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Abstract

It has recently been shown that subtracting the mean fromisitde as well as
the hidden variables of deep Boltzmann machines leads tertmetnditioned opti-
mization problems and improves some aspects of model peafoce. In this work
we analyze binary restricted Boltzmann machines, whertedeqg is done by sub-
tracting offset values from visible and hidden variableg ahlow analytically that
(i) the expected performance of centered binary restriB@tzmann machines is
invariant under simultaneous flip of data and offsets, for affiset value in the
range of zero to one, and (ii) using the 'enhanced gradisrgfjuivalent to setting
the offset values to the average over model and data mearre€uits also gener-
alize to deep Boltzmann machines. Numerical simulatioggest that (i) optimal
generative performance is archived by subtracting mearesgdiom visible as well
as hidden variables, (ii) the enhanced gradient suffers ftivergence more often
than other centering variants, (iii) learning is stabitiz€a sliding average over
the batch means is used for the offset values instead of thentubatch mean, this
also prevents the enhanced gradient from divergence.

1 Introduction

In the last decade Restricted Boltzmann Machines (RBMsinghie focus of attention

because they can be considered as building blocks of deegl metworks (Hinton et al.,
2006; Bengio, 2009). RBM training methods are usually basedradient ascent on
the Log-Likelihood (LL) of the model given the training dat&ince the gradient is

intractable, it is approximated by Gibbs samples from a Maxhain iterated only for

a few steps.
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Two major problems have been reported when training RBMsstlfi the bias
of the gradient approximation introduced by using only a feps of Gibbs sam-
pling may lead to a divergence of the LL during training (FRiecand Igel, 2010;
Schulz et al., 2010). To overcome the divergence problensjabdins et al. (2010)
proposed to use parallel tempering, which is an advanceglsagmethod that leads
to a faster mixing Markov chain and thus to better approxiomatof the LL gradient.
Secondly, the learning process is not invariant to the dgieesentation. For example
training an RBM on theMNIST dataset leads to a better model than training itlen
MNIST (the dataset generated by flipping each biMNIST). This is due to missing
invariance properties of the gradient with respect to tligséransformations and not
due to the model’s capacity, since an RBM trainedKIST can be transformed in
such a way that it models-MNISTwith the same LL.

Recently, two approaches have been introduced that adihedsvariance prob-
lem. The enhanced gradient (Cho et al., 2011, 2013a) hasdesgned as an invari-
ant alternative to the true LL gradient of binary RBMs andivcet by calculating a
weighted average over the gradients one gets by applyingassible bit flip com-
bination on the dataset. Cho etal. (2011) have shown enapyrithat the enhanced
gradient leads to more distinct features and thus to befdssification results based
on the learned hidden representation of the data. Furttrerritiee enhanced gradient
in combination with an adaptive learning rate leads to mtakls training in the sense
that good LL values are reached independently from theaiigtition of the learning
rate. Tang and Sutskever (2011) have shown empiricallystitatracting the data mean
from the visible variables leads to a model that can reaclilesirbL values on the
MNISTand thel-MNISTdataset and comparable results to those of the enhanced gra-
dient. Removing the mean from the variables is generallyknas the 'centering
trick’ which was originally proposed for feed forward nelunatworks (LeCun et al.,
1998). It has recently also been applied to the hidden anbdle@isariables of Deep
Boltzmann Machines (DBM) (Montavon and Miller, 2012) whdrhas been shown
to lead to a better conditioned optimization problem. Femore, the learned features
have better discriminative properties and centering im@sdhe generative properties
of locally connected DBMs.

In this work we give a unified view on centering in RBMs, showattthe enhanced
gradientis a particular form of centering and analyze tffemint ways of choosing and
approximating the offset parameters empirically. We be&gth a brief overview over
binary RBMs, the standard learning algorithms, and thechidsias used to construct
the enhanced gradient in section 2. In section 3 we discuhéuweetical properties of
centered RBMs and show that the enhanced gradient is ayartiorm of centering.

