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Abstract—Large-scale geophysical monitoring systems raise
the need for real-time feature extraction and signal classifica-
tion. We study support vector machine (SVM) classification of
hydroacoustic signals recorded by the Comprehensive Nuclear-
Test-Ban Treaty’s verification network. Due to constraints in
the early signal processing most samples have incomplete fea-
ture sets with values missing not at random. We propose kernel
functions explicitly incorporating Boolean representations of
the missingness pattern through dedicated sub-kernels. For
kernels with more than a few parameters, gradient-based
model selection algorithms were employed. In the case of
binary classification, an increase in classification accuracy as
compared to baseline SVM and linear classifiers was observed.
In the multi-class case we evaluated four different formulations
of multi-class SVMs. Here, neither SVMs with standard nor
with problem-specific kernels outperformed a baseline linear
discriminant analysis.
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sound; CTBTO; treaty verification

I. INTRODUCTION

The Preparatory Commission for the Comprehensive
Nuclear-Test-Ban Treaty Organization (CTBTO) is currently
installing a global verification system to monitor the earth for
nuclear explosions [1], [2]. Across the oceans, hydroacoustic
sensors are placed at depths of 1 km and less, where the deep
sound channel acts as a waveguide for underwater acoustic
signals. Observed signals stem from a wide variety of
sources. For direct verification of the treaty, the binary classi-
fication task of identifying signals with explosive signature
(underwater volcanoes, chemical or nuclear explosions) is
paramount. Additionally distinguishing signals caused by
earthquakes may benefit later processing stages, leading to
a three-class problem of noise-like, earthquake-caused, and
explosion-like underwater signals. Due to constraints in the
early processing any two samples may have non-identical
and even non-intersecting feature sets. We focus on soft
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margin support vector machine (SVM) classification, a state-
of-the-art approach in pattern recognition. Support vector
machines implement regularized risk minimization, are well-
rooted in statistical learning theory, and allow for flexible
re-representation of input data via kernel functions.

II. FEATURE SET CHARACTERISTICS

Raw sensor data is from the outset filtered into eight
partially overlapping frequency bands between 1 and 100 Hz
(1-2, 2-80, 3-6, 6-12, 8-16, 16-32, 32-64, and 64-100 Hz).
In each band, detection and feature extraction are carried
out independently. A detection in a band is made when the
ratio of a short-term average to long-term average exceeds
a station-specific threshold, with time windows of 10s and
150s, respectively. A signal is defined by one or more
contemporaneous detections across frequency bands. For
each signal a fixed set of 16 identically calculated features is
extracted from every band with a detection and their union
used for representation. This leads to a situation where n-16
real-valued features (1 < n < 8) are associated with a
sample and thus any two signals’ feature sets may differ
and not even overlap. Features are listed in Table I and
can be categorized into (i) time-related, (ii) energy-related,
(iii) statistical moments, and (iv) cepstral. The latter are
present in two variants, calculated from a low-pass filtered
and a detrended spectrum. In total 778 labeled samples were
available.

IIT1. DEALING WITH INCOMPLETE DATA

In general, incomplete data sets can be grouped according
to properties of the probability distribution assumed respon-
sible for the pattern of missing features. If the missingness
distribution is conditionally independent of the data or of
the missing values given the observed ones, the data is
coined missing completely at random (MCAR) or missing at
random (MAR), respectively. CTBT data are neither MCAR
or MAR but rather missing not at random (MNAR) as seen
in section II. Common practice for samples with missing
values is to either discard them or choose from a set of
imputation methods, where missing values are filled in by
some strategy. As less than 5% of CTBT samples have
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Figure 1. Locations of hydroacoustic stations defined by the treaty.

