
Improved working set selection for LaRank

Matthias Tuma1? and Christian Igel2

1 Institut für Neuroinformatik, Ruhr-Universität Bochum, Germany
matthias.tuma@rub.de

2 Department of Computer Science, University of Copenhagen, Denmark
igel@diku.dk

Abstract. We propose a gain-sensitive working set selection scheme for
the Crammer-Singer (CS) type multi-class support vector machine solver
LaRank by Bordes et al. LaRank has been designed for online as well as
fast approximate batch learning. It approaches the solution to the CS op-
timization problem by performing one or more epochs over a training set.
One epoch sequentially tests all currently excluded training examples for
inclusion in the dual optimization problem, with intermittent reprocess
optimization steps on examples currently included. Working set selection
for one reprocess step chooses the most violating pair among variables
corresponding to a random example. We instead utilize the gradient up-
date necessarily following an optimization step for an alternative, gain-
sensitive example selection scheme that is computationally more efficient.
Among a set of candidate examples, we pick the one yielding maximum
gain between either of the class variables being updated and a randomly
chosen third class. Experiments demonstrate faster convergence on three
of four benchmark datasets and no significant difference on the fourth.

1 Introduction

Support vector machines (SVMs, e.g. [1]) have attractive theoretical properties
and give good classification results in practice. Training times between quadratic
and cubic in the number of training examples however impair their applicabil-
ity to large-scale problems. Over the past years, online variants of binary and
multi-class SVM solvers have been proposed and refined [2–6]. The prominent
online multi-class SVM LaRank was introduced by Bordes, Bottou, Gallinari,
and Weston [4]. It relies on the multi-class SVM formulation proposed by Cram-
mer and Singer (CS, [7]). Online SVMs can be preferable to standard SVMs even
for batch learning. In particular for large data sets we cannot afford to compute
a close to optimal solution to the SVM optimization problem, but want to find
a good approximation quickly. We against this background refer to LaRank-
like solvers [2, 4] as epoch-based, since they complete one or more epochs over a
training set, aiming at well performing hypotheses after as few as a single epoch.

When using universal kernels, for which binary SVMs are known to be univer-
sally consistent [8], SMO solvers (e.g., [9]) constitute a canonical approach. Their

? M.T acknowledges a scholarship by the German National Academic Foundation.



time requirements are closely linked to design choices about stopping criteria,
working set selection, and implementation details such as kernel cache organiza-
tion, shrinking, etc. While second order working set selection can improve batch
and epoch-based binary SMO [10, 3], it is conceptually not applicable to the
CS machine. This paper focuses on an alternative improvement to working set
selection in LaRank.

Section 2 formally introduces the CS machine. We give a general definition of
epoch-based CS solvers and restate the LaRank algorithm [4]. One of LaRank’s
building blocks is the random selection of examples for reprocess-type optimiza-
tion steps. Random example selection provides the advantage of a constant time
operation, however at the risk of conducting an optimization step yielding lit-
tle gain for the overall problem. We propose an alternative example selection
scheme which is both gain-sensitive and can be carried out fast enough to speed
up the overall convergence of dual, primal, and test error. Empirical evaluations
are presented in Section 3, followed by a conclusion and outlook in Section 4.

2 Multi-class SVMs

Consider an input set X, an output set Y = {1, . . . , d}, a labeled training set
SN = {(xi, yi)}1≤i≤N ∈ (X × Y )N of cardinality N , and a Mercer kernel [1]
function k : X × X → R. Then a trained all-in-one multi-class SVM without
bias assigns to an example x ∈ X the output class label

h(x) = arg max
y∈Y

∑
j

βyj k(x, xj) . (1)

SVM training is equivalent to determining the parameter vector β ∈ RdN . Its
component βyi constitutes the contribution of example i to the kernel expansion
associated with class y. Iff ∃y βyi 6= 0 , we say that i or βi is a support pattern,
and iff βyi 6= 0, we say that y or βyi is a support class for sample i.