Finally, we empirically analyze the training of centeredV®Bwith different offset
parameters, sampling methods, and learning rates in segtio

2 Restricted Boltzmann Machines

An RBM (Smolensky, 1986) is a bipartite undirected graphicadel with a set ofN
visible andM hidden variables taking values= (zo, ...,zx) andh = (ho, ..., has),
respectively. Since an RBM is a Markov random field, its jgirgbability distribution



is given by a Gibbs distribution,

1
p (X, h) = EeiE(xyh)v (1)

with partition functionZ and and energ¥(x, h). For binary RBMsx € {0,1}V,
h € {0,1}™ and the energy, which defines the bipartite structure, isrgby

E(x,h) = —x"b—c’h—xT"Wh, 2)

where the weight matri¥, the visible bias vectds and the hidden bias vectorare
the parameters of the model, jointly denotedébyThe partition function which sums
over all possible visible and hidden stal€sandH respectively, is given by

X H
7z = Zze-E(iaﬁ). 3)

h

RBM training is usually based on gradient ascent using agpmations of the log-
likelihood gradient

d (log (p(x]0))) OE(x,h) OFE(x,h)
VO = —— = <T>d+ <T>m “)

where(-) is the expectation underh,x) and(-), is the one undep(h|x)p.(x)
with empirical distributiorp.. We use the notatioWé for the derivative of the log-
likelihood with respect t@ in order to be consistent with the notation in (Cho et al.,
2011). For binary RBMs the gradient becom&® = (xh’); — (xh’),,, Vb =
(X)a — (%), Ve = (h)g — (B}

Common RBM training methods approximatg, by samples gained by different
Markov chain Monte Carlo methods. Samplirkgsteps) from a Gibbs chain initialized
with a data sample yields the Contrastive Divergence (g [Hinton et al., 2006) algo-
rithm. In Persistent Contrastive Divergence (PEDTieleman, 2008) the chain is not
reinitialized after parameter updates, which has beenrtegto lead to better approxi-
mations if the learning rate is chosen sufficiently smalle @lvanced sampling method
Parallel Tempering (P.) introduces: additional "tempered” Gibbs chains correspond-
ing to smoothed versions ofx, h) and allows samples to swap between chains, PT
increases the mixing rate and has been reported to achitee &pproximations than
CD-k and PCDk (Desjardins et al., 2010), but it also has a higher computaticost.

2.1 Enhanced Gradient

Cho etal. (2011) proposed a different way to update parameligring training of
binary RBMs, which is invariant to the data representation.

When transforming the state, h) of a binary RBM by flipping some of its vari-
ables(i.ef; = 1—u; andﬁj = 1—h; for some;, 5), yielding a new statéx, ﬁ), one can
transform the parametefiof the RBM tof such that(x, h|8) = E(X, h|6) + const
and thusp(x,h|8) = p(x, h|@) holds. However, if we update the parameters of



the transformed model based on the corresponding logHiketl gradient th =

6 + 7V and apply the inverse parameter transformatiod {che result will differ
from 6’ = 0 + nVO. The described procedure of transforming, updating, aastr
forming back can be regarded as a different way to up@ate

Following this line of thought there exigt¥+ different parameter updates corre-
sponding to the™N+M possible binary flips ofx, h). Cho et al. (2011) have proposed
the 'enhanced gradient’ as a weighted sum of ti5€™ parameter updates, which
for their choice of weight is given by

VW = (= Ra)(h = ()" — (x = ()0 = (W) ) (6)
Vb = ()i (X — VoW (Bha+ (b)) ©
Ve = {Bha— () — TeWTS () + (X)) ™

It has been shown that the enhanced gradient is invariantbitraay bit flips and
therefore invariant under the data representation, whichideen demonstrated on the
MNIST and1-MNIST dataset. The authors have also reported a more stablenyaini
under various settings in terms of the LL estimate and diaaion accuracy.

3 Centered Restricted Boltzmann M achines

Inspired by the centering trick in (LeCun et al., 1998), Tang Sutskever (2011) have
addressed the flip-invariance problem by changing the gradttpe RBM in a way that
the mean of the input data is removed. Montavon and Mulled2? have extended
the idea of centering to the visible and hidden variables®#3 and have shown that
centering improves the conditioning of the underlying oyitiation problem, leading to
models with better discriminative properties for DBMs imgeal and better generative
properties in the case of locally connected DBMs.

Following their line of thought, the energy for a centeredary RBM where the
visible and hidden variables are shifted by the offset patansu = (uo, . . ., 4 ) and
A= (Ao, ..., ), respectively, can be formulated as

E(xh) = —(x—p) ' b=c"(h-X)-(x—p) Wh-X). (8

By setting both offsets to zero one retains the normal biRB¥. Settingu = (x)4
and\ = 0, leads to the model introduced by Tang and Sutskever (201l setting
p = (x)q andX = (h); we get a shallow variant of the centered DBM analyzed by
Montavon and Milller (2012).

