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Abstract. Kernel-based algorithms such as support vector machines
(SVMs) are state-of-the-art in machine learning for pattern recognition.
This chapter introduces SVMs and describes a specific application to
hydroacoustic signal classification. Long-range, passive-acoustic monitor-
ing in the oceans is facilitated by propagation properties for underwater
sound. In particular, the deep sound (SOFAR, Sound Fixing and Rang-
ing) channel can act as a waveguide for underwater signals. In this chap-
ter, SVMs are employed for classifying hydroacoustic signals recorded
by the sensor network for verification of the Comprehensive Nuclear-
Test-Ban Treaty. Constraints in the early signal processing chain and
limited data require tailored kernel functions and careful SVM model
selection. We demonstrate how problem-specific kernel functions can in-
crease classifier performance when combined with efficient gradient-based
approaches for optimizing kernel and SVM regularization parameters.

1 Introduction

While the fundamental scientific principles behind many of the earth-monitoring
systems in operation today have been well known for decades, sensor hardware
and sensor deployment are steadily evolving further. Simultaneously, advances
in data transmission and storage leave their own and distinct marks on the field.
Today vast amounts of raw data are routinely being collected and transferred.
One key challenge on the receiving end is to reliably extract knowledge that
is both meaningful and yet sufficiently condensed, in order to facilitate human
(or other) interpretation of the information flow. This especially holds for sys-
tems performing real-time monitoring. In general, we obtain information about
real-world processes in the form of non-linear, noisy, multidimensional signals.
Both the underlying phenomenon itself as well as all aspects of the signal pro-
cessing and transmission chain are in general too complex to be fully captured
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by a physical model. Therefore, best practice data processing and analysis rules
have to be inferred from observations and validated empirically. Here machine
learning comes into play, which is a branch of computer science and applied
statistics covering software that improves its performance on a given task based
on sample data or experience. This chapter considers supervised learning for
classification, which refers to automatically assigning signals to predefined cate-
gories. In the supervised learning scenario, the learning machine is provided with
sample input-output pairs during a preparational training phase. The learner’s
task then is to infer from the training data a function that relates any admissible
input (not only those seen during training) to a corresponding output. Such a
function is called the learner’s hypothesis. We demand that all examples used
for training as well as later for testing be generated independently of each other
by the same probability distribution. Relying on this assumption, the learner
should choose a hypothesis which with high confidence will perform accurately
on unseen test data. One central challenge in any supervised learning task is to
settle a trade-off between on the one hand well fitting the hypothesis to the train-
ing examples, and on the other hand hedging against overfitting, which occurs
when overly adapting to misleading peculiarities of the training data. Section 2
formally introduces the supervised learning task, regularized risk minimization,
and support vector machines (SVMs) for classification. We introduce SVMs step
by step from linear classification to the full kernelized case. This chapter em-
phasizes aspects deemed relevant to practitioners and at the same time strives
to include a reasonably systematic overview over regularized risk minimization,
SVM classification, and SVM model selection. The application of these concepts
is illustrated through a classification task in acoustic remote sensing. We learn
to discriminate signals stemming from the verification network for the Compre-
hensive Nuclear-Test-Ban Treaty (CTBT). The CTBT’s permanently installed
International Monitoring System (IMS) consists of several hundred geophysi-
cal sensors and relies on four different monitoring technologies. In particular
we are concerned with distinguishing explosive-like and non-explosive signals
recorded by the IMS underwater sensor network. Section 3 provides background
on the IMS as well as preprocessing routines relevant to the application. We
then approach the actual problem of CTBT hydroacoustic signal classification
by drawing on the generic concepts established earlier. Section 4 concludes this
chapter.

