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241

   Textbooks of cognitive psychology will talk a lot about such things as mem-
ory, thinking, deciding, or language, typically with some opening chapters on 
perception. Movement is often quite secondary in such accounts, and is consid-
ered to be a somewhat  “ low-level ”  activation of organisms. Yet, all behavior of 
an organism is ultimately motor behavior. Through motor actions do organisms 
reveal that they remember something and they have planned something. Visual 
perception is most commonly supported by motor action that controls where our 
eyes are pointing or actively supports visual exploration when we take an object 
into our hands. Conversely, even simple motor acts seem to require the sorts of 
things that are the stuff of cognition, such as when we must select one of many 
objects which we want to grasp, or when we must turn our body to bring into 
our visual array a desired object which we remember is to the right of where we 
currently look. 

   Embodied cognition is an approach to cognition that has roots in motor 
behavior. This approach emphasizes that cognition typically involves acting 
with a physical body on an environment in which that body is immersed. The 
approach of embodied cognition postulates that understanding cognitive proc-
esses entails understanding their close link to the motor surfaces that may gen-
erate action and to the sensory surfaces that provide sensory signals about the 
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environment. To a certain extent, the embodiment stance implies a mistrust of 
the abstraction inherent in much information processing thinking, in which the 
interface between cognitive processes and their sensorimotor support is drawn at 
a level that is quite removed from both the sensory and the motor systems. 

   The roots in motor behavior of the embodiment stance manifest themselves 
also in the emphasis on the real-time autonomy of cognitive processes. These 
are not typically controlled or triggered by specifi c inputs to which an  “ answer ”
must be generated. Instead, cognition always happens on a background of ongo-
ing behavior. The state of an organism’s nervous systems comes from somewhere 
and goes somewhere. There is hardly any cognition that does not in some way 
depend on the recent behavioral and stimulation history as well as the concurrent 
environmental context. In relation to the environment, this context sensitivity of 
cognition is sometimes referred to as “ situatedness, ”  a concept we subsume here 
under embodiment. 

   Finally, for some (and for us), the embodiment stance also postulates that an 
understanding of cognition must be based on concepts that are consistent with 
the fundamental principles of neuronal organization that govern our nervous 
systems. This means, in particular, that cognition happens in a temporally con-
tinuous and asynchronous fashion, without a central controller that clocks com-
putational steps. This also means that a homogeneous language is spoken within 
the neuronal networks which our nervous system consists of. Neurons interact 
through their activation levels, be they assessed by fi ring rates, levels of synchro-
nicity, or intra-cellular potentials. What neurons transmit through their axons 
and the synapses they form is always the same type of variable. Neurons do not 
transmit messages beyond these physical signals. The processing of neurons is 
largely homogeneous across the higher nervous system, and is based essentially 
on weighted integration. Only through the structure of the neuronal networks, of 
which neurons are part, may the different functionally relevant states of neurons 
be brought about. Note, however, that there are no signatures of the temporal 
discreteness of neuronal spiking events or of the spatial discreteness of individ-
ual neurons in cognition or behavior. So the level at which the neuronal substrate 
provides constraints for an understanding of cognition must be identifi ed rather 
than fi xed a priori. In our review, that level will consist of spatio-temporally con-
tinuous neuronal activation patterns. The radical stance within the approach of 
embodied cognition is that the link to the sensory and motor surfaces, the con-
straints imposed by the physical body and the structured environment in which it 
is immersed, the constraints of temporal continuity and autonomy, and the con-
straints provided by the neuronal substrate are relevant not only for the subset 
of cognitive processes that control action and perception. Instead, in the radical 
view, all cognition is hypothesized to be of this kind. Remoteness of cognitive 
processes from the sensorimotor domain, independence of physical instantiation, 
forward computation only from given inputs, and abstraction from the neuronal 
substrate are all illusory. Even the highest form of cognition, thinking, is viewed 
as a form of motion, characterized by similar constraints as motor behavior, if 
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not always directly acted out by the motor system ( Port  &  Gelder, 1995 ). These 
claims cannot be considered proven at this time but provide a very stimulating 
research program for a fresh understanding of cognition. 

   It is clear, that new theoretical tools are needed to address cognition within 
the embodiment perspective. This chapter reviews one set of theoretical concepts 
which we believe to be particularly suited to address the constraints of embodi-
ment and situatedness. We refer to this set of concepts as  Dynamical Systems 
Thinking  or DST. The concepts are based on the mathematical theory of dynami-
cal systems, but are not identical with that theory, of course (which is why we 
resist the term “ Dynamical Systems Theory ”  that is sometimes used to describe 
this approach). In shortest form, DST is the proposition that the states of the 
nervous system from which cognition emerges can be described by ensembles 
of continuous state variables that evolve continuously in time. That evolution is 
characterized by dynamical laws. Functional states of the neuronal dynamics are 
attractors, whose stability enables them to persist in the face of perturbations and 
fl uctuating inputs. New solutions and qualitative functional change emerge from 
instabilities of the neuronal dynamics. 

  Stability, a core concept of DST, has obvious roots in motor behavior. As every 
engineer knows, stability is of the essence whenever the control of a physical 
effector is continuously linked to sensory information as it is during the execu-
tion, but also the planning of motor behavior ( Goodale et al., 1986 ). This need to 
stabilize functional states generalizes, however, to nervous activation other than 
overt motor behavior, because continuous links to sensory information as well as 
other, ongoing neural processes is a pervasive feature of neural function. Given 
the high degree of functional connectivity within the central nervous system, any 
neuronal subpopulation engaged in a particular functional state receives signals 
from many other neuronal subsystems that are not contributing to this function. 
In effect, these signals represent perturbations of the ongoing functional state, 
against which the state must be stabilized. This is true even for perceptual proc-
esses, for which feedforward computation would at fi rst sight seem a reasonable 
framework. Stability is required, however, to form coherent percepts from the 
continuous stream of inherently ambiguous sensory signals ( Hock et al., 2003 ).

   Once we recognize that functional states of neural systems have stability 
properties, the question arises how systems may change state to approach the 
fl exibility that characterizes cognition. In the motor domain, such fl exibility may 
appear limited, but cognition and perception are inherently time varying and 
highly responsive to changing inputs. Flexibility requires that functional states 
be released from stability. This happens in instabilities (or bifurcations), at which 
the neuronal dynamics go through qualitative change, leading to new functional 
states ( Schöner  &  Kelso, 1988 ;  Schöner, 2008 ). 

  In the motor domain, the notion of a dynamic state of the neural control systems 
is easily grounded in biomechanics and physiology. In fact, muscle–tendon systems 
contribute through their elasticity and viscosity to the stability of effector systems as 
do peripheral and central refl ex loops ( Feldman, 1986 ;  Bizzi  &  Mussa-Ivaldi, 1990 ; 
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 Hogan, 1990 ). Applying DST beyond the motor domain requires that those neuro-
nal principles be identifi ed that may endow representations with stability. Stability, 
as we will illustrate later, requires a metric which distinguishes small from large 
perturbations and within which resistance to and recovery from perturbations can 
be defi ned. Representations can be embedded in metric state spaces through the 
concept of activation fi elds that span the continuous, potentially high dimensional 
spaces of possible percepts, memory states, or action plans ( Shepard, 1980 ). Much 
of this chapter will review a class of neuronal dynamics, originally inspired by 
the homogeneous, layered structure of cortical anatomy ( Wilson  &  Cowan, 1973 ;
 Amari, 1977 ), which provides the key to endowing representations with dynamical 
stability properties as well as the potential for instabilities from which elementary 
forms of cognition emerge ( Spencer  &  Schöner, 2003 ;  Schöner, 2008 ). We refer to 
the conceptual framework that result from combining the concepts of DST with this 
class of neuronal dynamics of activation fi elds as  Dynamic Field Theory  or  DFT.

