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ABSTRACT—Efficient visually guided behavior depends on

the ability to form, retain, and compare visual represen-

tations for objects that may be separated in space and time.

This ability relies on a short-term form of memory known

as visual working memory. Although a considerable body

of research has begun to shed light on the neurocognitive

systems subserving this form of memory, few theories have

addressed these processes in an integrated, neurally

plausible framework. We describe a layered neural ar-

chitecture that implements encoding and maintenance,

and links these processes to a plausible comparison pro-

cess. In addition, the model makes the novel prediction

that change detection will be enhanced when metrically

similar features are remembered. Results from experi-

ments probing memory for color and for orientation were

consistent with this novel prediction. These findings place

strong constraints on models addressing the nature of vi-

sual working memory and its underlying mechanisms.

Human thought and behavior arise within dynamic and highly

complex visual environments. Behaving efficiently within such

environments depends on the ability to form, retain, and update

visual representations as objects and events change over time.

Input to the visual system is not continuous, however; rather, it is

frequently interrupted by blinks, eye movements, and other

visual disruptions. As a result, detecting changes in ongoing

events often depends on the ability to compare visual percepts

formed at different points in time. This ability relies on a short-

term form of visual memory known as visual working memory

(VWM).1 Although a considerable body of research has shed

light on the neurocognitive systems subserving this form of

memory, few theories have addressed how populations of neu-

rons can form, maintain, and compare visual representations.

Here, we present a neurally grounded model that integrates

these cognitive processes, and we report experiments testing a

novel prediction derived from this integration.

Empirical studies of change detection have relied on variants

of the simple task shown in Figure 1. Observers view a sample

display (e.g., an array of simple objects or an image of a real-

world scene), which is followed by a brief disruption of some sort

(e.g., an eye movement, a ‘‘mud splash,’’ or a blank screen) and

the appearance of a second, test display. The test display either

is the same as the sample or differs from it in some way—for

instance, the color of one item may have changed (for reviews,

see Luck, in press; Rensink, 2002). In the one-shot change-

detection task shown in Figure 1, a single test display is pre-

sented, and observers make an unspeeded response, indicating

whether the test display is the same as or different from the

sample display (see Luck & Vogel, 1997). In flicker change-

detection tasks, the original and changed displays alternate,

separated by brief blank intervals, until the observer indicates

that a change has been detected (see Pashler, 1988; Simons &

Rensink, 2005).

Successful change detection in these tasks depends on several

factors. First, the information present in the sample display must

be accurately perceived and encoded in VWM (Jolicoeur &

Dell’Acqua, 1998; Vogel, Woodman, & Luck, 2006). Second, the

information must be stably and accurately maintained across the
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some task; in our case, the specific task is comparing sensory inputs that are
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delay. Third, the visual memory of the sample display must be

compared with relevant information in the test display (Mitroff,

Simons, & Levin, 2004), and a decision must be generated. The

failure to detect changes when they occur, or change blindness,

can arise when any one of these processes fails.

Contemporary research using the change-detection paradigm

has revealed properties of each of the processes involved in

visual comparison. For instance, VWM representations are es-

tablished very rapidly (�50 ms/item; see, e.g., Gegenfurtner &

Sperling, 1993; Vogel et al., 2006) and in an all-or-none fashion

(Zhang & Luck, 2008). Moreover, only a limited amount of in-

formation (�3–4 objects’ worth) can be maintained at any given

time (Cowan, 2001; Luck & Vogel, 1997). When the amount of

information present in the sample display exceeds this capacity,

mechanisms of attention play a role in selecting relevant aspects

of the display for encoding and maintenance (Hollingworth,

Shrock, & Henderson, 2001; Schmidt, Vogel, Woodman, &

Luck, 2002). Finally, the detection of changes at test has been

found to depend on a process that compares working memory

representations with incoming sensory inputs (Mitroff et al.,

2004). This process occurs largely in parallel, with detected

changes producing an active change signal that elicits rapid

orienting to the location of the change (Hyun, Woodman, Vogel,

Hollingworth, & Luck, in press).