2.1 Crammer-Singer type multi-class SVMs

Following the notation in [4] and given a regularization parameter C ∈ R+
∗ ,

Crammer-Singer type multi-class SVMs [7] determine the parameter vector β by
solving the dual optimization problem

max
β

∑
i

βyii −
1

2

∑
i,j

∑
y

βyi β
y
j k(xi, xj) (2)

s.t. ∀i ∀y βyi ≤ Cδ(y, yi) (3)

∀i
∑
y

βyi = 0 , (4)

with Kronecker delta δ. The derivative of (2) w.r.t. the variable βyi is given by

gi(y) = δ(y, yi)−
∑
j

βyj k(xi, xj) . (5)



Two notable consequences arise from the specific form of problem (2). Con-
straint (4) in practice restricts SMO solvers to working sets of size two with both
working variables corresponding to the same training example. This closely links
working set selection to example selection. Second, because the quadratic compo-
nent of problem (2) is blockwise diagonal, altering a variable βci only propagates
through to gradients gj(c) involving the same class label.

2.2 Epoch-based Crammer-Singer solvers

We understand an epoch-based Crammer-Singer (EBCS) solver to carry out opti-
mization epochs over a training set according to Alg. 1. Specific variants of EBCS
solvers are then realized through different implementations of the sub-algorithms
WSSpro, WSSrep, and R. These control working set selection for (i) non-support
patterns and (ii) support patterns, as well as (iii) the relative ratio between opti-
mization steps on non-support and support patterns, respectively. All three will
in practice depend on the joint state of both solver and solution. Note that we
understand the SMO steps in lines 7 and 11 of Alg. 1 to potentially leave the val-
ues of (βcx, β

e
x) unaltered, for example if both variables are actively constrained.

Algorithm 1: Epoch-based Crammer-Singer solver

Input: training set SN , epoch limit emax, working set selection
algorithms WSSpro and WSSrep, step selection algorithm R

1 β ← 0
2 for e← 1 to emax do // 1 loop = 1 epoch

3 Shuffle training set SN jointly with β
4 for i← 1 to N do // 1 loop = 1 sample

5 if ∀ y βy
i = 0 then // process new sample

6 Choose (c, e) ∈ Y 2 according to WSSpro

7 SMO-step on (βc
i , β

e
i ) and gradient update

8 while not R do // reprocess old samples

9 Choose (j, c, e) ∈ {1, . . . , N} × Y 2 according to WSSrep

10 if ∃y βy
j 6= 0 then

11 SMO-step on (βc
j , β

e
j ) and gradient update

LaRank. The popular EBCS solver LaRank [4] in its query to WSSrep (Line 9
of Alg. 1) chooses the example index j randomly. For both WSSrep and WSSpro,
the class indices (c, e) are selected according to the most violating pair heuristics
(MVP, [11]) on the given example. In addition, WSSrep operates in two differ-
ent modes, WSSold and WSSopt, which perform MVP among all classes or all
support classes of one example, respectively. The resulting three step variants
processNew, processOld, and processOpt are chosen from in a stochastic man-
ner. Their probabilistic weights are adapted through three slowly relaxing linear
dynamical systems with attractors to the current dual gain rate of each step
variant. For alternative, deterministic step selection schemes also see [2, 5, 6].



Algorithm 2: Gain-sensitive working set selection for EBCS solvers

1 SMO-step on (βc
i , β

e
i )

2 (wmax, v)← (0, ∅)
3 Pick random class t, t /∈ {c, e}
4 for (j, y) : βy

j 6= 0, y ∈ {c, e} do // loop through support classes

5 Update (gyj )

6 if βt
j 6= 0 then

7 w ← clipped SMO-Gain(βy
j , β

t
j)

8 if w > wmax then // found new best candidate

9 (wmax, v)← (w, j)

10 if wmax = 0 then // fallback to random

11 v ← index of random support pattern
12 Provide example v upon next call to WSSrep