   The major part of this chapter will review DFT, providing fi rst foundations, 
discussing the units of representation as stable localized patterns of activa-
tion, and illustrating some of the instabilities through which different forms of 
elementary cognition emerge. We will show how this framework connects the 
graded sensorimotor representations underlying estimation, detection, and motor 
planning to the seemingly discrete representations underlying categorical behav-
ior. To examine the extent to which DFT is consistent with the embodiment 
stance, and as a pointer to the achievable complexity of cognitive function, we 
will review a robotic application of these neuronal ideas to object recognition. 
Before we start, however, we will ground the ideas in the mathematical theory of 
dynamical systems through a brief and quite elementary tutorial. 

    DYNAMICAL SYSTEMS 

   The theory of dynamical systems has its origins in classical physics, where it 
was used to understand how physical systems evolve in time. Much of physics 
involves so-called conservative systems that do not have (asymptotically) stable 
states, so that perturbations affect the long-term behavior of the systems for ever. 
A textbook example of a conservative system would be a frictionless pendulum. 
If hit somewhere along its orbit, its future time course is forever changed. Real 
pendulums, in contrast, are affected by friction and ultimately come to rest. The 
resting state is stable, which makes it a point attractor. 

   Dynamical systems that have stable states are called dissipative by physicists 
and form a special subclass, relevant to understanding neural and behavioral sys-
tems. The investigation of the stability properties of such dissipative systems has 
received considerable attention in mathematics, and we shall introduce some of 
the most basic terms and interrelationships here. (There are very many textbooks 
on this fi eld of mathematics. Two examples are  Braun (1993)  at an elemen-
tary level and  Perko (1991)  for a more advanced level.) To visualize a dissipa-
tive dynamical system, imagine a ball rolling in a smoothly sloped landscape 
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under the infl uence of gravity. The ball may be coated with something sticky 
and so it experiences a lot of friction. This will ensure that its movements will 
be dampened quickly, generating stable states. The state of the system is then 
completely described by the ball’s position in the horizontal plane. The change 
of this state—the movement of the ball—is determined only by the slope of the 
landscape locally at the position of the ball. If the slope is zero at the ball’s posi-
tion, the system is at a fi xed point, and its state does not change anymore. There 
are a number of different kinds of fi xed points: A stable fi xed point or attractor 
is reached if the ball is at the lowest point of a valley. If the ball’s position is 
disturbed within certain bounds by an external force, it will return to this point. 
Stability is this property of converging to a fi xed point from any point in the 
immediate vicinity of the fi xed point. (In mathematical language this is actually 
called asymptotic stability  and differs from a weaker condition that mathemati-
cians defi ne as stability. Like most physicists and engineers, we continue to use 
the term  “ stability ”  for the stronger condition of asymptotic stability.) 

   A stronger disturbance may cause the system to leave the fi xed point’s  basin
of attraction  (a term that can be taken literally in our example), and the ball will 
come to rest in some other valley, thus putting the system into a new attractor 
state. Another kind of fi xed point, a  repellor , would exist at the very top of a 
hill. Exactly on the top the slope is zero, but any disturbance, even a very small 
one, will cause the system to move away from this fi xed point as the ball rolls 
downhill toward some other valley that might be available. A repellor is not a 
stable state. There are other ways in which a fi xed point could not be stable; 
for instance by lying exactly at a saddle of the landscape: the system would be 
attracted only along one route down the saddle but would run away from the 
fi xed point along all other directions. Still another way in which stability could 
fail would be observed if there was a direction in which the landscape was 
exactly fl at. Along a valley with a perfectly horizontal fl oor, any point would 
be a fi xed point that would not be perfectly stable because a perturbation would 
shift the system along the valley. It would still be more stable than a repellor or 
saddle point, however, because it would stay close to the original position. 

  Formally, a dynamical system can be described by one or more differential 
equations of the form d x /d t       �       f ( x ), in which the rate of change, d x /d t , depends on 
the current state, x . For a given initial condition, this equation makes it possible to 
determine the system’s state for all later points in time by integrating the rate of 
change along time. How attractors and repellors emerge from such equations can 
be visualized for a one-dimensional state space by plotting the function f ( x ) as a 
function of x  ( Figure 13.1   ). By defi nition, fi xed points are zero crossings of this 
function. Fixed point attractors are zero crossings at which the dynamic function, 
f , has a negative slope: The rate of change is positive for states smaller than the 
fi xed point, leading to increase and thus movement toward the fi xed point. The rate 
of change is negative for states larger than the fi xed point, leading to decrease and 
thus likewise movement toward the fi xed point. A zero crossing with a positive 
slope of the dynamic function is a repellor, at which the analogous logic explains 
why the system is pushed away from the fi xed point. It may be intuitive from these 
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considerations that if f  is a continuous function, two attractor states are always sep-
arated by a repellor (and vice versa). Thus, to switch from one attractor state to 
another, some external force must be exerted on the system (represented by a tem-
porary deformation of the dynamic function, f  ) that is strong enough to move the 
system to the other side of the repellor. The repellor, therefore, demarks the bound-
ary of the basins of attraction of the two attractors. 

   A change of the system’s state may also occur if some external parameter–
one that is not included in the state x –alters the system’s dynamics. In the roll-
ing ball metaphor, imagine that the landscape is tilted from the horizontal by a 
certain angle. This will cause the attractors (minima) and repellors (maxima) to 
shift (actually, the maxima will move in the opposite direction to the minima). 
When the incline reaches a critical point, some minima may stop being local 
minima; typically because they collide with a local maximum (try this out for a 
one-dimensional landscape!). The ball will track the lowest point of the valley it 
is in, until that minimum disappears. At this point, the attractor undergoes insta-
bility. With just a little more increase in the incline, the ball will move way from 
the former valley, until it reaches some other valley, which still contains a stable 
state (this example allows for the unfortunate outcome in which the ball runs off 
to infi nity when no other valleys are left in the downhill direction). 

   This is a rather abstract view of dynamical systems. How could these terms 
be used to talk about the evolution in time of patterns of neural activation? What 
may stable states look like in such neural dynamical systems? How may they 
arise or disappear through instabilities? We will discuss next how Dynamical 
Systems Thinking can be combined with neural principles in DFT.  

    DYNAMIC NEURAL FIELDS AND PEAKS AS 
UNITS OF REPRESENTATION 

   The architecture of the  Dynamic Neural Field  or  DNF  is based on the fi nd-
ing that in the central nervous systems of vertebrates metric information is 
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FIGURE 13.1      A one-dimensional dynamical system is described by how the rate of change 
dx /d t  depends on the state,  x , of the system. Zero crossings are fi xed points that can be either attrac-
tors or repellors.    
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commonly represented in the form of population codes ( Erickson, 1974 ;
 Georgopoulos, 1991 ;  deCharms  &  Zador, 2000 ). This means that dedicated pop-
ulations of neurons exist whose activities, taken together, yield a representation 
of a certain feature. This may be the color of a visual stimulus, the pitch of a 
sound or a desired hand position in the planning of a motor action. Each neuron 
within such a population is maximally active when a certain,  “ preferred ”  feature 
value is presented, and its activation decreases as the feature value contained in 
the stimulus differs increasingly from this preferred value. The response property 
of a neuron can be visualized by its tuning curve, which plots the neuron’s aver-
age activation against the feature dimension. The tuning curves of all neurons in 
a population cover the represented metric dimension or the relevant part thereof. 
There is usually a strong overlap between the tuning curves of neurons, so that 
each stimulus will cause activation in a number of neurons. 

  For the following theoretical considerations we will assume the neurons are 
ordered according to their preferred feature value even though this ordering does 
not necessarily correspond to the spatial layout of the neurons in the nervous sys-
tem. In this perspective, the information represented by the population can be read 
out from the spatial distribution of activation ( Figure 13.2   ): A single value along 
the feature dimension can be represented by a localized peak of activation, that is, 
by a group of neighboring neurons with high activation levels in an otherwise inac-
tive population. The width and height of a peak may give additional information 
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FIGURE 13.2      (A) Neurons tuned to a metric dimension have tuning curves (short dashed 
lines) with a single hump. These are weighted with the current fi ring rate of each neuron (long 
dashed lines) and superposed, generating the distribution of population activation over the metric 
dimension (solid line). When a specifi c value of the dimension is specifi ed as in the illustrated case 
(arrow), the neurons with preferred values close to the specifi ed value contribute more strongly than 
neurons with preferred values far from that value, because their fi ring is higher. (B) Time course of 
a distribution of population activation over the dimension of movement direction constructed in this 
way from the tuning curves of about 100 neurons in motor cortex ( Bastian et al., 2003 ). The move-
ment direction  “ 120 ”  is fi rst signaled at the time marked as  “ PS, ”  followed by the  “ go ”  signal at time 
 “ RS. ”  A single peak located at that movement direction emerges.      
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about the precision or certainty of this value. Ambiguous information about the fea-
ture can be represented by multi-modal distributions of activation, and the absence 
of information by uniformly low activation levels over the whole population. 