At another level, research has begun to elucidate the neural

systems involved in change detection. Event-related potential

and functional imaging studies have shown that the separate

components of change detection engage a distributed network of

neural populations in the inferior temporal, posterior parietal,

and prefrontal cortices (Pessoa, Gutierrez, Bandettini, & Un-

gerleider, 2002; Todd & Marois, 2004; Vogel & Machizawa,

2004; Xu & Chun, 2006). Additionally, the detection of changes

at test has been shown to engage many of the same neural sys-

tems implicated in visual selective attention (Beck, Rees, Frith,

& Lavie, 2001; Pessoa & Ungerleider, 2004).

In summary, considerable progress has been made in under-

standing the component neural and behavioral processes in-

volved in change detection. Although several formal models

have addressed how visual representations are formed and

maintained over time (see, e.g., Amit, Bernacchia, & Yakovlev,

2003; Compte, Brunel, Goldman-Rakic, & Wang, 2000), none

have addressed the process of comparing multiple visual

memory representations with incoming sensory inputs. In this

article, we describe a layered neural architecture that imple-

ments encoding and maintenance in VWM, and we show how

these processes can be linked to a plausible comparison process.

The model also makes novel and counterintuitive behavioral

predictions, which we tested in a series of experiments.

A DYNAMIC NEURAL FIELD MODEL OF VWM AND
CHANGE DETECTION

To account for VWM and change detection in a neural frame-

work, we have developed a model that builds on the dynamic

field theory (DFT) of visuospatial cognition (Simmering,

Schutte, & Spencer, 2008; Spencer, Simmering, Schutte, &

Schöner, 2007). The DFT is in a class of continuous-attractor

neural network models originally developed to capture the dy-

namics of neural activation in visual cortex (Amari, 1977; see

also Wilson & Cowan, 1972). The generic form of models in this

class consists of a single layer of feature-selective excitatory

neurons reciprocally coupled to a separate layer of inhibitory

interneurons (see Fig. 2a). Locally excitatory and laterally in-

hibitory interactions within the network allow the formation of

localized peaks, or ‘‘bumps,’’ of activation representing, for in-

stance, estimates of specific sensory inputs (e.g., the retinal

position or color of a stimulus; see Jancke et al., 1999); in some

cases, these peaks may be sustained in the absence of con-

tinuing input. Simple networks of this type can realize ele-

mentary perceptual and memory processes (see discussion in

Grossberg, 1980). However, capturing performance in change-

detection tasks also requires specification of the processes un-

derlying visual comparison.

To this end, we have developed the three-layer architecture

depicted in Figure 2b. This architecture was inspired by the

canonical cortical circuit proposed by Douglas and Martin

Sample Display
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Delay Test Display
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Fig. 1. Change-detection task used to explore properties of visual working memory for simple fea-
tures (adapted from Luck & Vogel, 1997). A sample display is followed by a delay and then a test
display. The task is to indicate whether the sample and test are the same or different. This illus-
tration shows a task with color stimuli; different fill patterns are used to represent different solid
colors.
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(1998) on the basis of studies of cortical neurophysiology. The

model consists of an excitatory perceptual field, an excitatory

working memory field (VWM), and a shared inhibitory field. As

its name suggests, the perceptual field is the main target of

afferent input to the network. VWM also receives direct stimulus

input, but its primary excitatory input comes from the perceptual

field. Both the perceptual field and VWM provide excitatory

input to and receive broad inhibitory feedback from the inhib-

itory field. Additionally, nearby neurons within both the per-

ceptual and the working memory fields interact via local

excitatory connections. This pattern of excitatory and inhibitory

connectivity gives rise to a ‘‘Mexican hat’’ form of interaction

common in neural models of cortical function (Durstewitz,

Seamans, & Sejnowski, 2000). With the right balance of exci-

tation and inhibition, multiple peaks of activation can be sus-

tained in the absence of input. (Videos S1 and S2 in the

supporting information available on-line show the three-layer

model operating, respectively, in a self-stabilized mode, in which

peaks of activation form in response to input but die out when

input is removed, and in a self-sustained mode, in which peaks of

activation are sustained in the absence of input; see p. XXX.)

