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Abstract

It has recently been shown that subtracting the mean from thevisible as well as
the hidden variables of deep Boltzmann machines leads to better conditioned opti-
mization problems and improves some aspects of model performance. In this work
we analyze binary restricted Boltzmann machines, where centering is done by sub-
tracting offset values from visible and hidden variables. We show analytically that
(i) the expected performance of centered binary restrictedBoltzmann machines is
invariant under simultaneous flip of data and offsets, for any offset value in the
range of zero to one, and (ii) using the ’enhanced gradient’ is equivalent to setting
the offset values to the average over model and data mean. Ourresults also gener-
alize to deep Boltzmann machines. Numerical simulations suggest that (i) optimal
generative performance is archived by subtracting mean values from visible as well
as hidden variables, (ii) the enhanced gradient suffers from divergence more often
than other centering variants, (iii) learning is stabilized if a sliding average over
the batch means is used for the offset values instead of the current batch mean, this
also prevents the enhanced gradient from divergence.

1 Introduction

In the last decade Restricted Boltzmann Machines (RBMs) gotin the focus of attention
because they can be considered as building blocks of deep neural networks (Hinton et al.,
2006; Bengio, 2009). RBM training methods are usually basedon gradient ascent on
the Log-Likelihood (LL) of the model given the training data. Since the gradient is
intractable, it is approximated by Gibbs samples from a Markov chain iterated only for
a few steps.
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†Nan Wang was supported by the fellowship from InternationalGraduate School of Neuroscience
(IGSN), Ruhr-Universität Bochum.
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Two major problems have been reported when training RBMs. Firstly, the bias
of the gradient approximation introduced by using only a fewsteps of Gibbs sam-
pling may lead to a divergence of the LL during training (Fischer and Igel, 2010;
Schulz et al., 2010). To overcome the divergence problem, Desjardins et al. (2010)
proposed to use parallel tempering, which is an advanced sampling method that leads
to a faster mixing Markov chain and thus to better approximations of the LL gradient.
Secondly, the learning process is not invariant to the data representation. For example
training an RBM on theMNIST dataset leads to a better model than training it on1-
MNIST (the dataset generated by flipping each bit inMNIST). This is due to missing
invariance properties of the gradient with respect to theseflip transformations and not
due to the model’s capacity, since an RBM trained onMNIST can be transformed in
such a way that it models1-MNISTwith the same LL.

Recently, two approaches have been introduced that addressthe invariance prob-
lem. The enhanced gradient (Cho et al., 2011, 2013a) has beendesigned as an invari-
ant alternative to the true LL gradient of binary RBMs and derived by calculating a
weighted average over the gradients one gets by applying anypossible bit flip com-
bination on the dataset. Cho et al. (2011) have shown empirically that the enhanced
gradient leads to more distinct features and thus to better classification results based
on the learned hidden representation of the data. Furthermore, the enhanced gradient
in combination with an adaptive learning rate leads to more stable training in the sense
that good LL values are reached independently from the initialization of the learning
rate. Tang and Sutskever (2011) have shown empirically thatsubtracting the data mean
from the visible variables leads to a model that can reach similar LL values on the
MNISTand the1-MNISTdataset and comparable results to those of the enhanced gra-
dient. Removing the mean from the variables is generally known as the ’centering
trick’ which was originally proposed for feed forward neural networks (LeCun et al.,
1998). It has recently also been applied to the hidden and visible variables of Deep
Boltzmann Machines (DBM) (Montavon and Müller, 2012) where it has been shown
to lead to a better conditioned optimization problem. Furthermore, the learned features
have better discriminative properties and centering improves the generative properties
of locally connected DBMs.

In this work we give a unified view on centering in RBMs, show that the enhanced
gradient is a particular form of centering and analyze the different ways of choosing and
approximating the offset parameters empirically. We beginwith a brief overview over
binary RBMs, the standard learning algorithms, and the basic ideas used to construct
the enhanced gradient in section 2. In section 3 we discus thetheoretical properties of
centered RBMs and show that the enhanced gradient is a particular form of centering.

Finally, we empirically analyze the training of centered RBMs with different offset
parameters, sampling methods, and learning rates in section 5.