Gain-sensitive working set selection. LaRank and its binary predecessor
LaSVM [2] are inspired by perceptron-like kernel machines. As such, the random
traversal of hitherto excluded training samples at line 4 of Alg. 1 is conceptually
well-founded. Since first and second order working set selection coincide for CS,
MVP can further be seen as a viable approximation to clipped gain working
set selection. Another relevant building block of EBCS solvers is the example
selection procedure for WSSrep. A naive deterministic alternative to LaRank’s
random selection scheme would be to compute the full arg maxi arg max(c,e) of
the clipped or unclipped gain. Yet, the computational effort outburdens the
potential gain, especially if, as for original LaRank, not all gradients are being
cached. The LaRank algorithm with minimal cost and random gain can thus
be seen as lying on one end of all possible example selection methods and the
argmax-scheme with maximum cost and maximum gain on the other. This paper
explores the question whether the already well-performing LaRank algorithm
can be further improved by an example selection scheme for which the added
cost (relative to instant example selection) is outweighed by the gain advantage
received in turn (relative to the average gain of MVP on random examples).

We propose to utilize the gradient update necessarily following each SMO
step to select the next “old” example. Similar to [10], reusing information re-
cently computed promises efficient working set selection. Let (βci , β

e
i ) be the pair

of variables altered by the last SMO step. Then, according to (5), the subset of
all gradients (gcj , g

e
j )1≤j≤N currently stored by the solver must be updated. For

LaRank, these are all gyj , y ∈ {c, e}, for which βyj 6= 0. As the solver looks at
this subset in any case, it suggests itself to select the next old example according
to some property of all gradients being updated. We propose as such a property
the clipped gain achievable by a SMO step between the variable βyj the gradient
gyj of which is being updated and, fixed within each update loop, a random third

class t. If βtj is not a support class, it is not considered. Alg. 2 summarizes the
resulting example selection procedure following both SMO steps in lines 7 and 11
of Alg. 1. If no feasible pair can be identified, a fallback to a random sample is



Table 1: Datasets, SVM hyperparameters, and average reprocess step rates.

Train Ex. Test Ex. Classes Features C k(x, z) sold sopt

USPS 7291 2007 10 256 10 e−0.025(x−z)2 1.94 36.7

LETTER 16000 4000 26 16 10 e−0.025(x−z)2 1.75 82.6

INEX 6053 6054 18 167295 100 x · z 3.67 35.1

MNIST 60000 10000 10 780 1000 e−0.02(x−z)2 1.65 53.4

guaranteed. In practice, this only occurs in the first few iterations. After Alg. 2,
a call to WSSopt will directly return (βyv , β

t
v), while a call to WSSold returns the

MVP within the candidate example v. In the rare case that the latter does not
yield a feasible variable pair, we also choose a random example in the next step.

Compared to the original version, Alg. 2 adds the computational burden of
checking whether βtj = 0 for all examples for which βyj 6= 0, y ∈ {c, e}. For those

examples for which βtj 6= 0, we say that we have a hit between class y and t. For
every hit, the potential gain of a SMO step on (βyj , β

t
j) has to be calculated and

compared to the current maximum candidate. Because for each class the support
classes lie sparse in the total set of support patterns, the gain calculation is only
conducted in a fraction of update steps. Yet still, experiments not documented
here indicate that Alg. 2 does not typically improve upon LaRank. Since Alg. 2
is carried out after each SMO step, the resulting constant time cost propagates
through to all three average gain rates which steer the stochastic step selection
procedure. The added time is negligible for the more costly step types processNew
and processOld, but large enough to make the selection of processOpt significantly
more unlikely. This in turn impedes the removal of useless support patterns,
which again makes update steps more costly.