Thus, this form of interaction represents a plausible neural basis

for the sustained activation proposed to underlie working

memory (Compte et al., 2000; Fuster & Alexander, 1971).

Finally, to capture performance in change-detection tasks, we

have added a response layer containing two nodes: a different

node, which receives summed excitatory activation from the

perceptual field, and a same node, which receives summed ex-

citatory activation from VWM (see Fig. 2b). The nodes are

equipped with self-excitatory connections and are mutually

inhibitory, competing for control of response output when a ‘‘go’’

signal arrives (following the presentation of the test display).

Visual comparison is made possible in this architecture

through excitatory and inhibitory interactions among the mod-

el’s layers. Consider the simulations shown in Figure 3, which

capture performance in the one-shot variant of the change-de-

tection task (Fig. 1). We focus on this variant of the task because

of its relative simplicity, which minimizes the impact of factors
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Fig. 2. Two- and three-layer dynamic neural field models of visual working memory (VWM). The thin, solid
horizontal line in each field marks the activation threshold (conventionally set to be 0), the point at which
interactions among neurons within and between layers become engaged. The two-layer model (a) consists of
a single population of feature-selective excitatory neurons coupled to a similarly tuned population of in-
hibitory neurons. This simulation depicts the formation of a peak of activation following localized input to
the excitatory layer. Input takes the form of a Gaussian distribution that is centered at a particular field
location and has a specified strength and width. Once activation goes above threshold (i.e., 0) in the ex-
citatory layer, activation is passed to the inhibitory layer, which, in turn, passes broad inhibition back to the
excitatory layer. Locally excitatory interactions among neurons in the excitatory layer (solid, curved arrow)
keep neurons in a highly active state, whereas inhibitory feedback from the inhibitory layer keeps excitation
localized by preventing the diffusion of activation throughout the field. The three-layer model (b) contains
two populations of excitatory neurons (perceptual and VWM fields) reciprocally coupled to a single pop-
ulation of inhibitory neurons (inhibitory field). Input is applied to both excitatory fields, but input to the
perceptual field is much stronger than input to the VWM field. Once activation in the perceptual field goes
above 0, strong activation is propagated to both the inhibitory and the VWM fields. The VWM field also
projects excitatory activation to the inhibitory field, which projects inhibition to both the perceptual and
the VWM fields. The model also contains a response layer consisting of two nodes: one that receives summed
excitatory input from the perceptual field and is responsible for generating ‘‘different’’ (‘‘Diff’’) responses,
and a second that receives summed excitatory input from VWM and is responsible for generating ‘‘same’’
responses. The nodes in the response layer have self-excitatory connections and are mutually inhibitory.
Note that only above-threshold activation (i.e., activation> 0) in the perceptual field or VWM is propagated
to the response nodes at test.
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contributing to failures of change detection when real-world

scenes are used as stimuli (see, e.g., Hollingworth, 2003; Hol-

lingworth et al., 2001).

The simulations in Figure 3 demonstrate how ‘‘same’’ and

‘‘different’’ responses arise in the model. Each column shows the

pattern of activation in the excitatory layers of the model at a

given point in time during a trial in the change-detection task.

Note that, for simplicity, the inhibitory layer is not shown. At the

beginning of the trial (Fig. 3a), the model is presented with three

inputs: two nearby inputs representing very similar, or ‘‘close,’’

colors and a third input representing a distinct, or ‘‘far,’’ color.

When input is turned on, strong activation is applied to the

perceptual field, and weaker activation is applied to VWM.