2 Restricted Boltzmann Machines

An RBM (Smolensky, 1986) is a bipartite undirected graphical model with a set ofN
visible andM hidden variables taking valuesx = (x0, ..., xN ) andh = (h0, ..., hM ),
respectively. Since an RBM is a Markov random field, its jointprobability distribution
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is given by a Gibbs distribution,

p (x,h) =
1

Z
e−E(x,h), (1)

with partition functionZ and and energyE(x,h). For binary RBMsx ∈ {0, 1}N ,
h ∈ {0, 1}M and the energy, which defines the bipartite structure, is given by

E (x,h) = −xT
b− c

T
h− x

T
Wh , (2)

where the weight matrixW, the visible bias vectorb and the hidden bias vectorc are
the parameters of the model, jointly denoted byθ. The partition function which sums
over all possible visible and hidden statesX̃ andH̃ respectively, is given by

Z =
X̃
∑

x̃

H̃
∑

h̃

e−E(x̃,h̃). (3)

RBM training is usually based on gradient ascent using approximations of the log-
likelihood gradient

∇θ =
∂ 〈log (p(x|θ))〉d

∂θ
= −

〈

∂E(x,h)

∂θ

〉

d

+

〈

∂E(x,h)

∂θ

〉

m

, (4)

where〈·〉m is the expectation underp(h,x) and 〈·〉d is the one underp(h|x)pe(x)
with empirical distributionpe. We use the notation∇θ for the derivative of the log-
likelihood with respect toθ in order to be consistent with the notation in (Cho et al.,
2011). For binary RBMs the gradient becomes∇W = 〈xhT 〉d − 〈xh

T 〉m, ∇b =
〈x〉d − 〈x〉m,∇c = 〈h〉d − 〈h〉m.

Common RBM training methods approximate〈·〉m by samples gained by different
Markov chain Monte Carlo methods. Sampling (k steps) from a Gibbs chain initialized
with a data sample yields the Contrastive Divergence (CD-k) (Hinton et al., 2006) algo-
rithm. In Persistent Contrastive Divergence (PCD-k) (Tieleman, 2008) the chain is not
reinitialized after parameter updates, which has been reported to lead to better approxi-
mations if the learning rate is chosen sufficiently small. The advanced sampling method
Parallel Tempering (PTc) introducesc additional ”tempered” Gibbs chains correspond-
ing to smoothed versions ofp(x,h) and allows samples to swap between chains. PTc

increases the mixing rate and has been reported to achieve better approximations than
CD-k and PCD-k (Desjardins et al., 2010), but it also has a higher computational cost.

2.1 Enhanced Gradient

Cho et al. (2011) proposed a different way to update parameters during training of
binary RBMs, which is invariant to the data representation.

When transforming the state(x,h) of a binary RBM by flipping some of its vari-
ables (i.ex̃i = 1−xi andh̃j = 1−hj for somei, j), yielding a new state(x̃, h̃), one can
transform the parametersθ of the RBM toθ̃ such thatE(x,h|θ) = E(x̃, h̃|θ̃)+const

and thusp(x,h|θ) = p(x̃, h̃|θ̃) holds. However, if we update the parameters of
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the transformed model based on the corresponding log-likelihood gradient toθ̃
′

=

θ̃ + η∇θ̃ and apply the inverse parameter transformation toθ̃
′

, the result will differ
from θ′ = θ + η∇θ. The described procedure of transforming, updating, and trans-
forming back can be regarded as a different way to updateθ.

Following this line of thought there exist2N+M different parameter updates corre-
sponding to the2N+M possible binary flips of(x,h). Cho et al. (2011) have proposed
the ’enhanced gradient’ as a weighted sum of these2N+M parameter updates, which
for their choice of weight is given by

∇eW = 〈(x − 〈x〉d)(h− 〈h〉d)
T 〉d − 〈(x− 〈x〉m)(h− 〈h〉m)T 〉m (5)

∇eb = 〈x〉d − 〈x〉m −∇eW
1

2
(〈h〉d + 〈h〉m) (6)

∇ec = 〈h〉d − 〈h〉m −∇eW
T 1

2
(〈x〉d + 〈x〉m) (7)

It has been shown that the enhanced gradient is invariant to arbitrary bit flips and
therefore invariant under the data representation, which has been demonstrated on the
MNIST and1-MNISTdataset. The authors have also reported a more stable training
under various settings in terms of the LL estimate and classification accuracy.

3 Centered Restricted Boltzmann Machines

Inspired by the centering trick in (LeCun et al., 1998), Tangand Sutskever (2011) have
addressed the flip-invariance problem by changing the energy of the RBM in a way that
the mean of the input data is removed. Montavon and Müller (2012) have extended
the idea of centering to the visible and hidden variables of DBMs and have shown that
centering improves the conditioning of the underlying optimization problem, leading to
models with better discriminative properties for DBMs in general and better generative
properties in the case of locally connected DBMs.