The conditional probabilities for a variable taking theusbne are given by

p(zi=1h) = sigmwi. (h—X)+b,), 9)
plhj=1x) = sigm((x —p)" waj+¢;), (10)

where sign{-) is the sigmoid functionw;,. represents théth row andw.,; the jth
column of the weight matri¥v.



The log-likelihood gradient now takes the form

YW = ((x— )= X)) — ((x = @) (h = X)), (11)
Vb = (x—m)a—(x— ) = X)i— X, (12)
Ve = (h—X)g— (h— A, = (h)s— (h). (13)

Vb andVc are independent of the choice @fand A and thus centering only affects
VW.

It can be shown that the gradient of the centered RBM is iavaito flip transfor-
mations if a flipz; to 1 — «; implies a change ofi; to 1 — u; and a fliph; to 1 — h;
implies a change ok; to 1 — A;. This holds in particular fop;; = 0.5, A; = 0.5 and
any expectation over; andh; under any distribution. Note, that the invariance proof
also generalizes to DBMs

If we setp and to the expectation of the variables, these values may depend
the RBM parameters (think for example abdh},;) and thus they might change during
training. Consequently, a learning algorithm of a centd®&M needs to update the
offset values and transform the RBM parameters such thamtbdeled probability
distribution stays the same.

An RBM with offsetsu and can be transformed to an RBM with offsgi§and
X by

W o= W, (14)
b = b+W((\ -X), (15)
¢ = c+W'(y—p), (16)

such that?(x, h|0, u, \) = E(x,h|6', u', \') + const, is guaranteed.

3.1 Centered Gradient

We now use the centering trick to derive a 'centered’ paramgbdate, which can re-
place the gradient during the training of normal binary RBM#nilar to the derivation

of the enhanced gradient we can transform a normal binargéotered RBM, perform
a gradient update and transform the RBM back. This yield$dtewing parameter

updates, which we refer to as 'centered gradient’

VW = ((x=p)(h=2)T)g = ((x = p)(h = X)), 17)
Vb = (X)g— (X)m — VWA, (18)
Ve = (hg—(h),, —V.WTpy. (19)

Notice that by settings = 1 ((x)4 + (x);n) andX = 1 ((h)q + (h),,) the centered
gradient becomes equal to the enhanced gradient. Thuscadtnies clear that the
enhanced gradient is a special case of centering. This sanbal concluded from
the derivation of the enhanced gradient for Gaussian siatiables in (Cho et al.,
2013b). The enhanced gradient has been designed such ¢hatibht updates be-
come the difference of the covariances between one hiddémaa visible variable

1
2
t.



Algorithm 1 Training RBMs using the centered gradient

1. Initialize W (i.e. W <+ N(0,0.01)V*M)
2: Initialize p, A (i.e. p+ (Xg),A+ 0.5)
3: Initialize b, c (i.e. b < sigm ' (p), c « 0)
4: repeat

5. for all batchesX, do

6: Calculate Hy = p(H = 11X4)

7. Sample X,,, from binary RBM

8: Calculate Hy, = p(H = 1|X,,)

o: Estimate p,,,,, (i€ e — (Xa))
10: Estimate Aew (.. Apew < (Ha))
1L M (1 - VM)[I, + VMg ew
12: A — (1 — I/>\))\ + UxAnew

13 VW — (Xg — p)(Hg — X))
_<(Xm - H)(Hm - )‘)T>

14: Vb + (Xg) — (X)) = VWA

15: Vee + (Hy) — (H,) - V. W'y

16: W W+ 9VW

17: b+ b+nV.b

18: c+c+nV.c

19:  end for

20: until stopping criteria is met

under the data and the model distribution. Interestingly gets the same weight up-
date for two other choices of offset parameters: eifher (x)y andX = (h),, or

u = (x),, andA = (h),. However, the choice of these offsets results in different
update rules for the bias parameters.