Once activation in the perceptual field reaches a given threshold
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Fig. 3. Simulation showing the generation of ‘‘same’’ and ‘‘different’’ responses in the dynamic neural field model of visual working memory (VWM)
and change detection. For simplicity, only the two excitatory layers of the model are shown here, although the inhibitory layer plays a critical role in the
formation and maintenance of peaks and in the model’s ability to detect changes at test. Following the presentation of a sample input representing two
similar colors and one distinctive color (a), three peaks of activation form very quickly in the perceptual field and more slowly in VWM (because input to
the perceptual field is stronger). Once activation goes above threshold (0) in the perceptual field, strong activation is transmitted to the inhibitory and
VWM layers, and three above-threshold peaks are established in VWM. When the input is removed during the delay interval (b), the peaks die out in
the perceptual field, but are sustained in VWM. Inhibitory feedback from VWM to the perceptual field via the inhibitory layer suppresses the firing of
neurons in the perceptual field that code for the same features being held in VWM. When a close (c) or far (e) item is probed at test and the input
matches one of the remembered features, inhibitory feedback to the perceptual field prevents a new peak from forming. Thus, input to the response
nodes comes exclusively from the VWM field, and a ‘‘same’’ (S) response is generated. In contrast, when one of the close items is changed to a new value
at test (d), input comes in at a relatively uninhibited region of the perceptual field, allowing a new peak to be established and activation to flow to the
‘‘different’’ (D) node, which wins the competition when a sufficiently strong peak is present in the perceptual field at test. However, when the far item is
changed by an identical amount at test (f), input again comes in at a relatively uninhibited region of the perceptual field, but activation is unable to go
above threshold, and the model incorrectly responds ‘‘same.’’ Strong laterally inhibitory interactions between close peaks in VWM result in the
inhibitory projection to the perceptual field being stronger for far than for close items (compare inhibition in the perceptual field during the delay
interval for close vs. far items). The higher level of inhibition makes it more difficult to detect changes to far items.
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(conventionally set to be 0), locally excitatory interactions are

engaged, and strong activation begins to flow to the inhibitory

and VWM fields. Local excitation and reciprocal interactions

between the perceptual and inhibitory fields allow three peaks of

activation to form in the perceptual field. Shortly thereafter,

three peaks of activation also begin to form in VWM. When the

input is turned off (Fig. 3b), the peaks quickly die out in the

perceptual field. In contrast, the peaks that have now formed in

the VWM layer are sustained.

At this point, the only activation entering the perceptual field

is inhibitory feedback from the inhibitory layer (not shown in

Fig. 3). This input, which is driven by the peaks present in

VWM, suppresses the resting level of neurons tuned to the

feature values being maintained in VWM (for evidence of per-

ceptual suppression in the context of verbal working memory,

see Woodward et al., 2006). When a test item that matches one of

the colors in memory is presented (see Fig. 3c for a close item

and Fig. 3e for the far item), activation remains below threshold

(i.e., below 0) in the perceptual field because the neurons coding

for that color are strongly inhibited (see Video S3 in the on-line

supporting information). In this case, input to the response layer

comes from VWM, allowing the same node to win the competi-

tion. In contrast, when the close color input is changed at test—

to a value 301 away in color space (Fig. 3d)—input enters the

perceptual field at a relatively uninhibited site. Consequently,

an above-threshold (i.e., above 0) peak forms in the perceptual

field at test (see Video S4 in the on-line supporting information),

providing input to the different node that is strong enough to

generate a ‘‘different’’ response.

In summary, responding ‘‘different’’ relies on a distinctive

response to novel input, whereas ‘‘same’’ represents the default

response of the model (in keeping with the findings of Hyun et

al., in press). This aspect of the model is also consistent with

classic studies exploring same/different perceptual decisions,

which have suggested that ‘‘same’’ and ‘‘different’’ judgments

rely on distinct processes (see the review by Farell, 1985). Our

model shows how these distinct processes may emerge from the

functioning of a single, integrated dynamic system.

A NOVEL BEHAVIORAL PREDICTION

In addition to providing a plausible neural basis for the pro-

cesses involved in change detection, our model makes a novel

prediction—that the detection of changes in a visual array will

be enhanced when metrically similar features are maintained in

VWM. To see how this prediction arises, compare the simulation

depicted in Figure 3d with that in Figure 3f. Recall that in

Figure 3d, we changed one of the close colors by 301 in color

space at test, and the model responded ‘‘different.’’ Figure 3f

illustrates what happens if we change the far color by an iden-

tical amount: A peak fails to build in the perceptual field, and

the model erroneously responds ‘‘same’’ (see Video S5 in the on-

line supporting information). Why does this occur?