values for all features, the former is not an option. Simple
imputation procedures can bias the estimates, and usually
more so with “less random” missingness distributions. More
elaborate techniques include Bayesian multiple imputation
and maximum likelihood estimations, but these almost al-
ways rely on MAR data or only weak deviations thereof
(see [3] for a review). Due to the scarcity of data, estimating
joint densities in a probabilistic framework (e.g., [4]) does
not seem feasible in the present case. In the context of SVM
classification one recent approach [5] avoids imputation by
altering the SVM margin interpretation to directly deal with
incomplete samples. However, it is best suited for features
structurally absent rather than MNAR data and leads to
non-convex optimization problems. Dick et al. [6] optimize
the assumed imputation distribution and SVM mutually by
marginalizing kernels over the former. Yet, the approach
operates on MAR data and cannot handle incomplete test
sets. We here take an approach that maintains convexity and
is applicable to test sets by directly passing representations
of the missingness pattern to appropriate kernel functions
which account for it through a specific structure.

IV. KERNEL FUNCTIONS FOR VARIABLE FEATURE SETS

In kernel-based algorithms, inner products in a feature
space are replaced by positive definite kernel functions.
Among the most commonly used are radial basis function
(RBF) kernels of the form k(z,z) = e === with
x,z € R™ and the bandwidth v as single free parameter.
A second common class are polynomial kernels of the form
k(z,2) = ({x, z)+c)9, with offset ¢ and integer exponent d.
In the following we take an approach in which kernel
functions make use of both the information contained in
the values of present features as well as in their missingness
pattern. We introduce eight additional Boolean features b;,
1 < ¢ < 8, indicating whether the features of band 7 are
present or not. We write the joint feature space F of Boolean
and real values as the Cartesian product F;, x JF, of the
space of Boolean and real-valued features, respectively, and
a sample of the extended feature set as = (zp,x,) with
xp € Fp and z,. € F,.. It is evident that in order to exploit
the information held by the Boolean values, they should be
processed differently from the real-valued ones. Thus we
employ kernel functions with a bipartite structure, where
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Table 1
FEATURES EXTRACTED FROM EACH BAND WITH A DETECTION.

Temporal Energy Statistical Cepstral (2x)
Peak Time Peak Level Time Spread  Position
Mean Arrival ~ Total Energy  Skewness Level

Total Time Avg. Noise Kurtosis Variance

Crossing Rate

one sub-kernel k; operates on the Boolean features x;, € F
and another sub-kernel k,. on their real counterparts x,, € F,.
As we use standard SVMs that cannot directly deal with
missing features, an imputation procedure for F,. still has
to be chosen. We impute a single value of zero, because in
the limit case of a zero-threshold detector, it constitutes the
physically or statistically plausible continuation for some of
the hydroacoustic features, including peak and total energy,
skewness, and total time. A function f combining the sub-
kernels k; and k,. into one, k : (F, X F,.) X (Fp x Fr) — R,
k(z, 2) f (ko (b, 2p), kr (2, 2)), must be chosen such
that the overall kernel k remains positive definite. Two
intuitive possibilities, here using a polynomial and an RBF
sub-kernel, are a direct product kernel

k(w,2) = ((z, 2) + ) - e lor==l” )
and a weighted direct sum kernel
k(z,2) = (wp, 2) + ) +we o= (2

with weighting factor w > 0. Their structure stresses
similarity of features across all bands on the one hand
and inherent differences between Boolean and real-valued
features on the other. Given that underwater signal prop-
agation is highly frequency-dependent, one might demand
that kernel parameters be allowed to incorporate information
from different bands differently. From such a perspective we
can view F as H?:1(]:b,i X Fr;) and in analogy to eq. (1)
introduce band-wise bipartite kernels,

ki, 2;)

= (@i, 2.0) + ) - ez

3)

where we use identical ¢ and d, but different ~; across
all bands. We combine these eight sub-kernels through a
convolution kernel [7] of integer degree M, 1 < M < 8,

