbs are instantiated with the shape/color prototypes of
the primary model M0; also the meta joint structure (i.e., the skeleton of the
meta model) is copied from the primary model. With that, define a procedure
that aligns every subsequent model Mn, n = 1 . . . NM −1 with the current meta
modelMmeta. For simplicity, we focus on a single subsequent modelMm̂ in the
following. The alignment procedure first performs simple model matching (based
on routines described in [4] and section 2.4) to identify limb correspondences
between the meta limbs and the body part prototypes in Mm̂. Using these
results, the limbs of Mm̂ are eventually aligned with the meta limbs; further,
the skeleton structure of the subsequent model is rearranged to coincide with
the skeleton structure of the meta model. Note that during these processes, limb
and joint characteristics (i.e., limb orientations, relative joint angles) ofMm̂ are
appropriately adopted. With both models completely aligned, information from
Mm̂ can be used to update the current meta limbs and the skeleton structure
of Mmeta.

Shape prototypes To transfer limb appearance information from Mm̂ to the
meta limbs, the approximate alignment established above is not sufficient; it,
however, constitutes a good basis for further registration refinement: define an
operator ICP (·) that applies the well-established 2D iterative closest point meth-
ods of [11] (accelerated according to [12]) to fine-register the limb shape proto-
types of Mm̂ to their corresponding meta limbs. To keep computational effort
at bay, we here perform shape registration on a thinned shape representation
(thinning algorithm after [13]). With that, the inter-sequence shape prototype

s∗ l̂meta for a certain meta limb l̂ can be constructed from NQ input sequences as
follows

s∗ l̂meta = s∗ l̂0 +

NQ−1∑
i=1

ICP
(
s∗ l̂i

)
, (3)

i.e., the meta limbs fuse shape information from the single models by plain
superposition of the previously learned, registered intra-sequence prototypes.
Normalization (s. above) and removal of the 25% weakest votes yields the final



Fig. 1: Effect of limb flipping: the right image shows significantly better matching
performance, as the left forearm is flipped orthogonally to the image plane.

meta limb shape. Obviously, this procedure favors stable shape parts (which
persist throughout all input sequences), whereas cloth induced deformations are
largely suppressed.

Color prototypes Deriving persistent color information from the captured
models is somewhat more involved. First, assume that the above ICP operator

results can be reused to register the color representation c∗ l̂q̂ to its corresponding
meta limb which had been learned from all sequences 0 . . . q̂−1. Derive a binary

persistent color mask P l̂
q̂(x) that takes on values of 1 where color features within

the current meta limb and the registered intra-sequence prototype coincide. We
construct this mask by performing a windowed (15×15 pixels window size), color
histogram-based correlation, setting mask pixels x to zero whenever correlation
scores drop below 0.25. The resulting mask is then slightly eroded to prevent
learning from border sites. Note that the histogram correlation presumes the
limb color maps to be given in HSV color space. Choice of this color space
allows to exclude the value (V) component from further consideration, rendering
histogram-based processing more robust w. r. t. illumination variations [14].

Using P l̂
q̂(x), a color prototype accumulator cl̂acc is iteratively constructed

from all models in M:

1. Primary model initialization:

cl̂acc ← c∗ l̂0 .

2. For each subsequent model Mi ∈M : (i = 1 . . . NM − 1)

cl̂acc(x) =

{
cl̂acc(x) + ICP

(
c∗ l̂i

)
(x) if P l̂

i (x) > 0

0 else
. (4)



Fig. 2: Results of JSEG (center) and EDISON (right) edge segmenters on the
image on the left; parameters are chosen according to [15] and [16], respectively.

At each iteration i, prototypical color information c∗ l̂meta for meta limb l̂ can
trivially be instantiated

c∗ l̂meta =
cl̂acc
i+ 1

(5)

and used for determining P l̂
i+1(x). Note that the above correlation threshold

is quite generous, allowing for a significant number of ‘false positive’ persistent
color regions to evolve during each model update cycle. However, by learning
from multiple limb instances displaying vividly varying cloth colors, the true
persistent color patches (e. g. hands and head) will eventually pop out.

2.3 Meta skeleton retrieval

Compared to the prototyping approaches used for shape and color features,
skeleton prototyping is straightforward. Whereas the overall meta skeleton is
necessarily identical to the primary model’s skeleton w.r.t. connectivity, relative
locations of the meta joints are found by averaging the relative joint locations
from all Ji, with i = 0 . . . NM − 1. Similarly, the distribution of relative meta
joint angles is learned by aggregating Di for i = 0 . . . NM − 1.