When the peaks in VWM are near one another, they interact in

a strongly inhibitory fashion, so that they are somewhat sharper

and of somewhat lower amplitude than peaks that are farther

apart. As a result, they project weaker excitation to the inhibi-

tory field, which, in turn, projects weaker and narrower inhibi-

tion to the perceptual field (see the perceptual field in Fig. 3b).

Weaker inhibition makes it easier to build a peak in the per-

ceptual field when a close (Fig. 3d), rather than a far (Fig. 3f),

color changes at test.

The similarity-based enhancement predicted by the model

runs counter to the predictions of several prominent theories of

working memory, which hold that items in working memory are

stored independently and do not interact (O’Reilly, Mozer,

Munakata, & Miyake, 1999; Raffone & Wolters, 2001). Thus, if

confirmed, this novel prediction will have important conse-

quences for neural models of working memory. To explore this

prediction further, we conducted a simulation experiment in

which the model was run through a standard change-detection

experiment.

MODEL SIMULATIONS

Method

The model consisted of the architecture shown in Figure 2b (for

further details, see Table S1 and Model Architecture, Equations,

and Supplementary Simulations in the on-line supporting in-

formation).

Simulations were conducted in Matlab 7.4 (Mathworks, Inc.,

http://www.mathworks.com). On each trial, the model was pre-

sented with three inputs: two that were near each other (201, 301,

or 401 apart, where 1 unit in the model 5 11 in color space) and

one that was at least 1501 away from the nearest close input. At

test, a single input was applied at either the same field location

as one of the original inputs or a different location 301 away from

one of the original inputs, as in the simulations depicted in

Figure 3. Thus, memory for either a close target or a far target

was probed. For each level of close separation, the model

completed 400 trials, 100 change and 100 no-change trials for

each target type. Thus, the model completed a total of 1,200

trials.

Results and Discussion

For each trial, we determined which response node was above

threshold at test. We then calculated the signal detection sen-

sitivity measure d0 using the obtained rates of hits and false

alarms, as with human subjects. The simulations demonstrated a

clear advantage when one of the close items, rather than the far

item, was probed at test (see Fig. 4d).

EXPERIMENTS 1A AND 1B

To test for similarity-based enhancement in human subjects, we

conducted a series of change-detection experiments probing
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Fig. 4. Illustration of the trial sequences in the experiments and results from the experiments and model simulations. Experiment 1a (a) used a
standard one-shot change-detection task. A test display of three colors was followed by a delay and then a test display of a single color. Experiment 1b
(b) tested change detection when the color stimuli to be remembered were presented sequentially, rather than simultaneously. In these illustrations,
different fill patterns represent different solid colors. Experiment 2 (c) followed the procedure for Experiment 1b, but using orientation stimuli. The
graph (d) shows performance (d0) for close and far targets separately for each experiment and the simulations. Note that for the orientation
experiment, results are shown only for trials on which the close-orientation separation was 201. Error bars represent 95% confidence intervals.
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memory for color. In Experiment 1a, memory items were pre-

sented simultaneously, as in the standard one-shot change-de-

tection task. Given this presentation format, any observed

enhancement might reflect differential perceptual encoding of

close versus far colors, rather than interactions among WM

representations (see the discussion in Lin & Luck, in press). To

rule out this possibility, we presented items sequentially in

Experiment 1b.

Method

Participants

Ten University of Iowa undergraduates (9 women, 1 man) vol-

unteered to participate in Experiment 1a, and 12 (7 women, 5

men) volunteered to participate in Experiment 1b. Participants

received class credit or monetary compensation for their par-

ticipation. They reported normal or corrected-to-normal visual

acuity and normal color vision.

