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Abstract: Modern artificial face detection shows impressive performance in a vari-
ety of application areas. This success comes at the cost of supervised training, using
large-scale databases provided by human experts. In this paper, we propose a face
detection system based on Organic Computing [vdM08] paradigms that acquires nec-
essary domain knowledge autonomously and learns a conceptual model of the human
face/head region. Performance of the novel approach is experimentally compared to
state-of-the-art face detection, yielding competitive results in scenarios of moderate
complexity.

1 Introduction

Humans with their social perception skills are quite adept in vision-based face identifica-
tion and interpretation of other peoples’ facial expressions. Although the biological foun-
dations of these abilities are still hardly understood it can safely be assumed that these
skills rely on fast and robust cerebral face detection (FD) mechanisms. Recent technical
solutions mimicking human abilities in face detection show good performance and target
a prospering market.

This success comes at a cost: artificial FD solutions are critically dependent on the avail-
ability of purposeful face models. These patterns can be provided in a variety of ways
(cf. [YKA02]), nevertheless, but are always based on domain knowledge [Wal11] pro-
vided by human supervisors. This is a tedious, time-consuming and costly task, and the
resulting databases often have to be tailored to the system’s expected operating conditions.
Worse, the vast majority of FD solutions are unable to extend such restricted databases
autonomously; thus, failure in unforeseen scenarios is programmed.

The above problems seem to have no counterpart in the biological systems: the visual
cortex acquires useful domain knowledge ‘from the input itself’ [Gor06] in a completely
autonomous manner. Herein, sophisticated ‘concept building’ [Wal11], ‘generalization’,
and ‘nontrivial learning’ [PB04] mechanisms are of prime importance. Endowing standard
face detection with these central abilities will potentially reduce human effort and render
the resulting systems more reliable in novel scenarios. This is studied within the Organic
Computing [vdM08] (OC) domain; recently, OC principles have been used to enhance
autonomy in articulated human body modeling [Wal11]. Linking to and extending this



work, the current paper modifies elements of the meta model proposed in [Wal11] in order
to form an autonomously assembled, OC-inspired face detector based on ‘Gabor wavelet’
information.

2 Learning meta models of the upper human body

The face detection scheme proposed here relies on an autonomously learned, abstract rep-
resentation of the human body, the so-called meta model [Wal11]. Assume an array of
NM unlabeled input video streams of 150− 300 frames, capturing a single human subject
performing smooth, fronto-parallel upper-body motion in front of a static and moderately
cluttered background. Using basic motion segmentation techniques in combination with
graph cut [BJ01] allows to separate the moving foreground subject reliably. Afterwards,
a set F = {f0, ..., fNF−1} of trackable features is distributed uniformly on the extracted
foreground entity; Kanade-Lucas-Tomasi tracking [TK91] yields motion trajectories for
each feature. A self-tuning[ZMP04] variant of spectral clustering [vL07] groups fea-
tures according to the similarity of their trajectories, resulting in a set of feature groups
Gi, i ∈ {0...NG − 1}. Assuming body parts to move as coherent entities allows to corre-
late each feature group with an observed limb; kinematic constraints between the identified
feature groups are introduced using a modified version of the skeleton assembly techniques
found in [Kra03]. To complete limb extraction, the sparse feature groups have to be con-
verted into compact limb templates; on that behalf, each foreground pixel x is assigned to
limb template i via (cf. [Wal11])

i = arg min
k∈{0,...,NG−1}

min
fj∈Gk

‖fj − x‖ .

The derived limb templates and the skeleton structure are combined within a sequence-
specific [Wal11] ‘pictorial structure’ [FH00] (PS) model of the observed upper human
body. Repeating the above model extraction procedure for each input sequence yields a
PS model arrayM = [M0, ...,MNM−1]. Each single Mi can be expected powerless for
matching purposes in generic scenarios (see [Wal11]). However, sophisticated learning
strategies can be employed to combine all sequence-specific PS models to form a much
‘more generic and powerful meta model’ [Wal11]Mmeta. This process is described else-
where [Wal11]. For this paper we describe the involved Gabor limb prototypes [Wal11].