Following their line of thought, the energy for a centered binary RBM where the
visible and hidden variables are shifted by the offset parametersµ = (µ0, . . . , µN ) and
λ = (λ0, . . . , λM ), respectively, can be formulated as

E (x,h) = − (x− µ)
T
b− c

T (h− λ)− (x− µ)
T
W (h− λ) . (8)

By setting both offsets to zero one retains the normal binaryRBM. Settingµ = 〈x〉d
andλ = 0, leads to the model introduced by Tang and Sutskever (2011) and by setting
µ = 〈x〉d andλ = 〈h〉d we get a shallow variant of the centered DBM analyzed by
Montavon and Müller (2012).

The conditional probabilities for a variable taking the value one are given by

p (xi = 1|h) = sigm(wi∗ (h− λ) + bi) , (9)

p (hj = 1|x) = sigm((x− µ)
T
w∗j + cj) , (10)

where sigm(·) is the sigmoid function,wi∗ represents theith row andw∗j the jth
column of the weight matrixW.
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The log-likelihood gradient now takes the form

∇W = 〈(x− µ)(h− λ)T 〉d − 〈(x− µ)(h− λ)T 〉m , (11)

∇b = 〈x− µ〉d − 〈x− µ〉m = 〈x〉d − 〈x〉m , (12)

∇c = 〈h− λ〉d − 〈h− λ〉m = 〈h〉d − 〈h〉m . (13)

∇b and∇c are independent of the choice ofµ andλ and thus centering only affects
∇W.

It can be shown that the gradient of the centered RBM is invariant to flip transfor-
mations if a flipxi to 1 − xi implies a change ofµi to 1 − µi and a fliphj to 1 − hj

implies a change ofλj to 1 − λj . This holds in particular forµi = 0.5, λj = 0.5 and
any expectation overxi andhj under any distribution. Note, that the invariance proof
also generalizes to DBMs

If we setµ andλ to the expectation of the variables, these values may dependon
the RBM parameters (think for example about〈h〉d) and thus they might change during
training. Consequently, a learning algorithm of a centeredRBM needs to update the
offset values and transform the RBM parameters such that themodeled probability
distribution stays the same.

An RBM with offsetsµ andλ can be transformed to an RBM with offsetsµ′ and
λ
′ by

W
′ = W , (14)

b
′ = b+W

(

λ′ − λ
)

, (15)

c
′ = c+W

T (µ′ − µ) , (16)

such thatE(x,h|θ,µ,λ) = E(x,h|θ′,µ′,λ′) + const, is guaranteed.

3.1 Centered Gradient

We now use the centering trick to derive a ’centered’ parameter update, which can re-
place the gradient during the training of normal binary RBMs. Similar to the derivation
of the enhanced gradient we can transform a normal binary to acentered RBM, perform
a gradient update and transform the RBM back. This yields thefollowing parameter
updates, which we refer to as ’centered gradient’

∇cW = 〈(x− µ)(h− λ)T 〉d − 〈(x− µ)(h− λ)T 〉m , (17)

∇cb = 〈x〉d − 〈x〉m −∇cWλ , (18)

∇cc = 〈h〉d − 〈h〉m −∇cW
Tµ . (19)

Notice that by settingµ = 1
2 (〈x〉d + 〈x〉m) andλ = 1

2 (〈h〉d + 〈h〉m) the centered
gradient becomes equal to the enhanced gradient. Thus, it becomes clear that the
enhanced gradient is a special case of centering. This can also be concluded from
the derivation of the enhanced gradient for Gaussian visible variables in (Cho et al.,
2013b). The enhanced gradient has been designed such that the weight updates be-
come the difference of the covariances between one hidden and one visible variable

5



Algorithm 1 Training RBMs using the centered gradient

1: InitializeW (i.e.W← N (0, 0.01)N×M )
2: Initializeµ,λ ( i.e. µ← 〈Xd〉,λ← 0.5 )
3: Initialize b, c (i.e. b← sigm−1(µ), c← 0)
4: repeat
5: for all batchesXd do
6: CalculateHd = p(H = 1|Xd)
7: SampleXmfrom binary RBM

8: CalculateHm = p(H = 1|Xm)
9: Estimate µnew ( i.e. µnew ← 〈Xd〉 )

10: Estimate λnew ( i.e. λnew ← 〈Hd〉 )
11: µ← (1− νµ)µ+ νµµnew

12: λ← (1− νλ)λ+ νλλnew

13: ∇cW← 〈(Xd − µ)(Hd − λ)T 〉
−〈(Xm − µ)(Hm − λ)T 〉

14: ∇cb← 〈Xd〉 − 〈Xm〉 − ∇cWλ

15: ∇cc← 〈Hd〉 − 〈Hm〉 − ∇cW
Tµ

16: W←W + η∇cW

17: b← b+ η∇cb

18: c← c+ η∇cc

19: end for
20: until stopping criteria is met

under the data and the model distribution. Interestingly one gets the same weight up-
date for two other choices of offset parameters: eitherµ = 〈x〉d andλ = 〈h〉m or
µ = 〈x〉m andλ = 〈h〉d. However, the choice of these offsets results in different
update rules for the bias parameters.