Stimuli

Stimulus presentation and response recording were controlled

by a Macintosh G4 computer running Matlab 5.2 using the

Psychophysics Toolbox extensions (Brainard, 1997; Pelli,

1997). Stimuli were presented against a gray background (28.73

cd/m2) at a viewing distance of 57 cm. They consisted of small

colored squares subtending either 1.71 � 1.71 (Experiment 1a)

or 2.01� 2.01 (Experiment 1b). Individual colors were selected

from a set of 180 colors equally distributed in CIELAB 1976

color space, a perceptually uniform color space and color-ap-

pearance model developed by the Commission Internationale de

l’Éclairage.

The memory displays consisted of three items presented at

least 901 apart on the circumference of an imaginary circle that

was centered at fixation and had a radius of either 4.25 cm

(Experiment 1a) or 7.5 cm (Experiment 1b). In each case, two of

the items were close in color space (201, 301, or 401 apart),

whereas the color of the third item was always at least 1501 away

from the nearest close color. The test display contained a single

item appearing at one of the spatial locations previously occu-

pied by an item in the memory display (see Fig. 4a). On change

trials, the color of the test input and the memory item always

differed by 301 in color space. Close and far items were tested

equally often.

Procedure

In Experiment 1a (see Fig. 4a), each trial began with a fixation

cross presented at the center of the screen for 500 ms. Next, the

memory display was presented for 500 ms, followed by a 1,000-

ms delay interval and then a test display, which remained visible

until a response was generated. Participants were instructed to

make an unspeeded response when the test display appeared,

indicating whether the color of the test item was the same as or

different from the item appearing at that location originally.

Participants completed a practice block of 24 trials and a total of

240 experimental trials: 40 trials with close targets and 40 trials

with far targets at each level of close-color separation (proba-

bility of change 5 .5).

In Experiment 1b (see Fig. 4b), each trial also began with a

500-ms fixation cross, and then the memory items were pre-

sented sequentially for 200 ms each, separated by 500-ms blank

intervals. Close and far targets appeared with equal likelihood in

each probe position (1, 2, or 3) and were probed an equal number

of times at each position. Participants completed 48 trials (24

change and 24 no-change trials) for each combination of target

type (close, far), probe position (1, 2, 3), and close-color sepa-

ration (201, 301, 401), for a total of 864 trials.

To prevent verbal recoding of the memory-display colors, we

instructed participants to repeat three randomly generated

digits (e.g., ‘‘6, 4, 9’’) out loud at a regular pace throughout each

trial of each experiment.

Results and Discussion

An alpha level of .05 was used as the criterion for statistical

significance, and the signal detection measure d0 was the pri-

mary dependent measure.

Experiment 1a

An analysis of variance (ANOVA) with target type (close, far)

and close-color separation (201, 301, 401) as within-subjects

factors revealed a significant main effect of target type, F(1, 9) 5

29.82, p < .001. No other effects reached statistical signifi-

cance, all Fs < 1. As predicted, change-detection performance

was enhanced when a close, rather than a far, color was probed

(see Fig. 4d).

Experiment 1b

An ANOVA with target type, probe position, and close-color

separation as within-subjects factors revealed a main effect of

probe position, F(2, 22) 5 14.60, p < .001; change detection

was best for the most recent item (mean d0 5 0.88, 1.0, and 1.47

for Positions 1, 2, and 3, respectively). There was also a main

effect of close-color separation, F(2, 22) 5 17.99, p < .001;

change detection was most accurate when the close colors were

separated by 201 (mean d05 1.30, 1.12, and 0.92 for separations

of 201, 301, and 401, respectively). Most critically, there was a

main effect of target type, F(1, 11) 5 24.01, p < .001. As in

Experiment 1a, change-detection performance was enhanced

when a close, rather than a far, color was probed (see Fig. 4d).

These results replicate those of Experiment 1a, confirming that

the enhancement effect does not reflect differential perceptual

encoding of close versus far colors.

EXPERIMENT 2

Results from Experiment 1 are consistent with the predictions

of the dynamic field model proposed here. In Experiment 2,
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we examined whether the enhancement effect is a general

property of the neural mechanisms that underlie VWM by

probing whether this effect generalizes to working memory for

orientation.

Method

Participants

Fifteen University of Iowa undergraduates (10 women, 5 men)

volunteered to participate.