Training a normal binary RBM based on the centered gradsesduivalent to train-
ing a centered RBM and finally transforming it to a normal lbyn@BM. Algorithm 1
shows pseudo code for training a normal binary RBM using twetered gradient,
which can easily be rewritten for training a centered RBMté\tbat the update of the
offsets — as it is the case when using the centered gradienperiormed before the
gradient is calculated. This is in contrast to the algoritbntentered DBMs proposed
in (Montavon and Miller, 2012), where the update of theeiffsand the reparameteri-
zation follows after the gradient update. This implicatext the estimates of the offsets
in one learning iteration are based on samples gained frermtidel of the previous
iteration. However, the proposed DBM algorithm smoothesdtfiset estimations by a
sliding average over the means of samples from many iteist&o that the choice of
the sample set used for the offset estimation should be éésgant. In Algorithm 1 a
sliding average is obtained(f< v < 1 and prevented if = 1.

3.2 Initialization of the bias parameters

Montavon and Milller (2012) have suggested that initiatiihe bias parameters to the



inverse sigmoid of the initial offset parameters leads t@adgstarting point, because
it guarantees that the Boltzmann machine is initially ceseThus, they set the offset
and the bias of the visible variables initially ta),; and signT*((x)4), respectively.
And the hidden offset was set to sigm,.; ) for an initial hidden bias parameter,;; €
{-2,0,2}.

Suppose the weight matrix is initialized to small randonueal (i.e. we can as-
sume that they are approximately zero) then the conditipreddabilities (9) and (10),
are approximately given by (z; = 1/h) ~ sigm(b;) andp (h; = 1|x) ~ sigm(c;),
respectively. If the visible bias is initialized to the imge sigmoid of the data mean,
the expectation of the conditional distribution under thedel takes approximately
the same value. We argue that it is reasonable to assumetiah iméan of0.5 for
the hidden variables, if the initial weight parameters aggligible small. Therefore,
0.5 and signf0.5) = 0 should be the initialization of choice for the hidden offaatl
bias parameters, respectively. We claim that this inz&lon may also be beneficial
for normal binary RBMs and centered RBMs wijth= (x); andA = 0. Following
the same arguments as abdw®,, and(h),,, can also be approximated by5. Thus,
to guarantee that the centered RBM corresponding to theneedayradient is initially
centered, the visible and hidden biases should be inigidlia sigm ' (0.5((x)4+0.5))
ando, respectively.

4 Experiments

As shown in the previous section the algorithms describe®/bytavon and Muller

(2012),Tang and Sutskever (2011) and Cho et al. (2011) tée @iewed as different
versions of centered RBMs. They differ in the choice of thisatfparameters and in
the way of approximating them, either based on the samplesdi&rom the model in

the previous learning step or from the current one, usingdingl average or not. In
the following we analyze the effect of these differencestenléarning outcome.

For simplicity we introduce the following shorthand notetti We used to denote
that the data meaf), is used,m for the model mean-),,,, a for the average of the
means; (-)q + 3(-)m andOif the offsets is set to zero. We indicate the choicg:dh
the first and the choice of in the second place, e.@d translates tqu = (v); and
A = (h),. We add a superscribédor « to denote whether the reparameterization is
performed before or after the gradient update. If a slidaxgdr is used a subscripis
added. Thus, we indicate the variant of Montavon and Mi{2é12) bydd?, the one
of Cho et al. (2011) by:a®, the data normalization in Tang and Sutskever (2011) by
d0, and the normal binary RBM simply 0.

In a first set of experiments we analyze these four algoritimtsrms of the evo-
lution of the LL during training. We focus our analysis on RBMvhere one layer is
small enough to guarantee that the exact LL is still traetatd avoid approximation
problems when using annealed importance sampling (Schalz €010). In a second
set of experiments we analyze the effect of the initialaatiescribed in section 3.2.

We proceed with a comparison @fi> anddd? estimating offset values and repa-
rameterizing the parameters before and after the gradpetta, respectively. Finally
we analyze the effects of using a sliding average to appraterne offset values in the



different algorithms and of usingin as a centering version with a new choice of offset
parameters.

4.1 Benchmark Problems

For our analysis we consider three different benchmarklprog.

The Bars & Stripes (MacKay, 2002) problem consists of quadratic patterns zg si
N = D x D that can be generated as follows. First, a vertical or hatemrientation
are chosen randomly with equal probability. Then the statedl pixels of every row
or column is chosen uniformly at random. This leadgtb™ — 2 different patterns,
where the completely uniform patterns occur twice as oftaih@others. The dataset is
symmetric in terms of the amount of zeros and ones and thuBggped and unflipped
problems are equivalent. An upper bound of the LL is giverty In(N) + 41n(2).
For our experiments we usdd = 3 leading to an upper bound ef41.59.

