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From: R.P. Würtz and M. Lappe (eds.), Dynamic Perception, pp. 121–126. infix
Verlag/IOS press, 2002.

Abstract. All point tracking mechanisms sometimes fail due to ambigu-
ities in the visual data, a problem which can be alleviated by introducing
model knowledge in the form of constraints on groups of feature points.
Starting from a point tracking mechanism based on Gabor phases we
introduce model constraints, on the one hand by posterior regulariza-
tion (externally) and on the other hand by incorporating them directly
into the tracking mechanism (internally). In the special case of facial
feature tracking we show how the necessary model knowledge expressed
in the constraints can be learned without explicit user interaction. To
this end typical transformations of point groups are learned from noisy
but automatically determined correspondences via principal component
analysis.

1 Introduction

Tracking feature points reliably through a sequence of images is a much desired
skill for all applications where trajectories need to be measured and evaluated.
In this context Gabor wavelets have turned out to be well suited to determine
the disparity between two points from consecutive images [3, 4]. The phase of the
complex response to a Gabor filter varies nearly linearly for small translations
in the image plane [1], which allows disparity estimation with subpixel accuracy.
Another important feature are the multi-scale properties providing a very flexible
point description and the ability to robustify disparity estimation over a wide
range of scales.

Despite these advantages the tracking of individual feature points using Ga-
bor wavelets still suffers from local image ambiguities like the infamous aperture
problem that cannot be resolved without taking a larger context into account.
Such a context can often be provided by a set of constraints on a whole group
of points to be tracked. We propose a method which allows to incorporate the
constraints directly during disparity estimation. Full details about method and
results can be found in [5].
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2 Disparity estimation

In the tracking algorithm in [3] the disparity of a point from one frame to the next
is estimated in terms of phase differences of single Gabor jets with amplitudes a

and phases φ. Extracting two jets at positions x and x′, their relative disparity
d can be calculated by maximizing their similarity

s =

∑

k
ak(x)ak(x′)(1 − 0.5(φk(x) − φk(x′) − kT d)2)

|J(x)||J(x′)|
. (1)

The disparity is first estimated using only the lowest center frequency k. Af-
terwards, in each iteration one additional level is added, and the corresponding
phase differences are corrected modulo 2π. Thus, the lower frequencies can re-
solve the natural ambiguity modulo the wavelength for the higher frequencies. In
case the estimated intermediate disparity exceeds twice the actual width of the
Gabor function on the next higher frequency level, the process is terminated.

3 Tracking individual feature points

A tracking algorithm can be based on this disparity estimation, by executing the
following steps for each frame (the parameter α can be adjusted to the expected
variability of the visual features during tracking).

1. Extract jets J i (x1 (ti)) , . . . , J i (xm (ti)) at current positions in frame Ii.
2. Update model jets Jmodel

i (xn (ti)) = (1 − α)Jmodel
i−1 (xn (ti−1))+αJ i (xn (ti)).

3. Calculate disparity to the jets extracted from the next image Ii+1 at the
same image-coordinates dn = dn

(

Jmodel
i (xn (ti)) , J i+1 (xn (ti))

)

.
4. Calculate new positions in image Ii+1: xn (ti+1) = xn (ti) + dn.

4 Tracking constrained groups of points

Constraints for the disparities dn of the points n can only come from a parame-
terized model of the possible variations. They take the general form

dn − fn (ε) = 0. (2)

In this situation fn is a model of the possible group motion and ε are the model-
parameters. E.g., if only image plane rotations are possible, ε would contain the
center and angle of the rotation, and fn (ε) the resulting displacement of point
n. In practice, the equality is relaxed to a minimization of the norm of the left
hand side of (2).

These constraints can be incorporated by first estimating the disparities as-
suming all nodes to be mutually independent and then calculating the con-
strained disparity configuration that is closest, in a least square sense, to the
estimated disparities. The disparities are subsequently changed to those given by
the constrained configuration. This method, which we call external constraints,



Fig. 1. Examples of automatically labeled faces: Displayed are 10 arbitrarily
chosen examples of a set of approximately 1000 images. The retrieved correspondences
are displayed by superimposing the bunch graph.

has serious drawbacks, as the separation of model knowledge and motion estima-
tion forces decisions while estimating the initial disparities, even if the available
image information is inadequate. This can cause small errors to accumulate and
the total tracking result to deteriorate.