Stimuli and Procedure

Stimulus presentation, response recording, and the procedure

were the same as in Experiment 1b. The memory items consisted

of three thin, black, rounded rectangles, each of which spanned

the interior of a small, light-gray circle (2.01 in diameter; see

Fig. 4c). On each trial, two of the memory items had similar

orientations (201, 301, or 401 apart), whereas the orientation of

the third item differed by at least 701 from the nearest close

orientation. When a change occurred at test, the orientation of

the test item was rotated by 301.

Results and Discussion

An ANOVA with target type, probe position, and close-orien-

tation separation as within-subjects factors revealed a main

effect of probe position, F(2, 28) 5 30.24, p < .001. Again,

change-detection performance was best for the most recently

presented item (mean d0 5 1.01, 1.12, and 2.00 for Positions 1,

2, and 3, respectively). In addition, there was a main effect of

close-orientation separation (201, 301, 401), F(2, 28) 5 3.40, p

< .05, which was subsumed by a significant Target Type �
Separation interaction, F(2, 28) 5 4.06, p< .03. Tests of simple

effects revealed significantly better performance for close than

for far targets when the close-orientation separation was 201 (see

Fig. 4d), F(1, 2) 5 7.67, p < .02, but not when this separation

was 301 or 401, all Fs < 1. This finding supports the proposal

that similarity-based enhancement is a general property of

working memory for metric feature dimensions.

GENERAL DISCUSSION

We have described a neurally grounded model that incorporates

multi-item encoding and maintenance in VWM, as well as the

processes underlying visual comparison. The model achieves

sustained activation via locally excitatory and laterally inhibi-

tory interactions among neurons, and interactions among the

model’s layers give rise to an emergent form of comparison that

drives decisions about detected change. Specifically, peaks of

activation in VWM pass activation to an inhibitory field, and the

inhibitory field in turn provides inhibitory feedback to a per-

ceptual field that is responsible for the detection of novel inputs.

When new inputs match the remembered features, a peak fails to

build in the perceptual field, and a ‘‘same’’ response is triggered.

In contrast, when a change occurs at test, a new peak is formed in

the perceptual field, and this peak triggers a ‘‘different’’ re-

sponse. Thus, detecting difference depends on an active change

signal that may serve to direct attention or the eyes to the lo-

cation of potentially interesting changes in the environment

(Hyun et al., in press).

The present study also revealed a direct behavioral conse-

quence of the metric-dependent neural processes supporting

maintenance and comparison in the DFT model proposed here:

enhanced change detection when metrically similar features are

remembered. Recall that the transition from a ‘‘same’’ to a

‘‘different’’ response, which arises when sensory inputs are

sufficiently different from memory representations, is mediated

via inhibition of the feature values associated with each memory

item. The same inhibitory source also produces lower-amplitude

peaks when two close items, rather than two far items, are held in

working memory simultaneously. This weakening reduces the

strength of inhibition passed to the perceptual field, producing

the predicted enhancement effect. Thus, the metric dependence

of change detection is not a side effect or generic property of

systems with lateral inhibition, but is linked to the core mech-

anism supporting change detection in the model. The interitem

metric interactions proposed to underlie this effect run counter

to several prominent theories according to which items in

working memory are represented independently and do not in-

teract (see, e.g., O’Reilly et al., 1999; Raffone & Wolters, 2001).

Thus, our findings place strong constraints on models of the

nature of VWM and its underlying mechanisms.

The model described here suggests a candidate neural

mechanism for the explicit comparison process proposed to

underlie change detection (Mitroff et al., 2004). Additionally,

because our model makes a ‘‘same’’ or ‘‘different’’ decision on

each trial, it can offer insights into the origin of failures to detect

change, so-called change blindness. For instance, errors can

arise in our model if a change is too small to be detected, or if the

relevant items are not successfully encoded and maintained in

working memory (for related discussion, see Hollingworth,

2003; Mitroff et al., 2004).