   These activation patterns are shaped not only by the input that the neurons 
receive from other structures but are greatly infl uenced by interactions within the 
population. A ubiquitous form of connectivity in the central nervous system can 
be characterized as local excitation and global inhibition in the spatial arrange-
ment of feature sensitive neurons. Neurons that code for similar feature values 
excite each other, whereas neurons that code for distant feature values inhibit 
each other (via inhibitory interneurons). This kind of interaction promotes the 
emergence of localized activation peaks, as will be discussed later. 

  One key assumption of DNF models is that it is the distributions of activation 
over neural populations that convey the relevant information and not the behavior of 
the single neurons. Accordingly, DNFs abstract from the neurons as discrete com-
putational units and model activation over continuous feature dimensions. The evo-
lution of activation patterns is modeled as a continuous process in time, described 
by a set of differential equations. Special emphasis is put on the internal interactions 
in the fi eld which are critical for establishing stable states. To model these inter-
actions, an output is calculated over the whole fi eld and fed back into the fi eld as 
endogenous input. This output can be regarded as a correlate to the mean fi ring rate 
of a group of neurons, whereas the activation refl ects their mean membrane poten-
tial. The fi eld output is usually calculated from the activation via a sigmoid func-
tion, which is close to zero for low activation levels, rises around a threshold value 
and saturates at a constant value for higher levels of activation. The distribution of 
the endogenous input that originates from one position in the fi eld can be described 
by an interaction kernel: It consists of an excitatory part, typically modeled as a 
Gaussian centered at the origin of the output, and an inhibitory part. The inhibitory 
component may be homogeneous over the whole fi eld, but it may also be a broader 
Gaussian, resulting in a Mexican hat shape. This type of kernel implements the pat-
tern of local excitation and global inhibition found in neural populations. External 
input can boost the activation in the fi eld, either locally or globally. Finally, in many 
models random noise is added to the activation fi eld to account for fl uctuations in 
neural activation that cannot be captured by a deterministic differential equation. 

   In the absence of any input, the activation over the whole fi eld is driven 
toward a preset resting level, which is usually chosen to be well below the thresh-
old of the output function. This pattern of activation constitutes a fi rst attractor 
state of the DNF: If the activation is perturbed by noise, it may fl uctuate around 
the resting level, but it does not drift over extended periods of time, and it relaxes 
toward the resting level when the noise is turned off. If a weak localized input is 
added to the fi eld, then the activation in the fi eld rises toward a state refl ecting 
the sum of resting level and input ( Figure 13.3A   ). Here, the input strength acts 
as an external parameter that causes a shift of the attractor states (similar to the 
tilt of the landscape in the rolling ball example), and the activation distribution 
follows the attractor. We call this the input-driven state of the DNF. 
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   Consider next the case of a localized input that is strong enough to lift the 
activation in a small section of the fi eld above the output threshold. In this case, 
the interactions in the dynamic fi eld must be taken into consideration to deter-
mine the stable state of the system. The local excitation will drive activation even 
higher at the location of the input and global inhibition will depress it elsewhere 
( Figure 13.3B ). If the parameters of the interaction kernel are within a certain 
range, the result will be a strong localized peak of activation surrounded by a 
zone of inhibited activation. For this state, the endogenous excitation and inhibi-
tion as well as the exogenous input and the forces pushing the system toward 
resting level reach a balance at every position of the fi eld. This constitutes 
another attractor state, which we refer to as a self-stabilized state and which is 
qualitatively different from the input-driven state. 

   One way to see that this is a qualitatively different state is to decrease the 
strength of the external input again enough, so that the combined effect of input 
and resting level are insuffi cient to reach the output threshold. The fi eld activa-
tion in the area of the peak will, however, remain high enough to sustain output 

FIGURE 13.3      In DFT, metric information is represented by continuous distributions of acti-
vation over metric dimensions that span perceptual or motor feature spaces. (A) Low activation levels 
across the entire fi eld index the absence of conclusive information for the feature space. (B) A single 
value along the feature dimension is specifi ed by a peak of activation localized at a particular posi-
tion in the fi eld, which stands for that feature value. Such activation peaks are the units of representa-
tion in DFT and emerge as attractors from the neuronal dynamics of the activation fi elds.      
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leading to self-excitation by the local excitatory interactions. At such an input 
level the system is bistable, that is, two attractor states co-exist: The input-driven 
state that is reached from low levels of activation, does not engage interaction, 
and mirrors the input signal. The self-excited state is reached from suffi ciently 
high levels of activation, stabilized by interaction, but continues to be infl uenced 
by input. Which of these attractor states the system reaches at this input level is 
determined by the fi eld’s activation history. Weak previous levels of activation 
put the fi eld into the basin of attraction of the input-driven state, strong previ-
ous levels of activation put the system into the basin of attraction of the self-
excited state. For initial states near the boundary of the basins of attraction, the 
system may reach either state depending on stochastic perturbations (refl ecting, 
for instance, noisy neural inputs). 

   The qualitative change of the attractor states when a single localized input 
increases in strength is illustrated in Figure 13.4   . The dynamics generating the 
attractor solutions sketched in the left column of the fi gure can be illustrated by 
plotting the rate of change, d u ( x )/d t  of the activation level at some location,  x , 
within the peak, as function of the activation level,  u ( x ), at that same location. 
Strictly speaking, this plot is not a mathematically conclusive representation 
of the dynamics, because the rate of change also depends on activation levels 
at other fi eld sites. The intuition derived from this plot is corroborated by the 
correct mathematical analysis, however ( Amari, 1977 ). The rate of change has 
a negative slope overall, refl ecting the fundamental stability of neuronal activa-
tion. At large levels of activation, the rate of change is lifted up by the net effect 
of the excitatory interactions within a peak of activation. The effect of localized 
input is to shift the rate of change upward across all activation levels. As a result, 
the single attractor at low levels of activation is joined by a second attractor at 
high levels of activation, into which the system switches when the attractor at 
low activation levels becomes unstable for suffi ciently strong input. When input 
levels are then lowered again, the system will remain in this activated state until 
that state becomes unstable for suffi ciently weak inputs. Either switch occurs as 
an attractor disappears after becoming unstable. 