A better way is integrating the the model knowledge directly into motion
estimation. Substituting constraints in the form of equation (2) into the phase-
based disparity estimation of equation (1), the constrained disparities can be
found by maximizing

s(ε) =
∑

n

∑

k
ak(xn)ak(x′

n)
(

1 − 0.5
(

φk(xn) − φk(x′

n) − kT fn (ε)
)2

)

|J(xn)||J(x′

n)|
. (3)

Applying a first order Taylor expansion and maximization in terms of ∆ε yields
a linear equation system for ∆ε, which can be solved during the coarse-to fine
tracking described above. We term this use of model constraints internal.

5 Learning constraints from example data

Having established the need for constraints and a good way to apply them dur-
ing tracking the question remains of how the correct constraints for an object
class can be found. An analytical description will only be feasible in the sim-
plest of cases, and it is desirable to learn the constraints from example images.
We demonstrate a solution to this problem on face tracking. We match a bunch
graph [6] onto a large set of more or less frontal faces. The resulting correspon-
dence fields are converted into vectors and subjected to Principal Component
Analysis (PCA) in a way similar to [2].

PCA yields the mean deformation and the deformations with the largest
variation in the dataset. The first 6 are visualized in figure 2. As it turns out the



Fig. 2. Textured principal components of correspondence fields: The principal
components

�
1 through

�
6 (top to bottom) of the feature point locations are illus-

trated here in terms of the mapping they perform on the standard gray value image
shown in the central column. Each row shows the deformation from the mean along
one principal component by -4,-2,0,2 and 4 standard deviations, respectively.

principal components are readily interpretable. They code transformations that
are easily identified and named by visual inspection. The first one is a mixture of
vertical translation and tilt, the second is horizontal translation, the remaining
four contain scaling and rotation in depth. This is remarkable for several reasons.
First, the results are based on a noisy database of automatically resolved corre-
spondences. Although the database contained a lot of different individuals and
was restricted to approximately frontal pose, the inter-individual variations (such
as, e.g., jaw size or eye distance) are not dominant. The main variations seem
to stem from geometrical variations. The only inter-individual variation visible
in the first six components is expressed in the independence of scaling in x- and



(a) Example sequence
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(b) Tracking error over time

Fig. 3. Tracking of faces: (a) shows the point positions on selected frames of a
sequence, (b) the tracking error over time for internal, external, and no constraints,
respectively. The constraints were derived from the first six principal components

y-direction (P 3 and P 5), which might be attributed to different head shapes.
Although no explicit knowledge about the three-dimensional transformations of
rigid objects went into the constraint construction, their main properties were
captured. Moreover, the degrees of freedom are nicely separated in an intuitive
fashion.

An accurate model of the group motion of the selected feature points can
thus be derived by assuming that the whole motion is restricted (or close) to
the space spanned by the first principal components P 1 through P 6. Thus, the
projection onto these components can serve directly as model parameters ε.

6 Results

Although the correspondences derived from bunch graph matching are far from
perfect, the components with the highest eigenvalues seem to capture the major
transformations that a face undergoes (see figure 2). They can directly serve
as constraints and result in improved tracking performance. The results of three
tracking procedures, namely unconstrained tracking, tracking with external con-
straints and the method proposed here using internal constraints are compared
in figure 3(b) and clearly show the superiority of the latter.

Furthermore, the same constraints can be used to give rough pose information
and distinguish 3D-motion of a true face from a rotated image of a face. It is
remarkable how well the model captures the transformations of a moving face
although no image sequences were provided when deriving the model. If the
model parameters estimated by projecting the flow fields onto the first PCs are
plotted over time for a sequence showing a moving head, as it was done in figure
4, it can be clearly seen that the derived motion model can be used for more than
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(a) Head rotated by 30◦
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(b) Journal cover rotated by 45◦

Fig. 4. Principal components under rotation in depth: Shown are the projections
of the correspondence fields on � 3, � 4, and � 6, respectively, component as functions of
the frame number for a real head (a) and a flat photograph of a head (c) monotonously
rotating in depth. It can be clearly seen that � 4 and � 6 are closely related to a head’s
rotation in depth and its three-dimensional structure.

constraining the tracking. The transformation properties of faces, especially their
behavior under rotation in depth, are so well captured that the model parameters
themselves can be exploited to yield at least a qualitative pose estimation. The
experiment with the journal cover shows that the resulting horizontal scaling
can be clearly separated from the 3-D rotation of a real face.
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