3 Gabor prototypes

Gabor wavelets represent a widespread method to access spatial frequency information in
gray scale images [LVB+93, WFKvdM97]) and defined as
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Like in [WFKvdM97, Wal11] scales are sampled according to ν ∈ {0, ..., 4} and orienta-
tions are discretized by µ ∈ {0, ..., 7}.
A Gabor jet [WFKvdM97] ‘collects wavelet filter responses at a dedicated image position
from all ν · µ subband images’ [Wal11]. Image features based on such Gabor jets are
widespread in ‘biologically motivated’ [KS07] face recognition based on ‘elastic (bunch)
graph matching’ [WFKvdM97]. Herein, single jets correlate to dedicated ‘facial land-
marks’ [Wal11] and are attached to the nodes of a deformable ‘face graph’ [WFKvdM97].
The edges of this graph employ spring-like constraints to ensure spatial coherence of the
face model (cf. [WFKvdM97]). Face recognition is eventually based on graph compar-
ison; similarity of the connected jets is evaluated by a variety of ‘comparison functions’
[Wal11]. Within the current context, access to the jets’ absolute values will be sufficient
for jet comparison; nevertheless, more sophisticated comparison methodologies exist (cf.
[GW09]).

For face detection purposes autonomously learned grid graphs of Gabor jets (the afore-
mentioned Gabor limb prototypes) allow for reliable face detection in complex images.
Note that the system proposed in [Wal11] originally learns Gabor prototypes for all ob-
served NG body parts. Leaving detailed discussion of this procedure to [Wal11], assume
that the nodes of the generated Gabor prototypes GG,i, i ∈ {0, ..., NG − 1} carry texture
information that remains stable across all input sequences. As Gabor wavelets are not
rotationally invariant [Gün11] and cloth texture varies ‘significantly between sequences’
[Wal11], stable texture samples will evolve exclusively in the face region (due to negligible
head rotation and stable face texture) of the meta model’s torso element. Thus, all Gabor
prototypes GG,i except the torso become depleted of nodes and are eventually pruned.
The remaining GG,torso ‘turns into a generic texture-based torso detector that optimally
responds to human torsi in upright position’ [Wal11]. To actually perform torso detection
in an input image I(x), GG,torso is swept (at scales s ∈ {0.7, ..., 1.0}, discretized in Ndis
steps, with upright orientation) over a Gabor jet representation GI (x) of some query im-
age I(x). Comparing Gabor jet information from the swept graph’s nodes with Gabor jet
information from GI (x) yields a ‘Gabor cue map’ [Wal11] Gtorso

s (x); minima of this map
correlate to the barycenters of putative torso candidates in I(x). Fig. 1b demonstrates
application of GG,torso to the query image in fig. 1a; the pronounced bluish minima indi-
cate reliable detection of each observed torso, grayish regions correspond to areas where
‘the projected Gabor graph has at least one node outside the image area’ [Wal11] and thus
could not reliably be evaluated. In [Wal11], use of the described torso detection scheme



(a) Query image (b) Gabor cue map (c) Face detection

Figure 1: The face detection cycle: Gabor information is in heat map style; red color indi-
cates high values, while blue color corresponds to minima. Detected faces are highlighted
by green rectangles.

was deliberately restricted to search space reduction in articulated posture analysis. By the
modifications described below, however, GG,torso demonstrates potential in multi-person
face detection and will experimentally be shown to compete with state-of-the-art Viola-
Jones face detection [VJ04] in moderately complex scenarios.

4 Gabor-based face detection

TurningGG,torso into a reliable face detector is quite straightforward, the powerful OpenCV
[Bra00] library provides most of the necessary algorithms. In a first step, the face region
of the meta limb’s torso is localized: given ideal circumstances, this could be achieved by
finding the bounding rectangle of all nodes inGG,torso. However, stable nodes of the torso’s
grid graph might not evolve exclusively on the true face area, but also on the head/shoulder
transition; such ‘outlier’ nodes would unnecessarily inflate the face rectangle, as indicated
in fig. 2a.