   A behaviorally relevant effect of these instabilities is that the bistable regime 
helps stabilize detection decisions. Consider a simple perceptual detection task 
and assume that a stimulus is perceived when the relevant neural population 
creates suffi cient activation that exceeds the threshold for output to be gener-
ated. In the input-driven regime, the percept would be very unstable for a stimu-
lus that is just strong enough to push the fi eld to the output threshold. Due to 
sensory noise, the activation would fl uctuate around the threshold and the out-
put nonlinearity would produce a signal that alternates on a fast timescale. In 
the self-stabilized regime, the percept is stabilized once activation reaches the 
output threshold. The percept persists even when the input strength is reduced 
(within limits). Empirical support for the stabilization of detection decisions 
comes from psychophysical experiments demonstrating perceptual hysteresis 
( Hock et al., 1997 ).
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   The range of input strengths for which the DNF is in the bistable regime 
depends on the parameters of the interaction kernel. So far, we have assumed 
that a DNF would be monostable in the absence of any input so that the activa-
tion would always relax to the resting level when the input is removed. In the 
DNF model, this is not necessarily the case, however. If the excitatory part of 
the interaction kernel is strong enough and is balanced by suffi cient inhibition to 
stabilize a local peak, then a perfectly stable peak of activation may persist even 
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FIGURE 13.4      Stable patterns of activation induced by a single Gaussian input of varying 
strength are shown (left column) together with the corresponding plots of the rate of change against 
the current activation level, both taken at the peak position (right column). (A) For weak input 
(short dashes), the only stable pattern is a matching subthreshold peak (long dashes). The associated 
dynamics is monostable (dot marks the attractor). (B) At intermediate input strength, the system is 
bistable. One attractor emerges from the subthreshold peak (long dashes), which is merely shifted 
toward higher levels of activation (leftmost attractor in the plot on the right). The other attractor is a 
self-stabilized peak (solid line). It shows up as an additional attractor state of the system (rightmost 
attractor in the plot on the right), separated from the old attractor by a repellor (diamond). (C) At the 
highest input levels, the system is monostable again with only the self-stabilized peak surviving. The 
subthreshold peak has become unstable.        
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without exogenous input. Such self-sustained peaks of activation have been used to 
model metric working memory ( Zipser, 1991 ;  Durstewitz et al., 2000 ;  Spencer  &
Schöner, 2003 ): A peak is created by a single presentation of a localized stimu-
lus. It is then sustained over extended periods of time, representing the former 
input as a memory item together with its metric value refl ected by the location of 
the sustained peak. 

   We will make a few additional remarks about the relationship of DNFs to real 
neural populations and brain structures. Generally, DNFs can be used to describe 
neural systems at different levels of abstraction. Historically, DNFs were fi rst 
developed to approximate the cortical neuronal architecture that is characterized 
by layered sheets of neurons which are relatively homogeneous along the layers 
with strongly overlapping dendritic trees for nearby neurons ( Wilson  &  Cowan, 
1973 ;  Amari, 1977 ). DNFs can be used to model clearly identifi ed populations 
of neurons using the concept of a distribution of population activation ( Erlhagen
et al., 1999 ), which frees the description of strict anatomical constraints. This 
has been done, for instance, for the representation of retinal location in primary 
visual cortex ( Jancke et al., 1999 ), the representation of movement direction in 
motor cortex ( Bastian et al., 1998 ;  Cisek, 2006 ), and for the representation of 
saccadic end-points in superior colliculus (SC) ( Trappenberg et al., 2001 ). In 
these cases, the parameters of DNF models can be tuned to reproduce the experi-
mentally observed patterns of neural activation. 

   However, DNFs may also be used to explain the results of psychophysical 
experiments, such as the metrics of performance, reaction times, error rates, fre-
quencies of responses, and other signatures of the underlying processes ( Kopecz 
 &  Schöner, 1995 ;  Erlhagen  &  Schöner, 2002 ;  Schutte et al., 2003 ). In these 
cases, the feature dimensions over which the fi elds are defi ned are usually param-
eters of the experimental setup. It is often not known exactly where the pro-
cesses modeled in the DNF take place in the brain, and it may even be doubtful 
whether any single neural population exists that behaves exactly as the dynamic 
fi eld does. Instead, the neuronal instantiation of such DNFs could be distributed 
across multiple areas and populations of neurons. Such functional DNF models 
may properly capture the net effect of the evolution of stable activation patterns 
that underlie the observed behavior ( Spencer et al., 2007 ).

    INTERACTIONS BETWEEN MULTIPLE 
ACTIVATION PEAKS 

  Up to here we looked at the input-driven attractor and at a single, localized 
peak that is stabilized by interaction and forms a second attractor (see Amari
(1977)  for a complete mathematical analysis). More complex attractor confi gu-
rations arise if two or more localized inputs are applied to the fi eld. In such a 
case, multiple peaks of activation may emerge that infl uence each other due to 
the excitatory and inhibitory interactions. In this section we review the different 
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effects that these interactions generate and show how the resultant solutions can 
be used to explain experimental results linked to sensorimotor decision-making. 
The metrics and timing of saccadic eye movements have been extensively inves-
tigated and much is known about the underlying neuronal substrate. The neuro-
nal specifi cation of such movements thus provides an excellent model system, 
which we can use to illustrate key ideas of DFT. We build on detailed DNF mod-
els of saccade specifi cation ( Kopecz  &  Schöner, 1995 ;  Trappenberg et al., 2001 ;
 Wilimzig et al., 2006 ).

  Saccades are the abrupt eye movements that we use to change the fi xation 
point of our eyes from one location in visual space to another. Saccades are bal-
listic movements, that is, each saccade’s trajectory is determined before the move-
ment starts and normally it remains unaltered during the execution of the saccade. 
Furthermore, saccadic eye movements are highly stereotyped so that it is suffi -
cient to specify the horizontal and vertical distance of the saccadic target in retinal 
coordinates, that is, relative to the current fi xation point. These two spatial dimen-
sions of the saccadic end-point can thus be considered relevant feature dimen-
sions (for simplicity we will think of only a single dimension in what follows). A 
peak in an activation fi eld defi ned over these dimensions thus indicates the met-
rics of a planned saccade. Such a DNF may be interpreted as a functional descrip-
tion of relevant neural populations, in particular, those in the Superior Colliculus 
(SC), a mid-brain structure that is involved in saccade planning and initiation. 
The SC features a topographic map of saccade target positions, in which activa-
tion peaks arise before a saccade is initiated. The SC integrates both sensory and 
cortical inputs and it is assumed that it is in the SC that the fi nal decision about 
the initiation of a saccade is made. (A more detailed model points to multiple 
zones within SC and to different layers playing different roles in the specifi cation 
and initiation of a saccade as well as the opposing function of fi xation.) 

   The presence of a stimulus somewhere in the visual fi eld is modeled by 
localized input to the corresponding position in the DNF. If the input is strong 
enough, the system goes through the detection instability and a peak emerges, 
indicating the metrics of a saccade to the visual target. Under natural conditions, 
of course, there is never a single unique visual target in the visual array. Instead, 
typical visual environments provide a rich selection of potential targets of sac-
cadic eye movements, which are most commonly characterized by some high-
energy local contrast, edge or corner point. Specifying a saccade under such 
conditions necessarily involves selection ( Ottes et al., 1984 ). DNFs and their 
interactions afford such selection. 

   Consider fi rst a case in which two identical inputs are presented to two 
fi eld sites that are at a large distance from each other ( Figure 13.5A   ). When 
these inputs are suffi ciently strong, they induce levels of activation in the fi eld 
that reach the output threshold and thus engage the neuronal interaction in the 
fi eld dynamics. For perfect symmetry and in the absence of noise, two identi-
cal peaks may arise. Mutual inhibition may reduce the total activation in these 
peaks as compared to a peak induced by a single localized input. This is because 
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both peaks contribute to inhibitory interaction that impacts on the entire fi eld, 
whereas excitatory interaction is local to each peak. The two-peak state is a fi xed 
point of the system but not generally a stable state. If the activation level of one 
peak is slightly increased by noise or stimulus asymmetry, that peak generates 
more supra-threshold activation leading to stronger self-excitation and stronger 
global inhibition. This will diminish the activation in the other peak and, in turn, 
it reduces the amount of self-excitation within that peak as well as its inhibi-
tory infl uence on the other peak. An imbalance between the two peaks will arise 
and grow, which may lead, for suffi ciently strong interactions, to the complete 
suppression of one peak by the other one. Given that all output from the inhib-
ited peak is suppressed, the remaining peak has the same shape and strength as a 
peak with only one localized input. 

  Thus, for strong bimodal input, the system is again in a bistable state: If a 
single peak has been established and activation at the other input location has 
been suppressed, this pattern is stabilized against noise and also against moderate 
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FIGURE 13.5      (A) If two localized inputs (arrows and fat dashed line on top) are applied at 
distant positions, the emerging peaks compete with each other due to self-excitation and mutual inhi-
bition. This results in the selection of one peak and the suppression of the other. Any of the inputs 
may be selected depending on their respective strengths and the fi eld’s history, allowing two possible 
stable states for the dynamic fi eld (dashed and solid line below the input). (B) If input positions are 
close to each other, local excitatory interactions bring about a fusion of the activation peaks, leading 
to a monostable response at an averaged location.      
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increase of the suppressed input. Which one of the two possible peaks is realized 
depends on the system’s activation (and thus stimulation) history as well as on 
random stochastic fl uctuations (e.g., from many uncorrelated neural inputs). If 
one location receives stronger input than the other then that location has a greater 
chance at generating a peak, which is suppressed only if a strong, and thus rare, 
stochastic perturbation favors the other location. The same mechanism of compe-
tition takes place for more than two inputs, leading to the selection of one loca-
tion in many, which is typically the location with strongest input. 