The Shifting Bar dataset is an artificial benchmark problem we designed tsp@a
metric in terms of the amount of zeros and ones in the dataarfrmput dimensionality
N, a bar lengtl) < B < N has to be chosen, Whe% expresses the percentage of
ones in the dataset. A positiOn< p < N is chosen uniformly at random and the states
of the following B pixels are set to one, where a wrap around is usgéiB > N. The
states of the remaining pixels are set to zero. This lead$ thfferent patterns, with
equal probability and an upper bound of the LL-eV In(N). For our experiments we
usedN =9, B = 1 and its flipped versiofrlipped Shifting Bar, which we get for
N =9, B = 8, both having an upper LL bound ef19.78

TheMNIST (LeCun et al., 1998) database of handwritten digits hasreastandard
benchmark problem for RBMs. It consists &f, 000 training, 10, 000 validation and
10, 000 testing examples of gray value handwritten digits of €igex 28. After bina-
rization the dataset contain8.3% ones, similar to th&hifting Barproblem, which in
our case containkl.1% ones. For training and evaluating the LL we used the bindrize
50, 000 training examples.

4.2 Experimental Setup

The RBMs weight matrices were initialized with random valgamples from a Gaus-
sian with zero mean and a standard deviatiof0f. If not stated otherwise the visible
and hidden bias parameters were initially set to zero. Iexgleriments we used CD-
1, PCD- and PT, as the three common training algorithms for RBMs. Full-batc
training was used foBars & Stripesand Shifting Barand mini-batch training with a
batch size of 100 was used fdMNIST. In each trial50, 000 parameter updates were
performed. We used 16 hidden variables when modehdST and4 hidden vari-
ables to mode$hifting BarandBars & Stripes To save computation time, the LL was
calculated every 50th gradient update &ifting BarandBars & Stripesdataset and
every epoch (500 gradient updates) KoXIST.



5 Resaultsand Discussion

All tables given in this section show the average maximum &ached during train-
ing with different learning algorithms over 25 trials anc tborresponding standard
deviation. In some cases the final average LL reached at thefanaining is given
in parenthesis to indicate a potential divergence of thelhlthe case oMNIST the
average LL was divided by the number of training samples. riteoto check if the
result of the best method within one row differs significaritbm the others we per-
formed pairwise signed Wilcoxon rank-sum tests (witk 0.05). The best results are
highlighted in bold. This can be more than one value if thaificance test between
these values was negative.

5.1 Comparison of the standard methods

The comparison of the learning performance of the previodskcribed algorithms
dd?, aa®, d0, and00 show that training a centered RBM leads to significantly bigh.
values than training a normal binary RBM (see Table 1 for #saits forBars & Stripes
andMNIST). Figure 1 illustrates on thBars & Stripesdataset that centering both the
visible and the hidden variabledd® andaa®) compared to centering only the visible
variables {0) accelerates the learning and leads to a higher LL when ugingnd
PCD, (see Table 1). It can also be seen that all methods slevgeince in combination
with CD, which can be prevented faki?, d0, and00 when using PTaa however
suffers from severe divergence of the LL when PT is used, vli@ven worse than
with CD. This problem does not depend on the choice of thenlegrrate as indicated
by the LL values reached at the end of training (given in péaeses) in Table 1. All
observations have also been made for $tnéfting Barand theFlipped Shifting Bar
dataset where the results can not be given because of szhiGetien. These results
also demonstrate the flip invariance of the centering ewgdlyi. While 00 fails to
model the flipped version of the dataset corredtl§, aa®, d0 have approximately the
same performance on the flipped and unflipped datset.

5.2 Initialization

We trained normal binary RBMs (i.€0) where the visible bias was initialized to zero
or to the inverse sigmoid of the data mean. In both cases tliehibias was initialized
to zero. Table 2 shows the results for the normal binary RBih&d on theFlipped
Shifting Bardataset, where the RBM with zero initialization failed tare the distri-
bution accurately. The RBMs using the inverse sigmoidatiation achieved good
performance and therefore seem to be less sensitive to iffiedit” representation of
the data. We also trained models using the centering veygigrua, andd0 compar-
ing the initialization suggested in section 3.2 againstzh® initialization, where we
observed that the different ways to initialize had littiéeet on the performance. In
most cases the results either show no significant differenterms of the maximum
LL between the initializations or lead to slightly bettesuéts when using the inverse
sigmoid. This is in particular the case when the learning atsmall. As an exam-
ple Table 3 shows the results fdd¢ on theBars & Stripesdataset. In addition, the



initialization leads to slightly faster learning, thus waed it in following experiments.
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Figure 1. Mean LL during training on thBars & Stripesdataset for the standard

methods. Top: CD-1 is used for sampling and the learningisate= 0.05. Bottom:
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ALGORITHM-7) aa’ dd? do 00