Training a normal binary RBM based on the centered gradient is equivalent to train-
ing a centered RBM and finally transforming it to a normal binary RBM. Algorithm 1
shows pseudo code for training a normal binary RBM using the centered gradient,
which can easily be rewritten for training a centered RBM. Note that the update of the
offsets – as it is the case when using the centered gradient – is performed before the
gradient is calculated. This is in contrast to the algorithmfor centered DBMs proposed
in (Montavon and Müller, 2012), where the update of the offsets and the reparameteri-
zation follows after the gradient update. This implicates that the estimates of the offsets
in one learning iteration are based on samples gained from the model of the previous
iteration. However, the proposed DBM algorithm smoothes the offset estimations by a
sliding average over the means of samples from many iterations, so that the choice of
the sample set used for the offset estimation should be less relevant. In Algorithm 1 a
sliding average is obtained if0 < ν < 1 and prevented ifν = 1.

3.2 Initialization of the bias parameters

Montavon and Müller (2012) have suggested that initializing the bias parameters to the
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inverse sigmoid of the initial offset parameters leads to a good starting point, because
it guarantees that the Boltzmann machine is initially centered. Thus, they set the offset
and the bias of the visible variables initially to〈x〉d and sigm−1(〈x〉d), respectively.
And the hidden offset was set to sigm(cinit) for an initial hidden bias parametercinit ∈
{−2, 0, 2}.

Suppose the weight matrix is initialized to small random values (i.e. we can as-
sume that they are approximately zero) then the conditionalprobabilities (9) and (10),
are approximately given byp (xi = 1|h) ≈ sigm(bi) andp (hj = 1|x) ≈ sigm(cj),
respectively. If the visible bias is initialized to the inverse sigmoid of the data mean,
the expectation of the conditional distribution under the model takes approximately
the same value. We argue that it is reasonable to assume an initial mean of0.5 for
the hidden variables, if the initial weight parameters are negligible small. Therefore,
0.5 and sigm(0.5) = 0 should be the initialization of choice for the hidden offsetand
bias parameters, respectively. We claim that this initialization may also be beneficial
for normal binary RBMs and centered RBMs withµ = 〈x〉d andλ = 0. Following
the same arguments as above〈x〉m and〈h〉m can also be approximated by0.5. Thus,
to guarantee that the centered RBM corresponding to the enhanced gradient is initially
centered, the visible and hidden biases should be initialized to sigm−1(0.5(〈x〉d+0.5))
and0, respectively.

4 Experiments

As shown in the previous section the algorithms described byMontavon and Müller
(2012),Tang and Sutskever (2011) and Cho et al. (2011) can all be viewed as different
versions of centered RBMs. They differ in the choice of the offset parameters and in
the way of approximating them, either based on the samples gained from the model in
the previous learning step or from the current one, using a sliding average or not. In
the following we analyze the effect of these differences on the learning outcome.

For simplicity we introduce the following shorthand notation. We used to denote
that the data mean〈·〉d is used,m for the model mean〈·〉m, a for the average of the
means12 〈·〉d +

1
2 〈·〉m and0 if the offsets is set to zero. We indicate the choice ofµ in

the first and the choice ofλ in the second place, e.g.dd translates toµ = 〈v〉d and
λ = 〈h〉d. We add a superscribedb or a to denote whether the reparameterization is
performed before or after the gradient update. If a sliding factor is used a subscripts is
added. Thus, we indicate the variant of Montavon and Müller(2012) byddas , the one
of Cho et al. (2011) byaab, the data normalization in Tang and Sutskever (2011) by
d0, and the normal binary RBM simply by00.

In a first set of experiments we analyze these four algorithmsin terms of the evo-
lution of the LL during training. We focus our analysis on RBMs, where one layer is
small enough to guarantee that the exact LL is still tractable, to avoid approximation
problems when using annealed importance sampling (Schulz et al., 2010). In a second
set of experiments we analyze the effect of the initialization described in section 3.2.

We proceed with a comparison ofddbs andddas estimating offset values and repa-
rameterizing the parameters before and after the gradient update, respectively. Finally
we analyze the effects of using a sliding average to approximate the offset values in the
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different algorithms and of usingdm as a centering version with a new choice of offset
parameters.