   So far, we have analyzed the case in which the locations receiving input are 
distant from each other, so that the associated activation peaks only inhibit rather 
than excite each other. What about closely spaced inputs? We fi rst remind the 
reader of experimental observations for metrically close saccadic targets ( Ottes
et al., 1984 ). If multiple visual stimuli are presented in proximity to each other, 
but distant from the current fi xation point, the result is typically an averaging 
saccade made to the center of the group, not to a single item. A smaller saccade 
to fi xate a specifi c target may follow in a second step. 

   This averaging behavior can be understood in terms of DNFs as well 
( Figure 13.5B ). Two Gaussian inputs to a dynamic fi eld will overlap if they are 
close to each other, so that both input sources contribute activation to the area 
between the two locations. Trivially, this may result in a single localized input to 
the fi eld, centered already over the averaged input locations. An averaging peak 
may even emerge, however, when the two inputs do not overlap so strongly that 
a single-humped input distribution results. Input induced activation at two loca-
tions that are close enough to experience mutual excitatory interaction will tend 
to fuse into a single peak. Supra-threshold activation at either location propa-
gates toward the center. This converges to a merged peak at an averaged posi-
tion, similar to one that would be created by a single broad input. 

   For two localized inputs that are applied very close to each other, the merged 
peak is the only stable activation pattern. If the distance between the inputs is 
increased continuously, this pattern will remain stable over a certain distance, 
whereas the same input may create a selection behavior when applied to a previ-
ously inactive fi eld. If the distance is increased further, the merged peak attractor 
is destabilized and the peak quickly shifts to one of the stimulus positions (this 
is called the fusion/selection instability). Because excitatory interaction can take 
a direct route between excitatorily coupled neurons, whereas inhibition requires 
inhibitory interneurons, this account predicts that early saccades tend to fuse 
inputs, whereas later saccades that occur after more time has been available for 
the neuronal dynamics to settle, tend to select one target ( Wilimzig et al., 2006 ).
This is empirically true. 

   The time course of sensorimotor decisions has been studied using DFT ideas in 
a variety of other settings. The timed–movement–initiation–paradigm ( Erlhagen  &
Schöner, 2002 ) provides access to the preparation of goal-directed hand and arm 
movements. Infants show reliable patterns of selection when confronted with 
multiple possible reaching targets in the famous A-not-B task of Jean Piaget
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( Thelen et al., 2001 ). Here the delay across which competition between a 
motor habit and a cued new movement target occurs can be varied experimen-
tally. More generally, tasks involving metric working memory provide access to 
the temporal evolution of selection decisions, exposing time-dependent metric 
biases due to the infl uence of competing infl uences. In all of these cases, prior 
experience within the task plays a critical role in how the selection process 
unfolds. To understand sensorimotor decision-making, we need to look more 
carefully, therefore, at how prior experience may have an impact on selection 
decisions.

    PRESHAPE IN DYNAMIC NEURAL FIELDS 

   We have just seen how small inhomogeneities in a fi eld, a little more input 
at one location than at another, can have a critical infl uence on selection deci-
sions. The activation fi elds underlying the perceptual or motor decisions cannot 
be generally expected to be perfectly neutral, clean slates. Whenever a particular 
input arrives that drives the fi eld toward a decision, the activation pattern in the 
fi eld may be preshaped by other inputs that have been around longer. One source 
of such preshaping input is the sensed environment, in which there may be rich 
visual structure including potential movement targets such as graspable objects. 
Decisions typically take place on such a background of prior activation. 

   One particular source of such preshaping of activation fi elds is the recent 
activation history. Habit formation is perhaps the simplest form of learning in 
which an organism builds a tendency to repeat behaviors that have been success-
ful before. Habits may be accounted for in DFT by assuming that patterns of 
activation leave a memory trace, which then in turn contributes to preshaping 
the fi eld. A simple mathematical formalization is based on an additional layer 
of activation, in which such a memory trace results from a slow dynamics. This 
memory layer in turn provides input to the proper activation fi eld. The resultant 
preshaped activation is generally subthreshold, so that it does not by itself induce 
decisions. Preshape may, however, exert a great infl uence on the activation pat-
terns that emerge when stimulus input is added. 

   The concept of preshape is not meant to model one specifi c neural mecha-
nism. Instead, preshape is a general functional account for a variety of neural 
mechanisms that contribute to activation prior to an imperative or specifi c signal, 
which triggers an instability leading to a peak being formed and a decision being 
made. Long-term memory and associations from other cortical areas may repre-
sent expectations, predictions, or attention directed at certain parts of the feature 
space. In other cases, the preshape may be thought of as residual activation from 
previous behavior. Learning mechanisms may involve changes in synaptic effi -
cacy, either in the afferent or in the lateral connections. In either case, the func-
tional effect is to facilitate the induction of a peak, which we may conceptualize 
as inhomogeneity or preshape of the fi eld. 
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   How preshape infl uences selection decisions can be illustrated again in the 
preparation of saccadic eye movements. In the laboratory, only a limited number 
of potential target locations are typically used. Participants may acquire prior 
knowledge about the possible eye movements they will need to perform to 
acquire these targets. The effects of this knowledge were investigated by  Dorris
et al. (2007)  in rhesus monkeys who were trained to fi xate on a light point and 
then make a saccade to a visual target appearing at a predictable position in the 
visual array. In electrophysiological measurements in the SC, they found a local-
ized hill of activation in the area representing the target location before the stim-
ulus was actually presented. Furthermore, they investigated the behavioral effect 
of this preparatory activation by presenting distracters (that differed from the 
actual targets by their color) at different locations in the monkey’s visual fi eld. 
Distracters presented close to the usual target location tended to attract the eye, 
leading to erroneous saccades, whereas the metrically distant distracters did not. 

   These observations can be understood within the DNF model of saccade 
preparation. In the preshape layer, a constant broad hill of activation is created 
at the trained target position, moderately increasing the activation level in the 
associated dynamic fi eld. The distracters may be modeled as transient inputs that 
are weaker than the target input (because they are not reinforced by the neural 
systems that performs the target recognition). Such an input will be suffi cient to 
create a peak if applied to a preactivated region of the fi eld, but not in the other 
regions, explaining the different rates of erroneous saccades. A further effect 
of the preshape is that peaks are created faster in response to target presenta-
tion, predicting shorter reaction times for saccade initiation in situations where 
the target position is known in advance. This is in accordance with a large range 
of experimental results (as reviewed in  Erlhagen  &  Schöner, 2002 ). The same 
effect of pre-information on neural activation levels and reaction times has been 
shown for motor cortex when pointing movements were prepared ( Bastian et al., 
2003 ). 

   How preshape may be acquired by a simple learning process is illustrated in 
 Figure 13.6   . To this end, the output of the dynamic fi eld is fed into a memory 
trace layer. Thus, whenever there is supra-threshold activation in the fi eld, a 
memory trace is laid down at the matching locations. Because the memory trace 
evolves over a much slower timescale, the pattern within the memory trace layer 
refl ects the statistics of activation in the fi eld, with more activation built in those 
locations that have repeatedly and consistently been activated. 