BARS & STRIPES

CD-1-0.1  -60.85+1.91 (-69.1) -60.41+2.08 (-68.8) -60.88+3.95 (-70.9) -65.05:3.60 (-78.1)
CD-1-0.05 -60.37+£1.87 (-65.0) -60.25+2.13 (-64.2) -60.74+3.57 (-65.1) -64.99:3.63 (-71.2)
CD-1-0.01  -61.00+1.54 (-61.1) -61.22-1.49 (-61.3) -63.28-3.01 (-63.3) -68.41-2.91 (-68.6)
PCD-1-0.1  -55.65:0.86 (-360.6) -54.75+1.46 (-91.2) -56.65:3.88 (-97.3) -57.27:4.69 (-84.3)
PCD-1-0.05 -54.29:1.25 (-167.4) -53.60+1.48 (-67.2) -56.5@:5.26 (-72.5) -58.16:5.50 (-70.6)
PCD-1-0.01 -54.26+0.79 (-55.3) -56.68-0.73 (-56.8) -60.83:3.76 (-61.0) -64.52:2.94 (-64.6)
PT10-0.1 -52.55+3.43 (-202.5) -51.13+0.85 (-52.1) -55.3%5.44 (-56.7) -53.99:3.73 (-55.3)
PT1-0.05  -51.84+0.98 (-70.7) -51.87+1.05 (-52.3) -56.115.79 (-56.6) -56.06:4.50 (-56.8)
PT1-0.01  -53.36+1.26 (-53.8) -56.73:0.77 (-56.8) -61.24-4.58 (-61.3) -64.70:3.53 (-64.7)

MNIST

CD-1-0.1 -152.6+0.89 (-158.5) -150.9 +1.53 (-154.6) -151.3 +1.77 (-154.8) -165.9-1.90 (-168.4)
CD-1-0.05  -152.5:1.14 (-156.1) -151.24+1.89 (-154.3)-151.6 +:1.90 (-154.6) -167.2-1.66 (-169.0)
CD-1-0.01  -153.0+1.10 (-153.2) -152.44+1.81 (-152.8)-153.54+2.30 (-154.0) -171.3-1.49 (-172.4)
PCD-1-0.1  -147.5:1.09 (-177.6) -140.9+0.61 (-145.2) -142.9-0.74 (-147.2) -160.2-4.87 (-169.4)
PCD-1-0.05 -145.3-0.61 (-162.4) -140.0+0.45 (-142.8) -141.10.65 (-143.6) -173.4:4.42 (-178.1)
PCD-1-0.01 -143.0:0.29 (-144.7) -140.7 £0.42 (-141.4) -141.2-0.49 (-142.5) -198.0:4.78 (-198.4)
PT1-0.01  -247.1+12.52 (-643.4)-141.5+0.54 (-143.6) -144.0:0.61 (-147.6) -148.81.15 (-153.6)

Table 1: Average maximum LL on (top) tiBars & Stripesdataset and (bottom) thdNIST dataset using different sampling methods and
learning rates.



ALGORITHM-7

00 init zero

00 init sigmoid™*

CD-1-0.2 -27.98+:0.26 -21.49+1.34
CD-1-0.1 -28.28+0.00 -21.09 £0.97
CD-1-0.05 -28.28t0.00 -24.87 £0.47
PCD-1-0.2 -28.010.26 -22.45+1.00
PCD-1-0.1 -28.28:0.00 -21.76 +£0.74
PCD-1-0.05 -28.28:0.00 -24.83 +0.55
PT10-0.2 -28.01+0.27 -21.72+£1.24
PTi0-0.1 -28.28+0.00 -21.14+0.85
PT10-0.05 -28.28£0.00 -24.80+0.52

Table 2: Average maximum LL on tHdipped Shifting Bardataset, where the visible
bias is initialized to zero or to the inverse sigmoid of théadaean.

ALGORITHM-7)

ddy init zero

dd® init sigmoid !