M
> I % @0 250 -

1<ji<--<jmu<8 m=1

“)

k]\/[(CL', Z) =

Equation (4) adds up all M-th order monomials, multiples
excluded, of sub-kernels k; and hence constitutes a direct
sum kernel for M 1 and direct product kernel for
M = 8. Since each z3; in eq. (3) is a single Boolean,
the corresponding scalar product can either yield 1 if both
samples feature detections in band 7 or 0 if only one or
none of them do. In the special case of ¢ = 0, k; will equal
the respective value of k. ; if both samples were detected in



frequency band ¢ or zero otherwise, and eq. (4) will yield all
M-th order monomials of those k,.; for which both = and
z have detections in all corresponding bands. By summing
over M we derive a cumulative convolution kernel of integer
degree N, 1 < N <8,

N
kN(va) = Z ]fM(x,Z) ’ (5)
M=1
which includes contributions from all monomials with de-
gree not higher than N.

V. EXPERIMENTS AND RESULTS

We conducted experiments with two different foci. On
the one hand, we considered finding a suitable and well-
performing binary classifier for the main task of identifying
signals with explosive signature. With eqgs. (1, 2, 4, 5) we
have proposed four candidate classes of SVM kernels for
this task. On the other hand, we explored four different
SVM multi-class formulations for the extended task of
discriminating noise-like, earthquake-caused, and explosive-
like signals. All results in this section are averages over
test errors obtained from five different splits into 80%
training and 20% test data. In addition to this “outer” 5-fold
cross-validation procedure, for each fold the model selec-
tion algorithms used another 5-fold “inner” cross-validation
(splitting the respective training set) for determining SVM
hyperparameters as described below.

A. Support vector machines

On the binary task of identifying explosive-like signals we
used L;-norm soft margin SVMs. In addition we considered
four of the many qualitatively different ways to extend
binary SVMs for multi-class tasks. We employed (i) the
often-used one-versus-all approach (OVA); (ii) the theo-
retically more stringent approach independently proposed
by Weston and Watkins, and Vapnik (WW, [8]); (iii) the
variant by Crammer and Singer (CS, [9]) which relaxes some
constraints of WW with the goal of increased learning speed;
and (iv) multi-class classification with maximum margin
regression at one-class cost as proposed by Szedmak, Shawe-
Taylor, and Parado-Hernandez (MMR, [10]). The MMR
algorithm considers less complex hypothesis classes without
bias parameter and only learns ¢ parameters instead of ¢ - g
as OVA, WW, and CS, where ¢ and ¢ denote the number of
training examples and the number of classes, respectively.

B. Model selection

The kernel function classes of eqs. (1, 2, 4, 5) are
parametrized by increasing numbers of hyperparameters,
namely offset and exponent of the polynomial sub-kernel
as well as the RBF bandwidth for eq. (1); plus a weighting
term for eq. (2); or plus seven bandwidth parameters and
a degree for egs. (4, 5). Of these, the exponent d and the
degrees M, N must be constrained to integer values which
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we accounted for by using fixed values within individual
runs. When used in an SVM, classifier performance crucially
depends on the choice of these kernel parameters as well as
on the regularization parameter C' of the SVM itself. For
the kernels given by eqgs. (1, 2) we conducted standard grid
search on the five-fold cross-validation error on the training
set (CV-5) for parameter selection. For the kernels given
by eqgs. (4, 5) which have too many parameters for grid
search to be applicable, we used two different gradient-based
methods both implemented in the Shark Machine Learning
Library [11]. For binary SVMs we employed a recently
proposed and well-performing maximum likelihood based
approach [12] mutually optimizing C' and the kernel param-
eters. As this method has not yet been transferred to the
multi-class setting we in that case chose kernel parameters
by maximizing the kernel-target alignment (KTA, [13], [14])
and selected C' through subsequent grid search on the CV-5.

The maximum likelihood approach to model selection has
recently been proposed in [12]. It relies on an established
approximation of the class conditional probabilities first
suggested by Platt [15]. At the core of his approximation
is a cross-validation based logistic regression estimate of
the class conditionals (basically this is done by squashing
the SVM decision function with a parametrized sigmoid).
Given this estimate, a log-likelihood function is formulated
that is differentiable and used as objective function for SVM
model selection. This approach corresponds to a Bayesian
interpretation of model parameters.