We reduce the computational cost by entering candidate examination at line 6
only for a subset of all variables updated. In detail, we introduce a parameter D
representing the desired number of hits within the entire update loop. Starting
from a random index, we only enter candidate examination at line 6 while less
than D hits have occured. Note that the best of D hits with probability 1−xD is
better or equal to the best in a fraction x of all possible hits (e.g., theorem 6.33
in [1]). We choose D = 10, for which the probability of the best of D random hits
being in the highest quintile of all possible hits is ∼ 90%, and divide these ten hits
evenly between the two classes being updated. We further provide an incentive
towards sparser solutions and hence shorter gradient update times by slightly
modifying line 8 of Alg. 2. If a SMO step on a candidate hit would eliminate at
least one of the two support classes, that step is always given preference over
a non-eliminating candidate step. Between candidates of identical priority, the
resulting gain remains the selection criterion, just as stated in line 8 of Alg. 2.
For brevity, we refer to this final algorithm employing gain sensitive example
selection in LaRank reprocess steps as “GaLa”.



3 Experiments

We incorporated GaLa into the original LaRank implementation and conducted
our comparison on the original benchmark datasets, both obtainable at the soft-
ware page of [4]. Tb. 1 lists the corresponding dataset characteristics and SVM
hyperparameters.3 We further wish to rule out that our results are merely an
artifact of GaLa nudging the stochastic step selection mechanism to for some
reason more suitable relative step rates. We therefore besides LaRank and GaLa
considered a third variant for comparison, GaLaFix, in which we fixed the av-
erage number of processOld and processOpt steps per processNew in GaLa to
those exhibited by LaRank. In detail, we for each dataset let one LaRank and
two dummy GaLa runs perform ten single-epoch trials and noted the average
relative step rates (sold, sopt) of LaRank in Tb. 1. In the actual experiments, we
compare GaLaFix, clamped to these empirical step rates, to LaRank and GaLa,
afterwards verifying that LaRank approximately reached the same step rates
again. Fig. 1 shows the results obtained as mean averages over ten independent
single-epoch trials on differently shuffled training sets. We for clarity excluded
the primal training curves, which qualitatively follow those of the test errors.
The horizontal black bar in the upper right of each plot illustrates the factual
time advantage of GaLa over LaRank. It extends from the finish time of that
method with lower final dual value to the linearly extrapolated time at which
the respective other method reached the same dual value. Dividing the length of
the line by the time of its later endpoint, we note a speed-up of 12, 9, 18, and 2
percent for USPS, LETTER, INEX, and MNIST, respectively. Experiments were
carried out on an eight-core 2.9 GHz machine with 8 MB CPU cache, 3.5 GB
memory, using 500 MB of which as kernel cache, and no other avoidable tasks
running besides all three methods in parallel.4

3 As SVM hyperparameters were selected on the basis of “past experience” [4], the dual
curve should probably be seen as most significant performance measure. Further,
MNIST data and hyperparameters slightly vary between the printed and website
version of [4], which we used and where the relevant differences are listed. We also
slightly modified the LaRank implementation for training set shuffling, serialization,
etc. The entire source code underlying our experiments [will be made publicly avail-
able upon acceptance of this contribution]. Besides the implementation described
above, we added a complete re-implementation of an EBCS solver to the Shark ma-
chine learning library [12]. In that implementation, one epoch of GaLa on MNIST on
average reaches a dual of 3656 in 987 seconds, despite not speeding up sparse radial
basis function kernel evaluations through precomputed norms as in the original.

4 Similar to the note on the LaSVM software page [2], we observed performance vari-
ability across platforms also for LaRank. We ascribe this effect to the volatility of
the step selection algorithm. E.g., if kernel computations are slightly faster on one
machine, this will make processNew and processOld steps more likely, but might
lead to an actual decrease of accuracy if the relative advantage for processNew is
higher. Further, if the operation underlying gradient updates takes longer on one
machine, this constant cost on all three step types will regularize the original step
selection mechanism. In [5], the adaptive step selection mechanism is discarded for
a deterministic one, at the cost of introducing an additional SVM hyperparameter.