CD-1-0.2 -20.34£0.74 -20.42+0.80
CD-1-0.1 -20.75+£0.79 -20.85+0.82
CD-1-0.05 -23.00t0.72 -22.63+£0.66
PCD-1-0.2 -21.03+£0.51 -20.97 £0.65
PCD-1-0.1 -20.86 £0.75 -20.724+0.50
PCD-1-0.05 -22.75:0.66 -22.30+0.64
PT10-0.2 -20.08 £0.38 -20.25+0.55
PTi0-0.1 -20.56 £0.69 -20.68 +£0.69
PT10-0.05 -22.93+0.72 -22.39£0.65

Table 3: Average maximum LL on thHdipped Shifting Bardataset, where the visible
bias is initialized to zero or to the inverse sigmoid of théadaean.

5.3 Reparameterization

To analyze the different effects of performing the reparamization before or after the
gradient update we analyzed the learning behavididdfanddd? on all datasets. The
results for RBMs trained on thBars& Stripesdataset are given in Table 4 (top). No
significant difference between both versions can be obdeflee same observations
can be made for thBhifting BarandFlipped Shifting Bardataset. The results for the
MNIST dataset are shown in Table 4 (bottom). Hé# performs slightly better than
dd® in the case of CD and no difference could be observed for PGDPan We use
the reparameterization before the gradient update in thaireler of this work.
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ALGORITHM-7) dd® ddb
BARS & STRIPES

CD-1-0.1 -60.41+2.08 -60.3442.18
CD-1-0.05 -60.25+2.13 -60.19+1.98
CD-1-0.01 -61.22+1.49 -61.23+1.49
PCD-1-0.1 -54.75+1.46  -54.86+1.52
PCD-1-0.05 -53.60+1.48  -53.71+1.45
PCD-1-0.01 -56.68 +0.73  -56.68 +0.74
PTi-0.1 -51.13+0.85 -51.2541.09
PTy0-0.05 -51.87 +£1.05 -52.06+1.38
PT.0-0.01 -56.73+0.77  -56.72+0.77
MNIST

CD-1-0.1 -150.871.53 -150.60+1.55
CD-1-0.05 -151.24#1.89 -150.98 £1.90
CD-1-0.01 -152.39:1.81 -152.23 +1.75
PCD-1-0.1 -140.894+0.61 -141.1140.53
PCD-1-0.05 -140.02 +0.45 -139.95+0.47
PCD-1-0.01 -140.68 +0.42 -140.67 +0.46
PT:0-0.01 -141.46 +0.54 -141.56 +0.52

Table 4: Average maximum LL on (top) thgars & Stripesdataset and (bottom) the
MNIST dataset, using the reparameterization before and aftgréuient update.

5.4 Usageof adliding average

We analyzed the effect of using a sliding average with armgjdactor of0.01 for
the offset parameters. Interestingly, when training an Ridéhg PT based on the
enhanced gradient a sliding average prevents the obsenvedgehce of the LL. As
an example see the learning curves for Begs& Stripesdataset in Figure 2 (top) in
comparison to learning curves for training without slidengerage Figure 1 (bottom).
We still get comparable model performances, however theergence speed af:® is
reduced. In addition the usage of an sliding average malkete#iining curves of the
different methods almost equivalent. Note, ttidtdoes not suffer from the divergence
problem even when used without sliding average, as can Imeiséégure 2 (bottom)
for example. All observation can be made also for the othtrsads (see Table 5).

5.5 Other choicesfor the offsets

As mentioned in section 3, there are other choices for thgebffarameters which
lead to the same updates for the weights as the enhanceemradihe choice of

© = (x)q andX = (h),,, seems to be reasonable since the data mean is usually known
in advanced. We trained an RBM withn® using a sliding factor of 0.01. The results
are shown in Table 5, which suggest that there is no signifiddierence fromaa®
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anddd’. However, without a sliding averagen® has the same divergence problems
asaa’, see Figure 2 (bottom).

ALGORITHM-7) aab dd® dm?