4.1 Benchmark Problems

For our analysis we consider three different benchmark problems.
The Bars & Stripes (MacKay, 2002) problem consists of quadratic patterns of size
N = D×D that can be generated as follows. First, a vertical or horizontal orientation
are chosen randomly with equal probability. Then the statesof all pixels of every row
or column is chosen uniformly at random. This leads to2D+1 − 2 different patterns,
where the completely uniform patterns occur twice as often as the others. The dataset is
symmetric in terms of the amount of zeros and ones and thus theflipped and unflipped
problems are equivalent. An upper bound of the LL is given by−N ln(N) + 4 ln(2).
For our experiments we usedD = 3 leading to an upper bound of−41.59.
TheShifting Bar dataset is an artificial benchmark problem we designed to be asym-
metric in terms of the amount of zeros and ones in the data. Foran input dimensionality
N , a bar length0 < B < N has to be chosen, whereB

N
expresses the percentage of

ones in the dataset. A position0 ≤ p < N is chosen uniformly at random and the states
of the followingB pixels are set to one, where a wrap around is used ifp+B ≥ N . The
states of the remaining pixels are set to zero. This leads toN different patterns, with
equal probability and an upper bound of the LL of−N ln(N). For our experiments we
usedN = 9, B = 1 and its flipped versionFlipped Shifting Bar, which we get for
N = 9, B = 8, both having an upper LL bound of−19.78
TheMNIST (LeCun et al., 1998) database of handwritten digits has become a standard
benchmark problem for RBMs. It consists of50, 000 training,10, 000 validation and
10, 000 testing examples of gray value handwritten digits of size28 × 28. After bina-
rization the dataset contains13.3% ones, similar to theShifting Barproblem, which in
our case contains11.1% ones. For training and evaluating the LL we used the binarized
50, 000 training examples.

4.2 Experimental Setup

The RBMs weight matrices were initialized with random values samples from a Gaus-
sian with zero mean and a standard deviation of0.01. If not stated otherwise the visible
and hidden bias parameters were initially set to zero. In allexperiments we used CD-
1, PCD-1 and PT10 as the three common training algorithms for RBMs. Full-batch
training was used forBars & StripesandShifting Barand mini-batch training with a
batch size of 100 was used forMNIST. In each trial50, 000 parameter updates were
performed. We used 16 hidden variables when modelingMNIST and4 hidden vari-
ables to modelShifting BarandBars & Stripes. To save computation time, the LL was
calculated every 50th gradient update forShifting BarandBars & Stripesdataset and
every epoch (500 gradient updates) forMNIST.
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5 Results and Discussion

All tables given in this section show the average maximum LL reached during train-
ing with different learning algorithms over 25 trials and the corresponding standard
deviation. In some cases the final average LL reached at the end of training is given
in parenthesis to indicate a potential divergence of the LL.In the case ofMNIST the
average LL was divided by the number of training samples. In order to check if the
result of the best method within one row differs significantly from the others we per-
formed pairwise signed Wilcoxon rank-sum tests (withp = 0.05). The best results are
highlighted in bold. This can be more than one value if the significance test between
these values was negative.

5.1 Comparison of the standard methods

The comparison of the learning performance of the previously described algorithms
ddas , aab, d0, and00 show that training a centered RBM leads to significantly higher LL
values than training a normal binary RBM (see Table 1 for the results forBars & Stripes
andMNIST). Figure 1 illustrates on theBars & Stripesdataset that centering both the
visible and the hidden variables (ddas andaab) compared to centering only the visible
variables (d0) accelerates the learning and leads to a higher LL when usingPT and
PCD, (see Table 1). It can also be seen that all methods show divergence in combination
with CD, which can be prevented forddas , d0, and00 when using PT.aa however
suffers from severe divergence of the LL when PT is used, which is even worse than
with CD. This problem does not depend on the choice of the learning rate as indicated
by the LL values reached at the end of training (given in parentheses) in Table 1. All
observations have also been made for theShifting Barand theFlipped Shifting Bar
dataset where the results can not be given because of space restriction. These results
also demonstrate the flip invariance of the centering empirically. While 00 fails to
model the flipped version of the dataset correctlyddas , aab, d0 have approximately the
same performance on the flipped and unflipped datset.