   The memory trace is thus a mechanism through which probability distribu-
tions refl ecting the activation history can be autonomously acquired and neuron-
ally instantiated, much in the manner of the prior distributions of the Bayesian 
framework. Metric biases may arise from the preshape pattern induced by such 
memory traces, which are again consistent with Bayesian estimation. This effect 
is illustrated in  Figure 13.7   , where a tiny amount of bias toward one of the pre-
shaped locations can be seen (the effect can be larger under appropriate circum-
stances (see  Erlhagen  &  Schöner, 2002 ); here we aim to contrast this effect with 
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a different mode of integration discussed in the next section). One manifestation 
of the preshaping of the choice seen here is that the time needed to build a peak 
is shorter when the peak is consistent with the memory trace than when it is not. 
Note, however, how the DNF goes beyond the fusion of prior and sensory input. 
The fi eld dynamics suppresses any infl uence from the other, metrically remote 
location that has also accumulated preshape. This amounts to something like 
robust estimation and is one aspect of the stabilization of decisions. 

   In DFT, memory traces refl ect not only the probabilities of different peak 
events, but also their metrics. Probabilities are essentially encoded by the activa-
tion level within a preshaped location, whereas the metrics of prior experience is 
encoded by the location of the preshaped activation. An experiment and associ-
ated simulations highlight, how probability and metrics interact ( McDowell et al., 
2002 ). Human participants were asked to make center-out pointing movements 
to visual targets. In each block of trials, only two movement directions occurred, 
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FIGURE 13.6      The evolution in time of the activation pattern in a dynamic fi eld (A) and an 
associated memory trace fi eld (B) is shown. As long as a peak is present in the activation fi eld (here 
due to the presence of a stimulus marked by the bar labeled  “ stimulus duration ” ), the memory trace 
slowly builds up at the corresponding fi eld location. Memory traces passively decay in the absence of 
such activation. In this illustration, a memory trace at a different feature value was assumed to exist 
initially from earlier peak events. That trace preshapes the activation fi eld at the matching location 
but then slowly decays because it is not further stimulated by input from the activation fi eld.      
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one of which was elicited frequently and the other rarely. When the two move-
ment directions were metrically far from each other (120°), reaction times to the 
rare target were longer than reaction times to the frequent target, consistent with 
the Hyman law (which says that choice reaction time increases with decreasing 
probability of a choice). When the two targets were metrically close (5°), reac-
tion times for both movement directions were equally fast. The rare movement 
direction was actually shared across two different blocks. Reaction time to this 
target was long when it was paired with a metrically far frequent target and short 
when it was paired with a metrically close frequent target. 

   Figure 13.8    illustrates the DFT account for this effect. Movement direction is the 
feature dimension and movement is initiated in the direction encoded by the location 
in the fi eld at which a self-stabilized peak is generated. Reaction time is predicted 
by the rate at which activation within the peak rises, shown in the fi gure through 
the activation level at the location of the peak. Whenever a peak is created and a 
response made, the memory trace at the associated location is updated. The frequent 
movement direction is thus represented by a more strongly preactivated fi eld location 
than the rare movement direction. This leads to faster buildup of a peak from the 
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FIGURE 13.7      (A) An activation fi eld (solid line) is preshaped by a memory trace that refl ects 
that two locations have frequently seen activation peaks. This decreases the amount of excitation 
that is required to generate a peak for the preactivated fi eld locations. (B)When a localized input 
is applied to the preshaped fi eld, the resulting peak position is slightly biased away from the input 
specifi ed location toward the closest location specifi ed by the preshape. Metrically distant preactiva-
tion does not matter, as it is only within the range of 19 inhibitory interactions.      
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more strongly preshaped location, explaining the Hyman law ( Erlhagen &  Schöner, 
2002 ). When the two locations are very close, however, the preshape at the frequent 
location spills over to the rare location, boosting buildup there and leading to simi-
larly fast buildup time for both choices. The wider implication is that the amount of 
information (e.g., probability, number of choices, sensory precision) is not the only 
predictor of choice behavior. The contents of the selection decisions, their metrics, 
also matter. It is not possible to abstract from the  “ what, ”  the specifi c, embodied and 
substantive contents of mental representations by focusing only on the  “ how much, ”  
on the abstract processing of information and its capacity limits. 

    CATEGORICAL BEHAVIOR FROM CONTINUOUS 
REPRESENTATIONS 

   Up to this point we have talked primarily about sensorimotor tasks, in which 
decisions about continuous feature dimensions needed to be made and the values 
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FIGURE 13.8      On top, the preshape of an activation fi eld representing the direction of an 
upcoming movement is shown. The level of preshape activation at two possible movement directions 
(arrows) refl ects the probability of each movement, higher levels arising for more probable choices 
(left and middle). When the two movements are metrically close, preshapes overlap, lifting the level 
of preactivation for the less probably choice. At the bottom, the rise of the maximal level of activa-
tion is shown for the case that the frequent (solid) and the rare movement is specifi ed. That rise is 
faster for the frequent than the rare movement when probabilities and metrics are disparate (middle) 
but not when probabilities are similar (left) or metrics are close (right).    
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of these dimensions estimated. This may entail forms of cognition such as when 
such estimates need to be stabilized in working memory or when a selection 
among different possible values is required. Much of cognition, however, may 
seem to involve primarily categorical behavior and the associated categories. 
Categorical behavior is required if the environment offers discrete objects such 
as when we select and reach for one object rather than another, when we name 
one object rather than another. Words appear categorical in nature and many lan-
guage tasks seem to require the selection of one of a discrete set of choices, such 
as when we name an object using one word rather than another. 

   In the laboratory, categorical behavior is often imposed by asking participants 
to act on discrete objects (such as pressing one key when stimuli of a certain kind 
are presented and another when stimuli of another kind are presented) or use dis-
crete responses. Although the sensorimotor tasks reviewed up to now may, in 
the laboratory, also involve only a small set of discrete possible choices, these 
are naturally embedded in a continuum (e.g., of possible movement directions). 
A classifi cation task, in contrast, seems to involve inherently discrete response 
categories. If we are asked to recognize faces by labeling, we may be compelled 
to make a discrete selection rather than interpolating between two possibilities 
(although such interpolation may appear possible at some level of representation, 
we will come to that). Another way to characterize categorical tasks is to exam-
ine the kind of errors that participants can make: are errors graded and metric in 
nature or are they inherently categorical, for example,  “ right ”  or  “ wrong. ”  

   How does DFT deal with inherently categorical behaviors? The key idea is 
to think of such categories as embedded in underlying continua. In many cases, 
these may be thought of as arising from the lower level perceptual feature 
spaces, within which an object may be described. At a neuronal level, cortical 
feature maps provide a substrate for such an embedding. Population coding has 
been found in cortical areas as high as IT exactly for the presentations of objects 
( Young  &  Yamane, 1992 ) suggesting that the notion of overlapping neuronal 
connectivity that gives rise to the notion of peaks along a continuum applies. 
Psychophysically, most perceptual representations are not strictly categorical, 
giving access to graded information about the particulars of any given instance 
of a category (as is true even for the most famous case of categorical perception, 
the perception of the phonemes of speech, see  Massaro, 1987 ). 

  Once we recognize that categories may be embedded in this way, the question 
is how categories may arise from such underlying continua and how categorical 
behavior may be generated on the basis of continuous DNFs. We have to begin 
with the latter question to then know what the fi rst question entails. It turns out, 
there is a simple answer that requires no new mechanisms over those used up to 
here. Discrete categorical responses may arise from multi-peaked preshape within 
a continuous activation fi eld. From such graded, subthreshold patterns of pre-
activation, self-excited peaks can be generated through the same detection insta-
bility discussed earlier.  Figure 13.9    illustrates that a simple boost, a homogeneous 
excitatory input that lifts the activation across the entire fi eld, may push the fi eld 
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through the detection instability at one of the preshaped locations. If multiple 
locations are preshaped, then selection may happen through the same mechanism 
of lateral inhibition evoked earlier to understand selection in sensorimotor tasks. 
The input may not be perfectly homogeneous, containing instead some localized 
structure and thus favoring the selection of the preshaped location that overlaps 
most with this input. The peak in the fi eld, and thus, the associated behavior, is 
localized largely over the preshaped locations, however, when this localized com-
ponent of input is small compared to the amount of preactivation. Comparing the 
categorical response mode to the response mode used in the sensorimotor sce-
narios ( Figure 13.7 ), the roles of stimulus input and preshape are reversed. In the 
latter case, the localized stimulus is dominant, largely determining the peak loca-
tion and being causal for the initiation of a response (so that there is no need for a 
separate “ go ”  signal). The preshape makes a minor contribution to the metrics of 
the representation, biasing the peak toward the preshaped regions. In the categori-
cal response model, in contrast, preshape determines the metrics of the response 
while the time of response initiation is determined by the homogeneous boost, 
the “ go ”  signal. The specifi c, localized stimulus merely biases the competition 
between the different preshapes, thus selecting the category that will be activated. 
These two modes are, however, merely limit cases of a continuum, in which the 
relative strength of preshape and localized stimulus input takes on any inter-
mediate value. The mechanism proposed here to explain categorical responses 
explains how categorical errors may arise even for unambiguous stimuli. Such 
errors may arise if the wrong preshape hill, which is not metrically close to the 
current stimulus, wins the competition. Because the fi eld goes through an insta-
bility when the peak is brought up from preshape, it is sensitive to noise and such 