One final question concerns how our functional neural model

maps onto evidence of neural localization from neurophysio-

logical and functional imaging studies. The three-layered ar-

chitecture we propose is presumed to operate within the laminar

layers of a given cortical area—for instance, within V4 or in-

ferior temporal cortex. It is also possible, however, to achieve the

same functionality using a four-layer architecture in which each

excitatory layer projects to a local inhibitory population in ad-

dition to the inhibitory population of the other excitatory field

(see, e.g., Edin, Macoveanu, Olesen, Tegner, & Klingberg,

2007). This four-layered architecture would be consistent with

the proposal that the perceptual field resides in posterior cortex

and the working memory field resides in another area, such as

the prefrontal cortex. Future work will be required to assess
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which architecture is more appropriate. For the present, how-

ever, the DFT provides a critical bridge between neurophysio-

logical measures and the details of human performance in

change-detection tasks.

Acknowledgments—This research was made possible by Na-

tional Institute of Mental Health Grant 2R01-MH062480 and

National Science Foundation Grant HSD0527698, awarded to

J.P.S., and by National Institute of Mental Health Grant R01-

MH076226 awarded to S.J.L.

REFERENCES

Amari, S. (1977). Dynamics of pattern formation in lateral-inhibition

type neural fields. Biological Cybernetics, 27, 77–87.

Amit, D.J., Bernacchia, A., & Yakovlev, V. (2003). Multiple-object

working memory: A model for behavioral performance. Cerebral
Cortex, 13, 435–443.

Beck, D.M., Rees, G., Frith, C.D., & Lavie, N. (2001). Neural corre-

lates of change detection and change blindness. Nature Neu-
roscience, 4, 645–650.

Brainard, D.H. (1997). The Psychophysics Toolbox. Spatial Vision, 10,

433–436.

Compte, A., Brunel, N., Goldman-Rakic, P.S., & Wang, X.-J. (2000).

Synaptic mechanisms and network dynamics underlying spatial

working memory in a cortical network model. Cerebral Cortex, 10,

910–923.

Cowan, N. (2001). The magical number 4 in short-term memory: A

reconsideration of mental storage capacity. Behavioral and Brain
Sciences, 24, 87–185.

Douglas, R., & Martin, K. (1998). Neocortex. In G.M. Shepherd (Ed.),

The synaptic organization of the brain (4th ed., pp. 459–510).

New York: Oxford University Press.

Durstewitz, D., Seamans, J.K., & Sejnowski, T.J. (2000). Neurocom-

putational models of working memory. Nature, 3, 1184–1191.

Edin, F., Macoveanu, J., Olesen, P., Tegner, J., & Klingberg, T. (2007).

Stronger synaptic connectivity as a mechanism behind develop-

ment of working memory-related brain activity during childhood.

Journal of Cognitive Neuroscience, 19, 750–760.

Farell, B. (1985). ‘‘Same’’-‘‘different’’ judgements: A review of current

controversies in perceptual comparison. Psychological Bulletin,

98, 419–456.

Fuster, J.M., & Alexander, G. (1971). Neuron activity related to short-

term memory. Science, 173, 652–654.

Gegenfurtner, K.R., & Sperling, G. (1993). Information transfer in

iconic memory experiments. Journal of Experimental Psychology:
Human Perception and Performance, 19, 845–866.

Grossberg, S. (1980). Biological competition: Decision rules, pattern

formation and oscillations. Proceedings of the National Academy
of Sciences, USA, 77, 2338–2342.

Hollingworth, A. (2003). Failures of retrieval and comparison con-

strain change detection in natural scenes. Journal of Experi-
mental Psychology: Human Perception and Performance, 29,

388–403.

Hollingworth, A., Shrock, G., & Henderson, J.M. (2001). Change de-

tection in the flicker paradigm: The role of fixation position within

the scene. Memory & Cognition, 29, 296–304.

Hyun, J.-S., Woodman, G.F., Vogel, E.K., Hollingworth, A., & Luck,

S.J. (in press). The comparison of visual working memory rep-

resentations with perceptual inputs. Journal of Experimental

Psychology: Human Perception and Performance.

Jancke, D., Erlhagen, W., Dinse, H.R., Akhavan, A.C., Giese, M.A.,
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