5.2 Initialization

We trained normal binary RBMs (i.e.00) where the visible bias was initialized to zero
or to the inverse sigmoid of the data mean. In both cases the hidden bias was initialized
to zero. Table 2 shows the results for the normal binary RBM trained on theFlipped
Shifting Bardataset, where the RBM with zero initialization failed to learn the distri-
bution accurately. The RBMs using the inverse sigmoid initialization achieved good
performance and therefore seem to be less sensitive to the ”difficult” representation of
the data. We also trained models using the centering versionsdd, aa, andd0 compar-
ing the initialization suggested in section 3.2 against thezero initialization, where we
observed that the different ways to initialize had little effect on the performance. In
most cases the results either show no significant differencein terms of the maximum
LL between the initializations or lead to slightly better results when using the inverse
sigmoid. This is in particular the case when the learning rate is small. As an exam-
ple Table 3 shows the results forddas on theBars& Stripesdataset. In addition, the
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initialization leads to slightly faster learning, thus we used it in following experiments.
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Figure 1: Mean LL during training on theBars & Stripesdataset for the standard
methods. Top: CD-1 is used for sampling and the learning rateis η = 0.05. Bottom:
PT10 is used for sampling and the learning rate isη = 0.05.
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ALGORITHM-η aab ddas d0 00

BARS & STRIPES

CD-1-0.1 -60.85 ±1.91 (-69.1) -60.41 ±2.08 (-68.8) -60.88 ±3.95 (-70.9) -65.05±3.60 (-78.1)
CD-1-0.05 -60.37 ±1.87 (-65.0) -60.25 ±2.13 (-64.2) -60.74 ±3.57 (-65.1) -64.99±3.63 (-71.2)
CD-1-0.01 -61.00 ±1.54 (-61.1) -61.22±1.49 (-61.3) -63.28±3.01 (-63.3) -68.41±2.91 (-68.6)
PCD-1-0.1 -55.65±0.86 (-360.6) -54.75 ±1.46 (-91.2) -56.65±3.88 (-97.3) -57.27±4.69 (-84.3)
PCD-1-0.05 -54.29±1.25 (-167.4) -53.60 ±1.48 (-67.2) -56.50±5.26 (-72.5) -58.16±5.50 (-70.6)
PCD-1-0.01 -54.26 ±0.79 (-55.3) -56.68±0.73 (-56.8) -60.83±3.76 (-61.0) -64.52±2.94 (-64.6)
PT10-0.1 -52.55±3.43 (-202.5) -51.13 ±0.85 (-52.1) -55.37±5.44 (-56.7) -53.99±3.73 (-55.3)
PT10-0.05 -51.84 ±0.98 (-70.7) -51.87 ±1.05 (-52.3) -56.11±5.79 (-56.6) -56.06±4.50 (-56.8)
PT10-0.01 -53.36 ±1.26 (-53.8) -56.73±0.77 (-56.8) -61.24±4.58 (-61.3) -64.70±3.53 (-64.7)

MNIST

CD-1-0.1 -152.6±0.89 (-158.5) -150.9 ±1.53 (-154.6) -151.3 ±1.77 (-154.8) -165.9±1.90 (-168.4)
CD-1-0.05 -152.5±1.14 (-156.1) -151.2 ±1.89 (-154.3) -151.6 ±1.90 (-154.6) -167.7±1.66 (-169.0)
CD-1-0.01 -153.0 ±1.10 (-153.2) -152.4 ±1.81 (-152.8) -153.5 ±2.30 (-154.0) -171.3±1.49 (-172.4)
PCD-1-0.1 -147.5±1.09 (-177.6) -140.9 ±0.61 (-145.2) -142.9±0.74 (-147.2) -160.7±4.87 (-169.4)
PCD-1-0.05 -145.3±0.61 (-162.4) -140.0 ±0.45 (-142.8) -141.1±0.65 (-143.6) -173.4±4.42 (-178.1)
PCD-1-0.01 -143.0±0.29 (-144.7) -140.7 ±0.42 (-141.4) -141.7±0.49 (-142.5) -198.0±4.78 (-198.4)
PT10-0.01 -247.1 ±12.52 (-643.4) -141.5 ±0.54 (-143.6) -144.0±0.61 (-147.6) -148.8±1.15 (-153.6)

Table 1: Average maximum LL on (top) theBars & Stripesdataset and (bottom) theMNISTdataset using different sampling methods and
learning rates.
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ALGORITHM-η 00 init zero 00 init sigmoid−1

CD-1-0.2 -27.98±0.26 -21.49 ±1.34
CD-1-0.1 -28.28±0.00 -21.09 ±0.97
CD-1-0.05 -28.28±0.00 -24.87 ±0.47
PCD-1-0.2 -28.01±0.26 -22.45 ±1.00
PCD-1-0.1 -28.28±0.00 -21.76 ±0.74
PCD-1-0.05 -28.28±0.00 -24.83 ±0.55
PT10-0.2 -28.01±0.27 -21.72 ±1.24
PT10-0.1 -28.28±0.00 -21.14 ±0.85
PT10-0.05 -28.28±0.00 -24.80 ±0.52

Table 2: Average maximum LL on theFlipped Shifting Bardataset, where the visible
bias is initialized to zero or to the inverse sigmoid of the data mean.