BARS & STRIPES

CD-1-0.1  -60.09+2.02 (-69.6) -60.34+2.18 (-69.9) -60.35+1.99 (-68.8)
CD-1-0.05 -60.31+2.10 (-64.2) -60.19+1.98 (-63.6) -60.25+2.13 (-64.2)
CD-1-0.01 -61.22+1.50 (-61.3) -61.23+1.49 (-61.3) -61.23+1.49 (-61.3)
PCD-1-0.1 -54.78+1.63 (-211.7) -54.86 +1.52 (-101.0) -54.92 £1.49 (-177.3)
PCD-1-0.05 -53.81+£1.58 (-89.9) -53.71+1.45 (-67.7) -53.88+1.54 (-83.3)
PCD-1-0.01 -56.48 +0.74 (-56.7) -56.68-0.74 (-56.9) -56.47 +0.74 (-56.6)
PTi-0.1  -51.20+1.11 (-52.4) -51.25:1.09 (-52.3) -51.10+1.02 (-52.5)
PT1-0.05 -51.99+1.39 (-52.6) -52.06:1.38 (-52.6) -51.82+1.05 (-52.4)
PT1-0.01  -56.65+0.77 (-56.7) -56.72:0.77 (-56.7) -56.67 +0.77 (-56.7)

FLIPPED
SHIFTING BAR

CD-1-0.2  -20.36+0.74 (-20.7) -20.32+0.69 (-20.6) -20.32-0.70 (-20.6)
CD-1-0.1  -20.80+0.76 (-20.9) -20.86+0.81 (-21.0) -20.690.76 (-20.8)
CD-1-0.05 -22.58+0.64 (-22.6) -22.64:0.69 (-22.7) -22.94£0.73 (-23.0)
PCD-1-0.2 -21.00+0.65 (-41.5) -20.96+0.49 (-31.0) -21.00-0.68 (-38.3)
PCD-1-0.1 -20.75+0.53 (-23.4) -20.76 +0.53 (-22.8) -20.88+0.70 (-23.2)
PCD-1-0.05 -22.28 £0.68 (-22.3) -22.29+0.64 (-22.3) -22.68:0.65 (-22.7)
PTi0-0.2  -20.14+0.45 (-20.7) -20.31+0.61 (-20.7) -20.07 +£0.38 (-20.5)
PTi0-0.1  -20.424+0.51 (-20.7) -20.46 +0.56 (-20.6) -20.60+0.72 (-20.8)
PT1-0.05 -22.36+0.64 (-22.4) -22.39+0.69 (-22.4) -22.86:0.70 (-22.9)

MNIST

CD-1-0.1  -150.61+1.52 (-153.8)-150.60 +1.55 (-153.9)-150.50 +-1.48 (-153.6)
CD-1-0.05 -151.11+1.55 (-153.2) -150.98:1.90 (-153.8)-150.80 £1.92 (-153.5)
CD-1-0.01 -152.83+£2.42 (-153.3)-152.23 £1.75 (-152.6)-152.17 +£1.72 (-152.5)
PCD-1-0.1 -141.10 +£0.64 (-145.4)-141.11 £0.53 (-145.7)-140.99 £0.56 (-144.8)
PCD-1-0.05 -140.01 £0.58 (-142.9)-139.95 £0.47 (-142.6)-139.94 £0.46 (-142.7)
PCD-1-0.01 -140.85 +£0.47 (-141.6)-140.67 +£0.46 (-141.4)-140.72 £0.39 (-141.5)
PT10-0.01  -142.32£0.47 (-145.7)-141.56 £0.52 (-143.3) -142.180.45 (-146.0)

Table 5: Average maximum LL on (toBars & Stripes (middel)Flipped Shifting Bar
and (bottomMNIST when using a sliding average.
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Figure 2: Mean LL during training on thBars& Stripeswith the different centering

variants using Pi, a learning rate ofy = 0.05, (top) a sliding factor of 0.01 and
(bottom) no sliding average.
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6 Conclusion

In this paper, we analyze centered RBMs where centeringrie 8§ subtracting off-
set values from visible and hidden variables. The log-lil@d gradient of centered
RBMs (and DBMs) is shown to be invariant to variable flips & ttorresponding offset
parameters flip as well. Training a centered RBM can be redfitatad to training a nor-
mal binary RBM based on an alternative parameter updaten Eris new formulation
follows that the enhanced gradient is equivalent to cemgewniith a certain choice of
offset parameters. Our experiments show that centered RBMs a better generative
performance than normal binary RBMs and thus centered RBidsld be the model
of choice. Optimal performance is achieved when centeratb,bvisible and hidden
variables, although the improvementis mainly due to cémgenf the visible variables.
A sliding average should be used for the approximations efoffset values, since it
stabilizes learning and prevents the severe divergencédeons we observed when
using the enhanced gradient.
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