3.1 Results and Discussion

For the first three datasets, the proposed method arrives at the same dual values
between 9% and 18% faster than the original approach. For the fourth dataset,
MNIST, it only yields a marginal advantage of 2%. Possible reasons for this
comparatively weak performance may be that the distribution of gradients is
such that randomly picking an example holds no real disadvantage as compared
to a gain-sensitive selection method. We also conducted minor experiments not
documented here towards the role of the parameter D, but did not find quali-
tatively different results for reasonable changes in D. Third, it is notable that
until around 2300 seconds, GaLaFix persistently sustains an advantage of 10%
to 15% over LaRank. It might be enlightening to relate the subsequent decline to
the onset of the kernel cache overflow, since that would most likely significantly
perturb the target attractor for the probabilistic weight of processOld steps. This
however is not straightforward as LaRank uses d class-wise kernel chaches.

(a) The USPS dataset (b) The LETTER dataset

(c) The INEX dataset (d) The MNIST dataset

Fig. 1: Development of dual objective (left axis) and test error (right axis) of
LaRank, GaLa, and GaLaFix over one epoch on four benchmark datasets.



4 Conclusions

We proposed a gain-sensitive working set selection algorithm for epoch-based
Crammer-Singer (EBCS) solvers that improves learning speed. It is concep-
tually compatible with a wide range of conceivable step selection procedures.
While several approaches to step selection have been presented [2, 4–6], a robust
canonical solution has yet to be brought forth. We also believe that the method
suggested here is a promising basis for parallelizing processOpt steps in EBCS
solvers. Since SMO steps and subsequent gradient updates are independent for
disjunct class pairs, d/3 simultaneous SMO steps should with slight modifica-
tions be achievable while still benefiting from gain-sensitive example selection.

References

1. Schölkopf, B., Smola, A.J.: Learning with Kernels. MIT Press (2002)
2. Bordes, A., Ertekin, S., Weston, J., Bottou, L.: Fast kernel classifiers with online

and active learning. JMLR 6, 1579–1619 (2005),
http://leon.bottou.org/papers/bordes-ertekin-weston-bottou-2005

3. Glasmachers, T., Igel, C.: Second order SMO improves SVM online and active
learning. Neural Comput 20(2), 374–382 (2008)

4. Bordes, A., Bottou, L., Gallinari, P., Weston, J.: Solving multiclass support vector
machines with LaRank. In: Proceedings of ICML 24. OmniPress (2007),
http://www-etud.iro.umontreal.ca/~bordesa/mywiki/doku.php?id=larank

5. Bordes, A., Usunier, N., Bottou, L.: Sequence labelling SVMs trained in one pass.
In: Machine Learning and Knowledge Discovery in Databases: ECML PKDD 2008.
pp. 146–161. Lecture Notes in Computer Science 5211, Springer (2008)

6. Ertekin, S., Bottou, L., Giles, C.L.: Ignorance is bliss: Non-convex online support
vector machines. IEEE T Pattern Anal 33, 368–381 (2011)

7. Crammer, K., Singer, Y.: On the algorithmic implementation of multiclass kernel-
based vector machines. JMLR 2, 265–292 (2002)

8. Steinwart, I.: Support vector machines are universally consistent. J. Complexity
18, 768–791 (2002)

9. Platt, J.: Fast training of support vector machines using sequential minimal op-
timization. In: Schölkopf et al. (eds.) Advances in Kernel Methods, pp. 185–208.
MIT Press (1999)

10. Glasmachers, T., Igel, C.: Maximum-gain working set selection for support vector
machines. JMLR 7, 1437–1466 (2006)

11. Joachims, T.: Making large-scale SVM learning practical. In: Schölkopf et al. (eds.)
Advances in Kernel Methods, pp. 169–184. MIT Press (1999)

12. Igel, C., Glasmachers, T., Heidrich-Meisner, V.: Shark. JMLR 9, 993–996 (2008),
http://shark-project.sourceforge.net