FIGURE 13.9      (A) An activation fi eld (solid line) is preshaped around feature values that 
correspond to associated categories. In the absence of input (dashed line is at the zero level), the 
preshaped fi eld remains below the output threshold. (B) Categorical responses are generated by com-
bining a weak localized stimulus input with a homogeneous boost of activation that can be viewed 
as a  “ go ”  signal (dashed line). This lifts all preshape hills above the output threshold and engages 
both local self-excitation and competition among the potential peaks. The small localized input com-
ponent biases the competition toward the preshaped category with which it has the greatest overlap. 
The position of the resulting self-stabilized peak (solid line) is largely determined by the categorical 
preshape pattern, not by the localized stimulus component.      
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an outcome may result due to a fl uctuation. This is more likely for smaller dif-
ferences in input at different possible locations (e.g., because the localized part 
of the stimulus is weak) or for stronger overlap between preshape patterns (e.g., 
because the categories are metrically close). 

  This account also explains why trials in which an error occurs tend to have 
longer reaction time than trials with a correct response ( Luce, 1986 ). In the dynamic 
fi eld, the reaction time is determined by the time course of the selection process. If 
one peak is clearly stronger than all others, it can quickly suppress those others 
and win the competition. If on the other hand several candidates are almost equally 
strong, the process of competition starts more slowly, as there is little difference 
between the forces that act on the single peaks. Even if one of them gains a little 
advantage, a small amount of noise is suffi cient to nullify it. In our account, the 
strength of different peaks is on average more similar in error trials than in correct 
ones (as trials with a close competition are more likely to produce errors). Thus, 
the DNF model will produce longer reaction times for error trials. Furthermore, 
reaction times of the DNF model will tend to be longer as the number of response 
categories increases: As more preshape hills compete with each other, the total 
inhibition gets stronger, slowing down the rise of a single peaks ( Erlhagen  &
Schöner, 2002 ). Such an infl uence of the number of categories on the reaction time 
is experimentally well studied and is captured by Hick ’ s law ( Luce, 1986 ). 

   The generalization of this result is the Hyman law, of course, according to 
which reaction time increases with decreasing probability of a choice. We 
showed earlier how the Hyman law interacts with the metrics of choices when 
peaks are generated from a localized input representing an imperative signal. In 
that case, metrically close choices have faster reaction times irrespective of their 
probability ( Erlhagen  &  Schöner, 2002 ). This is actually a somewhat counter-
intuitive result. More common is the distance effect, in which the decision 
between two choices takes longer if the choices are more similar and metri-
cally close ( Anderson, 1995 ). As illustrated in  Figure 13.10   , the distance effect 
falls out of the DNF account of selection in the categorical mode dominated by 
preshape ( Wilimzig, 2006 ). Only when the preshape is bimodal are categori-
cal responses possible. Everything else being the same, the stimulus specifying 
either choice overlaps more with the other choice, so that both choices are acti-
vated to a larger extent. Mutual inhibition is more strongly engaged and slows 
responding down until one of the choices falls below the output level. 

   The detection instability driven by a homogeneous boost to the fi eld is capa-
ble of amplifying small graded inhomogeneities into macroscopic stable states 
that can begin to impact behavior. This has far reaching implications for what is 
required to learn categories: Essentially, acquiring a graded preshaping along a 
feature dimension with local maxima near the centers of categories is suffi cient 
to respond categorically to graded inputs. Categories thus emerge naturally from 
underlying continuous feature representations through graded, incremental learn-
ing rules such as the memory trace mechanism described earlier ( Figure 13.6 ) or 
a generic Hebbian rule.  
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    EMBODYING DYNAMIC NEURAL FIELDS ON 
AUTONOMOUS ROBOTS 

   We have emphasized the concept of stability as a prerequisite for understand-
ing how cognition may emerge in embodied and situated systems that are contin-
uously linked to structured environments through sensory inputs. But how do the 
concepts fare when a real body is controlled based on real sensory information? 
One way to evaluate is to implement DNF models on autonomous robots and 
investigate how DNFs cope with continuously changing and noisy input and how 
DFT architectures generate consistent and fl exible behaviors. If simple, neuron-
ally plausible sensory and motor processes are suffi cient to enact a DNF model, 
then this proves that there are no hidden problems in the interface between the 
DNFs and the sensory and motor surfaces. This is not trivial. Many a model of 
cognition makes strong demands on both ends of sensation and motor control. 
Some connectionist models, for instance, postulate that a specifi c neuron repre-
sents a particular kind of object (e.g., see Munakata, 1998 ). Recognizing objects 
on the basis of visual information is, however, a well-known and nontrivial 
problem. So there is something hidden in the interface here (which may seem 

FIGURE 13.10      This fi gure is analogous to  Figure 13.8  but now based on the DNF model 
in the categorical response mode. Top: Preshape (fat solid line) refl ecting a frequent and rare choice 
along a feature dimension is shown when the difference between the probabilities is small (left), or 
large (middle and right). The two choices are either metrically far (left and middle) or metrically 
close. The stimulus specifi es either the rare (dashed) or frequent choice (thin solid) and contains a 
homogeneous boost component. Bottom: The maximal activation at the site specifi ed by the stimulus 
rises faster for the frequent than for the rare choice. This difference is larger when the probability dif-
ference is larger (left compared to middle), but increases again when the choices are metrically close, 
the opposite effect compared to  Figure 13.8  (Figure adapted from  Wilimzig (2006) ).    
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particularly relevant for a model that addresses object permanence such as 
 Munakata, 1998 ). Another aspect of such implementations is that they probe the 
real-time autonomy of behavior. Is the robot capable of behaving continuously, 
going from one state to another, propelled by its inner dynamics and the sensory 
information it actively acquires from its environment? This entails not only the 
issue of closed loop control in the real world but also the continuous, asynchro-
nous operation of cognitive processes. This may be contrasted with information 
processing models, in which behavior is generated only as a response to stimula-
tion, so that time is (implicitly or explicitly) parsed into input–output cycles. 

   There is more to be gained from robotic implementations beyond such fea-
sibility proof. As a heuristic device, robots may reveal to us all that needs to 
be specifi ed, and all that can go wrong when a particular behavior is generated. 
This may motivate new research questions. Examples in kind are calibration and 
homeostasis, both of which are often left unaddressed in more abstract models 
of cognitive function. Heuristics also works the other way round: Robot dem-
onstrations of a particular function may be possible without invoking a particu-
lar concept. For instance, perseverative reaching can be modeled without using 
an explicit object representation ( Schöner  &  Dineva, 2006 ). This does not prove 
that babies do not have object representations; however, it means that persevera-
tive reaching is not necessarily an index of such representations. 

   Robotic implementations of DFT may also be pursued simply as a competi-
tive approach to autonomous robotics, evaluated based on the performance of the 
solutions, on their robustness, ease of design, and so on. It is in this most applied 
sense that the fi rst robotic demonstrations of DNF models were made ( Engels &
Schöner, 1995 ;  Schöner et al., 1995 ;  Bicho et al., 2000 ). Here, we illustrate how 
DFT can work in a real-world setting using an example close to the issues dis-
cussed in the last section, that is, the visual recognition of objects ( Faubel  &
Schöner, in press ). This is anchored in a scenario, in which a service robot inter-
acts with a human user within a shared workspace. The robot system learns to 
recognize a number of objects from a single or a small number of views, associ-
ating the object with a label. The ultimate goal is to interact with the user, recog-
nize and name objects, reach for them, manipulate them, and so on. To simplify 
the task, it is assumed that the number of objects to be memorized is limited, and 
that the environment is uncluttered and known to the robot. 