The KTA on the other hand is a classifier-independent
approach to choosing kernel parameters. It is below outlined
for binary data but is easily extended to the multi-class case.
On / consistent training samples we can measure the similar-
ity of two kernel functions k1 and k5 by the normalized inner
product of their Gram matrices K and Ko as S(kq, kq) :=

(K1,K>2) . L
TNk where (A, B) := Zn,m:l A B for

A, B € R*‘. The matrix Y, with [Y];; = y;y; the product
of the labels of training patterns ¢ and j, can be viewed
as Gram matrix of a kernel perfectly fitting the given data.
This leads to the definition of the kernel-target alignment

(K,Y) . . . .
A(k) N TAT which is differentiable w.r.t. kernel

parameters, but independent of the classifier. After gradient
ascent on the KTA we use one-dimensional grid search on
the CV-5 to determine the SVM regularization parameter C'.

C. Results

For the binary classification task, Table II lists test classi-
fication errors averaged over five trials, where LDA denotes
linear discriminant analysis; svm-i an SVM with RBF kernel;
svm-s an SVM with direct sum kernel (eq. 2); svm-p an SVM
with direct product kernel (eq. 1); and svm-c an SVM with
convolution kernel of degree one (eq. 4, 5). The LDA and the
svm-i operated on the real-valued, zero-imputed data set and
the last three SVM classifiers on the Boolean-extended data



Table II
AVERAGE CLASSIFICATION TEST ERRORS FOR THE BINARY CASE.

Classifier
LDA svm-i svm-s svm-p svm-c
Error [%] 52 4.9 4.9 4.8 4.3

set. All SVMs performed better than the linear approach, and
the two bipartite kernels from eqgs. (1, 2) were on par with
the baseline RBF kernel. Additionally passing the Boolean
features to the latter did not change its performance. For a
degree of one, the convolution-based kernels from eqs. (4, 5)
are mathematically identical and performed best among all
approaches employed. With increasing degrees, error rates
tended to increase for both. At the highest possible degree
of eight, they with 5.9% were higher than that of LDA.

In the multi-class task we compared LDA and four
different multi-class SVM formulations (see section V-A).
Each SVM was tested with the RBF kernel on the real-
valued, zero-imputed data set as well as with the 1-degree
convolution kernel on the extended data set. As shown in
Table 111, the LDA performed best among all the classifiers.
This is due to overfitting of the multi-class SVMs as indi-
cated by comparatively strong performance on the training
data. The too few samples per class are not sufficient to
identify the parameters of the flexible multi-class SVMs,
especially in combination with parameter-rich kernels.

VI. DISCUSSION AND CONCLUSIONS

Our experiments showed that support vector machines
(SVMs) are well suited to automatically identify hydro-
acoustic signals with explosive signature as recorded by
the Comprehensive Nuclear-Test-Ban Treaty’s verification
network. We proposed two classes of problem-specific ker-
nel functions: first, kernels with a bipartite structure taking
into account an individual sample’s missingness pattern;
and second, variants of convolution kernels, which combine
several bipartite sub-kernels operating on features from a
single frequency band. The latter improved classification
accuracy compared to the baseline radial basis function
(RBF) kernel, while the former performed on par. In the
multi-class task, we examined the RBF kernel and the
best-performing convolution kernel from the binary task in
combination with four different SVM multi-class extensions.
Here, none of the above outperformed a standard linear
discriminant analysis. In future work, the approach taken
in [12] could be extended to multi-class SVMs and be used
in place of the kernel-target alignment. Also, variants of
the kernel functions proposed here might be combined with
the direct approach taken in [5], circumventing the auxiliary
imputation step.
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Table 11T
ERROR RATES FOR MULTI-CLASS CASE.

SVM multi-class formulation

Classifier LDA OVA WW CS MMR

LDA 15.6 - - _ _

svm-i - 16.4 16.4 17.0 17.4

svm-c - 17.0 16.8 16.8 18.2
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