The initial bounding rectangle can seed an ‘active contour model’ [KWT88]: evolving this
‘snake’ [KWT88] over < 1000 time steps, it eventually yields a tight perimeter (shown as
green line in fig. 2b) that fits all graph nodes. During the evolution process, nodes close to
the convex hull of GG,torso are charged with higher attraction weights, in order to prevent
the snake from excessive shrinking. Morphological opening of the perimeter’s inside area
(sketched as white overlay in fig. 2b) eliminates outlier influences and gives a compact
approximation of the true face region (white overlay in fig. 2c). This compact structure
can well be represented by a single encompassing rectangle Rface (overlaid as green line
in fig. 2c). Let bface be the barycenter of this face rectangle in torso-centric coordinates.
With that, the torso detection method of [Wal11] can directly be employed as a single-
face detection scheme: by adding bface to the position of the most pronounced Gabor cue
map minimum (across all sweeping scales), Rface can be projected into the query image
domain.

However, multi-face detection requires a more sophisticated approach: assume that min-
ima in each Gtorso

s (x) cluster tightly around the true barycenter positions of all torsi ob-



(a) Bounding rectangle (b) Evolved snake (c) Face rectangle

Figure 2: Face rectangle evolution for Gabor-based face detection: rectangle and snake
perimeters are shown in green, Gabor graph nodes are indicated as red dots.

served in I(x). Multiway spectral clustering (cf. [MX03],[vL07]) based on Euclidean
distances reliably identifies the single clusters and provides, via the eigengap [vL07] crite-
rion, a good estimate of the cluster number K. This allows to perform K-means clustering
on the ‘spectral embedding’ [vL07] coordinates of all minima positions and thus identifies
the final torso clusters. Each cluster’s most pronounced minimum is then extracted and
stored; this procedure is repeated on all scale levels. In a concluding spectral clustering
step, the stored minima are re-grouped; clusters with less than Ndis members can safely
be deemed instable across scales and are eliminated. The most pronounced minima of the
remaining Kr clusters are considered true torso detections and are charged with bface to
arrive at the final face detections diface, where i ∈ {0, ...,Kr − 1}. Using diface to project
Rface into the query image plane is straightforward and demonstrated in fig. 1c; observe
that the projected face rectangles (green overlays) trace the true face/head regions neatly. It
remains to assess the quality of the proposed Gabor-based face detection (GBFD) scheme
w. r. t. other state-of-the-art face detection approaches; competitive behavior of the former
method will be demonstrated in the following experiments.

5 Experimental evaluation

Being popular in the computer vision community (cf. [ZZ10]), the Viola-Jones face de-
tection (VJFD) scheme is a good contemporary candidate to compare Gabor-based face
detection to. Coarsely speaking, VJFD finds multiple faces in a given query image by
cascaded evaluation of ‘Haar-like features’ [VJ04] within a ‘sliding window’ [ME07] ap-
proach. Here, the VJFD method implemented in OpenCV is employed; threshold-based
skin color detection (cf. [EMH09]) in the Lab color space biases this standard VJ scheme
and counters detection of false positives. To the same end, the proposed GBFD method
is enhanced with autonomously acquired color information from the meta model’s color
prototypes; for details on this technique, refer to. [Wal11]. Comparison of VJFD and
GBFD is performed on the INIPURE (Institut für NeuroInformatik – PostURe Estima-
tion)database [Wal11]; using this proprietary database instead of publicly available ones
(cf., e. g., [SR03] or [HRBLM07] for a comprehensive overview) has three main reasons:
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Figure 3: Examples where both methods detected all faces successfully.
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Figure 4: Some more successful examples (4a through 4h). In 4i GBFD failed to find the
leftmost person and VJFD failed to find the person in the center. In figures 4j through 4l,
VJFD misdetected the face, while GBFD found it correctly.



Face detection scheme µQ σQ

VJFD 0.44347 0.86635
GBFD 0.66675 0.19107

Table 1: Face detection results

first, complexity of most public datasets is either too low (close to plain mug shots) or
unacceptably high (e. g., including strong horizontal and vertical face tilt or large scale
variation). Second, the GBFD approach is, in its current form, too slow for processing
the large numbers of images found in the aforementioned databases. Last not least, hardly
tractable copyright conditions hamper use of many of the most interesting face detection
benchmarks.