  As fi rst step of the object recognition, a simple segmentation algorithm is 
applied to the visual input to detect objects on the table surface. Then, several 
low-level features are extracted for each object: Its size, the aspect ratio as a meas-
ure of its shape, and the color, described by a histogram of hue values ( Figure
13.11   ). Each of these features serves as input to a two-dimensional label feature 
fi eld. In these fi elds, an association between a feature value and a matching label 
is realized through hills of preshape: The features are represented along the fi rst 
dimension of the fi eld, whereas the labels are represented along the second one. 
For each label, a hill of preshape is created during the teaching procedure around 
the appropriate feature values. If an object is presented for recognition, its feature 
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values are fed into the two-dimensional fi eld along the fi rst dimension, creating a 
ridge of activation that will overlap with some of the preshapes. As for the catego-
rization behavior, the preshape peaks compete with each other through local exci-
tation and global inhibition after the fi eld receives a  “ go ”  signal (a homogeneous 
boost of activation throughout the fi eld), and the preshape that has the greatest 
overlap with the input is most likely to win the competition. A two-dimensional 
interaction kernel is used to implement these fi eld interactions. As no metrics is 
defi ned for the different labels, the kernel profi le is simplifi ed along this dimen-
sion such that each label excites only itself and homogeneously inhibits all others. 

   The output of all label feature fi elds is fed into a one-dimensional decision 
layer that has one node for each label. The same simplifi ed interactions are used 
in this layer to enforce a decision for one label, which is returned as the result of 
the recognition process once the activation of one node passes a preset threshold. 
This feedforward processing is augmented by lateral and feedback connections 
between the fi elds: The same labels in different label feature fi elds excite each 
other, such that the selection of a certain label in one fi eld gives it a competitive 

FIGURE 13.11      For the object recognition procedure, three simple object features are 
extracted from an image and fed into a network of coupled dynamic fi elds. The interactions within 
and between these fi elds result in the selection of one label, which can be read out from the decision 
layer.     (See color plate)
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advantage in the other fi elds. In addition to this, there is inhibitory input from the 
decision layer: The output of one label in this layer suppresses all other labels in 
the label feature fi elds. This ensures that after a decision, all peaks that do not 
match the selected label are extinguished, which is important for learning. 

   To teach a new object, its label is associated with one node in the decision 
fi eld, the corresponding columns in the label feature fi elds are preactivated, and 
the object is presented to the robot’s camera. Peaks will emerge in the label fea-
ture fi elds for the feature values extracted from the visual input and preshape is 
laid down at these positions  . If similar features are found in later recognition 
trials, the learned label will be activated through the association mechanism of 
the two-dimensional fi elds. It is possible to continue the learning process, that is 
the buildup of preshape, in later trials, either after a correct recognition or after 
corrective input from the user. This way, the distribution of the feature values for 
different views of the same object can be reproduced in the preshapes. 

   The DFT-based object learning system was tested on 30 objects, presented in 
several different positions on the table and different orientations during teaching 
and recognition trials. A mean recognition rate of 88% was achieved after teach-
ing each object in eight different views. In every teaching trial, the object recog-
nition procedure was performed as well, with the correct label being given to the 
robot if the recognition failed. It is noteworthy that with this setting, on average 
only 2.8 user interventions (corrections of wrong responses) were necessary per 
learned object. 

   One important aspect of this model is the role of the lateral and feedback 
projections between the fi elds. Without them, each label feature fi eld would 
independently select the label that best matches the current input and the fi nal 
decision would be made between these candidates. With the lateral projections, 
a label that yields a good match in several features receives extra input, and thus 
it can win the competition in all fi elds even if it does not yield the best match in 
any of them. A second effect aids the selection of the correct label: For those fea-
ture dimensions where several labels are closely competing with each other, the 
selection process is slowed down (as discussed earlier for categorical responses 
in general). The selection is also slow in those fi elds where the candidate labels 
have a broad and fl at preshape, which results from a high variance in that feature 
under different views. Due to these effects, a decision is fi rst made in those fi elds 
where the stimulus input is unambiguous, and the other fi elds are then pushed to 
select the same feature by inter-fi eld excitation. Once more, this desirable behav-
ior emerges directly from the fi eld interactions, and no superordinate structure is 
needed to select those features that are most signifi cant in the current situation.  

    CONCLUSIONS 

  At the same time as it illustrates the embodied and situated nature of DFT 
accounts, the preceding example provided an outline for how the ideas reviewed 
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in this chapter may scale up from the most elementary forms of cognition toward 
more complete, “ higher ”  acts of cognition. Other work, not reviewed here, has 
similarly established the scalability of the concepts by accounting for the emer-
gence of working memory for planned actions ( Thelen et al., 2001 ), spatial 
working memory ( Schutte et al., 2003 ) and spatial cognition more generally 
( Simmering et al., 2007 ), visual working memory ( Johnson et al., 2008 ) and 
infant habituation ( Schöner &  Thelen, 2006 ).

   In many of these cases, DNFs have to be combined across different feature 
dimensions. The dynamic ideas of coupling and stabilization work seamlessly, 
supporting complex architectures of DNFs. This includes the transformation of 
sensory into motor representations. Associating different feature dimensions is 
a natural task of neuronal networks and the dynamics of neural fi elds accommo-
date that basic neuronal functionality. 

   We are expressing some confi dence that DFT concepts scale up to forms of 
cognition more traditionally at the core of concern of cognitive scientists. That 
said, a subtle, but fundamental issue must be recognized. The complete dynami-
cal system characterizing an organism and its nervous system in a given environ-
ment and task context has rich internal structure and includes coupling through 
the outer world as well. The functionally signifi cant states of such complete 
systems emerge as attractor solutions from these dynamics under the appropri-
ate circumstances, depending on the behavioral (or activation) history and on an 
appropriately structured environment ( Schöner &  Dineva, 2006 ). These func-
tions are not fi xed and they do not  “ sit somewhere ”  until activated. They are sim-
ply emergent properties of the dynamical system. Individuals may differ in the 
circumstances that are required to bring about such functions. Individual differ-
ences may initially arise from chance events but may then become amplifi ed over 
time due to the adaptive and learning capacity of dynamical systems. Because 
dynamical systems can amplify small graded differences into qualitatively dif-
ferent states, this implies a limitation of predictive power. Conversely, the same 
system may behave differently, exhibiting or not exhibiting a particular func-
tion, depending on the task context. Learning does not necessarily install func-
tion in a defi nite and fi xed way. Learning may more appropriately be viewed, in 
Dynamical Systems Thinking, as a process that eases the constraints on the envi-
ronmental and task conditions under which a function may emerge. Thus, the 
very nature of Dynamical Systems Thinking makes that the accounts delivered 
may differ from expectations built on the tradition of information processing or 
even connectionist thinking  . It appears unlikely that there would be something 
like the ultimate dynamical systems model of the mind, a fi xed, if complicated 
architecture from which behavior can be predicted. A metaphor closer to what 
Dynamical Systems Thinking may provide is the notion of the brain as a very 
high dimensional, complex dynamical system, built neuronally, but potentially 
coupled so closely to the environment through its own effector and sensor sys-
tems that these become part of the dynamical system. Understanding such a 
system amounts to understanding the constraints on its inner structure, fl exible 
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though it may be. What dynamicists try to do is fi nd the tasks and elementary 
behaviors, in which such structure comes to light and in which projection from 
the high dimensional state space into much lower dimensional subsystems is 
possible. In such exemplary situations they identify the principles that describe 
how such subsystems form, stabilize, and adapt. Those principles provide the 
basis for extrapolating to the myriad and open-ended ways in which the mind 
may shape and reshape.  
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