ALGORITHM-η ddas init zero ddas init sigmoid−1

CD-1-0.2 -20.34 ±0.74 -20.42 ±0.80
CD-1-0.1 -20.75 ±0.79 -20.85 ±0.82
CD-1-0.05 -23.00±0.72 -22.63 ±0.66
PCD-1-0.2 -21.03 ±0.51 -20.97 ±0.65
PCD-1-0.1 -20.86 ±0.75 -20.72 ±0.50
PCD-1-0.05 -22.75±0.66 -22.30 ±0.64
PT10-0.2 -20.08 ±0.38 -20.25 ±0.55
PT10-0.1 -20.56 ±0.69 -20.68 ±0.69
PT10-0.05 -22.93±0.72 -22.39 ±0.65

Table 3: Average maximum LL on theFlipped Shifting Bardataset, where the visible
bias is initialized to zero or to the inverse sigmoid of the data mean.

5.3 Reparameterization

To analyze the different effects of performing the reparameterization before or after the
gradient update we analyzed the learning behavior ofddbs andddas on all datasets. The
results for RBMs trained on theBars& Stripesdataset are given in Table 4 (top). No
significant difference between both versions can be observed. The same observations
can be made for theShifting BarandFlipped Shifting Bardataset. The results for the
MNISTdataset are shown in Table 4 (bottom). Hereddbs performs slightly better than
ddas in the case of CD and no difference could be observed for PCD and PT. We use
the reparameterization before the gradient update in the remainder of this work.
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ALGORITHM-η ddas ddbs

BARS & STRIPES

CD-1-0.1 -60.41 ±2.08 -60.34 ±2.18
CD-1-0.05 -60.25 ±2.13 -60.19 ±1.98
CD-1-0.01 -61.22 ±1.49 -61.23 ±1.49
PCD-1-0.1 -54.75 ±1.46 -54.86 ±1.52
PCD-1-0.05 -53.60 ±1.48 -53.71 ±1.45
PCD-1-0.01 -56.68 ±0.73 -56.68 ±0.74
PT10-0.1 -51.13 ±0.85 -51.25 ±1.09
PT10-0.05 -51.87 ±1.05 -52.06 ±1.38
PT10-0.01 -56.73 ±0.77 -56.72 ±0.77

MNIST

CD-1-0.1 -150.87±1.53 -150.60 ±1.55
CD-1-0.05 -151.21±1.89 -150.98 ±1.90
CD-1-0.01 -152.39±1.81 -152.23 ±1.75
PCD-1-0.1 -140.89 ±0.61 -141.11 ±0.53
PCD-1-0.05 -140.02 ±0.45 -139.95 ±0.47
PCD-1-0.01 -140.68 ±0.42 -140.67 ±0.46
PT10-0.01 -141.46 ±0.54 -141.56 ±0.52

Table 4: Average maximum LL on (top) theBars & Stripesdataset and (bottom) the
MNISTdataset, using the reparameterization before and after thegradient update.

5.4 Usage of a sliding average

We analyzed the effect of using a sliding average with a sliding factor of0.01 for
the offset parameters. Interestingly, when training an RBMusing PT based on the
enhanced gradient a sliding average prevents the observed divergence of the LL. As
an example see the learning curves for theBars& Stripesdataset in Figure 2 (top) in
comparison to learning curves for training without slidingaverage Figure 1 (bottom).
We still get comparable model performances, however the convergence speed ofaabs is
reduced. In addition the usage of an sliding average makes the learning curves of the
different methods almost equivalent. Note, thatdd does not suffer from the divergence
problem even when used without sliding average, as can be seen in Figure 2 (bottom)
for example. All observation can be made also for the other datasets (see Table 5).

5.5 Other choices for the offsets

As mentioned in section 3, there are other choices for the offset parameters which
lead to the same updates for the weights as the enhanced gradient. The choice of
µ = 〈x〉d andλ = 〈h〉m seems to be reasonable since the data mean is usually known
in advanced. We trained an RBM withdmb

s using a sliding factor of 0.01. The results
are shown in Table 5, which suggest that there is no significant difference fromaabs
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andddbs. However, without a sliding averagedmb has the same divergence problems
asaab, see Figure 2 (bottom).