For the following experiments, a subset of NI = 54 images is picked from the INIPURE
collection; each picture shows upper body shots of people of varying gender, ‘physique
and worn attire’ [Wal11]. Shots either contain single individuals or groups of people;
herein, ‘background clutter and scene illumination are assumed unconstrained’ [Wal11].
Running VJFD and GBFD on the INIPURE images yields the results shown in fig. 3
and fig. 4: faces detected with the color augmented Viola-Jones method are drawn as
red rectangles, detections from the color augmented Gabor-based approach are sketched
as green rectangles. The yellow rectangles indicate manually supplied ground-truth face
regions.

Qualitatively, GBFD is shown to be at least on par with VJFD when run on the INIPURE
test set, locking reliably on single or multiple face instances. To quantitatively underpin
this impression, the ground-truth face rectangles in benchmark image Ii(x) are used to set
up a binary ground-truth foreground map M i

F. Let N i
F be the number of ‘1’-pixels in M i

F.
Further, use the inverse of M i

F to construct a binary ground-truth background map M i
B. In

addition, let OiF be the overlap between all face rectangles (retrieved either by VJFD or
GBFD) and M i

F. Similarly, OiB identifies the overlap between all face rectangles and M i
B.

With that, the face detection quality Qi for any benchmark image i can be defined as

Qi =
OiF −OiB
N i

F
(2)

Running i over all images in the chosen INIPURE subset allows to find the detection qual-
ity mean µQ and the corresponding detection quality standard deviation σQ. High values
of µQ indicate a good average face detection performance, while a low σQ shows stable
behavior of the selected face detection scheme. In ideal case, µQ should approach 1, while
σQ should tend to 0. Table 1 shows that the proposed, color-augmented GBFD method is
not only on par with, but seems to outperform color-augmented VJFD w. r. t. to both µQ
and σQ on the INIPURE database. However, some care has to be taken in the interpretation
of these figures: due to the strikingly different training methodologies used in VJFD and
GBFD, the former tends to generate detections that tightly encompass the ‘pure’ face area
(the region between forehead and chin), whereas the latter prefers detections that embrace
the whole head area. As the manually provided ground-truth rectangles tend to extend
beyond the pure face region, inherent positive bias is given to the GBFD method. Further,



spurious false positives in VJFD (which could have been eliminated using a more sophisti-
cated color augmentation scheme or appropriate size restrictions) tear up the statistics via
integration of OiB in eq. 2. With that background information, it is reasonable to assume
that an appropriately tuned VJFD approach is going to leave behind GBFD on larger, more
unconstrained datasets. Nevertheless, tbl. 1 shows that Gabor-based face detection princi-
ples can well compete with one of the most powerful face detection paradigms currently
available, on benchmark images of moderate complexity.

6 Concluding remarks

By the promising results given above, Organic Computing ideas seem to have at least
a threefold impact when applied to the face detection domain: first, Gabor-based face
models can be learned in a completely autonomous manner using techniques that already
proved useful in articulated body modeling [Wal11]. By that, human supervision is no
longer required for face model construction, having GBFD the edge over most contempo-
rary face detection solutions concerning system autonomy. Second, GBFD experimentally
proved on eye level (using the INIPURE benchmark) with one of the most popular, state-
of-the-art face detection schemes, namely the Viola-Jones algorithm. Accounting for the
massive amount of manually provided training data fed into VJFD, this result shows the
potential assistance that OC might provide in face detection and computer vision as such.
Last not least, GBFD could be modified to enter nontrivial learning loops: reliable face
detections from moderately complex input images were then used to update the Gabor-
based face concept, thereby allowing for reliable FD in query images of high complexity.
However, it should be made absolutely clear that the current paper is basically a proof of
concept and the enumerated OC advantages do not come for free: the proposed GBFD
approach is still way behind Viola-Jones methods (and most other modern face detec-
tion schemes) w. r. t. computational speed (finding the faces with the readily trained model
takes about 1 minute per image). Thus, the employed INIPURE test set had to be restricted
to small size and moderate complexity; other, more complex and extended databases will
have to be tested in order to assess the ‘real-world’ behavior of Gabor-based face detec-
tion. Further, GBFD currently learns from a single individual; on the one hand, this renders
the detection results above even more impressive w. r. t. generalization capabilities of the
proposed system. On the other hand, the resulting face model does integrate information
beyond the true face region (s. above). Left to future work, learning from a larger variety
of individuals likely amends this issue: the resulting face models are expected to become
more compact and to allow for precise detection of the true face area.
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