2.4 Meta model matching

To match the fully evolved meta model to novel input images, we employ a
pictorial structure (PS) matching scheme similar to the one proposed by [17].
Due to the tree-like structure of the learned models, this dynamic programming
approach allows to speed up model matching significantly while guaranteeing
to yield globally optimal results. [4] gives an overview of the employed baseline
scheme; here we enhance their approach in several aspects: first, we allow the
matching algorithm to not only find the location (shift, rotation, scale) of each
meta limb, but also to infer if a body part is flipped or not. This enables the
system to cope with kinematic flips (terminology chosen in allusion to [18]). Such
flips occur due to the 3D nature of the captured scenario and have to be taken
into account to allow analysis of a broader range of body postures. It is assumed



Fig. 3: Final color cue map produced by the left meta forearm for the input
image on the right.

that each body part can only be flipped orthogonal to the image plane (around
the limbs’ major principal axis); the limits and angular statistics of each joint
attached to the flipped body part are updated automatically. Fig. 1 clarifies the
importance of flipping capabilities in our system.

Second, matching reliability is increased by refining the matching cost func-
tion constructed in [4]: shape matching cost is now computed using the oriented
Chamfer distance (cf. [19]) between the meta limb shapes and a line segmen-
tation of the given query image. The stand-alone JSEG [15] algorithm utilized
in [4] to generate this line segmentation has been replaced by the EDISON [16]
image segmentation scheme that is fully integrated into our system. Quality of
line images generated by EDISON perceptually compares to or even outperforms
the JSEG output (cf. fig. 2). Note that we outsource oriented Chamfer calcula-
tions to the GPU (using a CUDA-based implementation), to compensate for the
increased computational effort inherent to this more powerful approach. To save
computation time, the above fuzzy meta shapes are thinned (as above, thinning
algorithm from [13]) prior to being used for oriented Chamfer matching.

Adding up to the above, it is straightforward to exploit the persistent color
feature stored in each meta limb for derivation of a per-limb color cue map:
for that, we first transform the RGB representation of the query image to HSV
color space. Let then W(x) define a window (7×7 pixels) centered at position
x in the HSV representation of the query image. Assume that an HS-histogram
can be derived (during a batch-processing step not described here due to the
page limit) from the meta limb’s persistent color regions. A similar histogram is
deemed available for the window patch. We again drop the V-component during
histogram construction for better invariance to illumination variation. The map
value at x is then calculated as the correlation of the two HS-histograms. To
get rid of spurious elements, we apply a threshold of 0.1, and a Gaussian with
σ = 5.0 is centered at each surviving map entry, to account for possible wrong
negative color detections. Loosely following [20], the final color cue map is used
(after inversion and re-scaling) to define an additional color matching cost that



backs up the shape cue described above and renders overall matching behavior
more robust. An exemplary color map is shown in fig. 3.

3 Experimental results and discussion

After learning from different sequences of one person, we matched the model
into still images of different persons under different lighting conditions and with
different backgrounds. The results in figure 4 demonstrate the generalization ca-
pabilities of the model. The system is able to produce good inference of body
posture even in situations it had never been intended for and shows good gener-
alization capabilities in the presence of significant background clutter, regardless
of subject identity. So far, we have demonstrated the successful analysis of still
images. A quantitative analysis on the basis of hand-annotated images is cur-
rently under way.

Several 2D approaches for human posture identification have been employed.
In [21] a cue combination similar to ours is used to achieve robust limb match-
ing from a manually trained model. [22] and also [23] present learning-based
approaches for posture estimation based on pictorial structures with model ini-
tialization as well as body predetection based on human hand-crafting and do-
main knowledge. Further, spatio-temporal constraints are exploited to make pos-
ture recognition more reliable, which prevents their systems from analyzing still
images. [24] strive to solve the pose estimation problem on single, 2D input
images; their technique shows impressive capabilities, yet also relies on higher
level domain knowledge provided by human supervisors. In contrast, our sys-
tem autonomously achieves acquisition of similar knowledge (e.g., color cues or
kinematic constraints). [5] learns body models (of humans and animals) with
occlusions in a fully autonomous way from video input. Their approach could
serve for limb segmentation in our framework, but does not extract an explicit
skeleton, and the tuning of a significant number of parameters appears tedious.
In [25], a pictorial structure model is learned from input data, while the input
is already hand-labeled (contradicting OC ideas) and the learned PS model’s
rectangular shapes inevitably display less detail than our meta limbs.

The system proposed in this work complies with Organic Computing direc-
tives in that all required model information is generated autonomously; achieved
generalization performance is good, as demonstrated experimentally. These en-
couraging results notwithstanding several improvements are required. Creation
of the meta model depends on the order of video presentation, an effect that
needs to be quantified and eliminated by appropriate modifications to the learn-
ing scheme. Blandly using the thinned meta shapes for oriented Chamfer match-
ing may be problematic – at least a weighting scheme projecting circumjacent
values from the fuzzy meta shape maps to the thinned limb boundary representa-
tion is required. We also plan to replace thinning by weighted spline techniques.
Eventually, to veer away from pure theory, we will use our system to render a
humanoid robotic device capable of understanding and mimicking human upper
body motion.



Fig. 4: Experimental results showing the range of applicability of the learned
model (clockwise from upper left): Matching to the same person as in the model
but wearing different shirts and with a variety of backgrounds and lighting condi-
tions; different persons with different shirts and varying backgrounds; and finally,
a side view, which was not seen at all during training.
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