ALGORITHM-η aab

s ddbs dmb

s

BARS & STRIPES

CD-1-0.1 -60.09 ±2.02 (-69.6) -60.34 ±2.18 (-69.9) -60.35 ±1.99 (-68.8)
CD-1-0.05 -60.31 ±2.10 (-64.2) -60.19 ±1.98 (-63.6) -60.25 ±2.13 (-64.2)
CD-1-0.01 -61.22 ±1.50 (-61.3) -61.23 ±1.49 (-61.3) -61.23 ±1.49 (-61.3)
PCD-1-0.1 -54.78 ±1.63 (-211.7) -54.86 ±1.52 (-101.0) -54.92 ±1.49 (-177.3)
PCD-1-0.05 -53.81 ±1.58 (-89.9) -53.71 ±1.45 (-67.7) -53.88 ±1.54 (-83.3)
PCD-1-0.01 -56.48 ±0.74 (-56.7) -56.68±0.74 (-56.9) -56.47 ±0.74 (-56.6)
PT10-0.1 -51.20 ±1.11 (-52.4) -51.25±1.09 (-52.3) -51.10 ±1.02 (-52.5)
PT10-0.05 -51.99 ±1.39 (-52.6) -52.06±1.38 (-52.6) -51.82 ±1.05 (-52.4)
PT10-0.01 -56.65 ±0.77 (-56.7) -56.72±0.77 (-56.7) -56.67 ±0.77 (-56.7)

FLIPPED

SHIFTING BAR

CD-1-0.2 -20.36 ±0.74 (-20.7) -20.32 ±0.69 (-20.6) -20.32 ±0.70 (-20.6)
CD-1-0.1 -20.80 ±0.76 (-20.9) -20.86 ±0.81 (-21.0) -20.69 ±0.76 (-20.8)
CD-1-0.05 -22.58 ±0.64 (-22.6) -22.64±0.69 (-22.7) -22.94±0.73 (-23.0)
PCD-1-0.2 -21.00 ±0.65 (-41.5) -20.96 ±0.49 (-31.0) -21.00 ±0.68 (-38.3)
PCD-1-0.1 -20.75 ±0.53 (-23.4) -20.76 ±0.53 (-22.8) -20.88 ±0.70 (-23.2)
PCD-1-0.05 -22.28 ±0.68 (-22.3) -22.29 ±0.64 (-22.3) -22.68±0.65 (-22.7)
PT10-0.2 -20.14 ±0.45 (-20.7) -20.31 ±0.61 (-20.7) -20.07 ±0.38 (-20.5)
PT10-0.1 -20.42 ±0.51 (-20.7) -20.46 ±0.56 (-20.6) -20.60 ±0.72 (-20.8)
PT10-0.05 -22.36 ±0.64 (-22.4) -22.39 ±0.69 (-22.4) -22.86±0.70 (-22.9)

MNIST

CD-1-0.1 -150.61 ±1.52 (-153.8)-150.60 ±1.55 (-153.9)-150.50 ±1.48 (-153.6)
CD-1-0.05 -151.11 ±1.55 (-153.2) -150.98±1.90 (-153.8)-150.80 ±1.92 (-153.5)
CD-1-0.01 -152.83 ±2.42 (-153.3)-152.23 ±1.75 (-152.6)-152.17 ±1.72 (-152.5)
PCD-1-0.1 -141.10 ±0.64 (-145.4)-141.11 ±0.53 (-145.7)-140.99 ±0.56 (-144.8)
PCD-1-0.05 -140.01 ±0.58 (-142.9)-139.95 ±0.47 (-142.6)-139.94 ±0.46 (-142.7)
PCD-1-0.01 -140.85 ±0.47 (-141.6)-140.67 ±0.46 (-141.4)-140.72 ±0.39 (-141.5)
PT10-0.01 -142.32±0.47 (-145.7)-141.56 ±0.52 (-143.3) -142.18±0.45 (-146.0)

Table 5: Average maximum LL on (top)Bars & Stripes, (middel)Flipped Shifting Bar
and (bottom)MNISTwhen using a sliding average.
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Figure 2: Mean LL during training on theBars& Stripeswith the different centering
variants using PT10, a learning rate ofη = 0.05, (top) a sliding factor of 0.01 and
(bottom) no sliding average.
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6 Conclusion

In this paper, we analyze centered RBMs where centering is done by subtracting off-
set values from visible and hidden variables. The log-likelihood gradient of centered
RBMs (and DBMs) is shown to be invariant to variable flips if the corresponding offset
parameters flip as well. Training a centered RBM can be reformulated to training a nor-
mal binary RBM based on an alternative parameter update. From this new formulation
follows that the enhanced gradient is equivalent to centering with a certain choice of
offset parameters. Our experiments show that centered RBMshave a better generative
performance than normal binary RBMs and thus centered RBMs should be the model
of choice. Optimal performance is achieved when centering both, visible and hidden
variables, although the improvement is mainly due to centering of the visible variables.
A sliding average should be used for the approximations of the offset values, since it
stabilizes learning and prevents the severe divergences problems we observed when
using the enhanced gradient.
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