2 Supervised learning and support vector machine
classification

We next formalize the supervised learning and classification task. In the standard
setting, we have obtained training data S from the same data generating process
to which we intend to apply the trained learning machine. The data S consists
of N exemplary input-output pairs (xi, yi) ∈ X × Y, 1 ≤ i ≤ N . The input and
output domains X and Y can in general be any (non-empty) sets. Given S, the
output of a learning machine is a prediction function or hypothesis h : X → Y
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from the input set X to the output set Y. For each possible input x ∈ X we
present to h, it will yield its hypothesis h(x) ∈ Y of what output value should
most likely be associated with x. It is not sufficient to learn the training data
by heart. We rather want h to perform as well as possible for the entirety of
input values in X , and especially for those that occur often. When we know the
true label y of a sample x, we can compare it to the learner’s prediction h(x).
Feeding both to a loss function L

L : Y × Y → R+
0 ,

with the property: L(h(x), y) = 0 for h(x) = y ,
(1)

assigns a “cost” to predicting h(x) instead of y. Formally the goal of supervised
learning may now be expressed as finding a function h that minimizes the overall
cost, or risk Rp, when evaluated over the entire probability distribution p(x, y)
underlying our data generating process:

h = arg min
ĥ∈H

Rp(ĥ) = arg min
ĥ∈H

∫
X×Y

L(ĥ(x), y) dp(x, y) , (2)

where H would ideally be the space of all (measurable) functions mapping from
X to Y. A hypothesis minimizing eq. (2) is called a Bayes optimal solution,
the according risk the Bayes risk of p, and both depend on p and the loss
function employed. Note that the Bayes risk is not necessarily zero. This is
easy to see for finite X . If an input pattern x ∈ X can belong to two different
classes – p(x, y1) > 0 and p(x, y2) > 0 for different y1, y2 ∈ Y – the best possible
hypothesis still can map x only to one class and will inevitably make mistakes. In
practice, non-zero Bayes risk frequently occurs in the case of noisy input signals,
signals describing the underlying process incompletely, or uncertain labels.

Clearly, if we knew the underlying distribution p, we would have complete
knowledge about the data generating process. But p usually is unknown. Thus
for all practical purposes the overall risk Rp can neither be computed nor opti-
mized directly, even if the integrals in eq. (2) were tractable. One step towards
optimizing eq. (2) is to replace Rp by the equivalent quantity restricted to the
training data. This defines the empirical risk RS on S,

RS(ĥ) =
1

N

N∑
i=1

L(ĥ(xi), yi) , (3)

which is simply the average loss on the training data. A minimizer of RS is
a hypothesis as consistent with the training examples as possible. Minimum
empirical risk can for example be achieved by a function that reproduces the
labels of all training examples and merely returns one single, arbitrary output
for all other possible inputs. Evidently this would be a poor prediction function,
and a better objective than to just minimize eq. (3) over all functions is needed.

2.1 Regularized risk minimization

A hypothesis h should not solely reflect peculiarities of the given training data,
but work well for examples previously unencountered. What kind of quantity can
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assist us – without knowing more about the data generating distribution than S
– in automatically deciding which hypothesis may have overfitted to the training
data and which may generalize well to unseen data? It is not only intuitive to
look for a simple hypothesis still yielding a reasonably low empirical risk, but a
range of according theorems in statistical learning theory (e.g., [34, 39]) formalize
and justify this concept. These theorems typically provide bounds on the risk in
the following form. If of all functions in a certain function or hypothesis space H,
h is the minimizer of RS , then with probability of at least 1− δ it will hold that
Rp(h) ≤ RS(h) + B(N, δ,H). The function B bounds the extent to which the
true risk might exceed the empirical risk. An increase in both the number of
training examples N as well as the uncertainty δ leads to a decrease in B. Most
importantly, B increases with the complexity of H. We argue that any function
BN,δ(H) which permits inequalities like the above provides a measure of the
complexity of a function space H – and therefore simplicity of a hypothesis class
can be (non-uniquely) defined in precise ways. Such theorems confirm that if
we permit the minimizer of RS to be highly complex, this expressive power
might be exploited for overfitting on the training data rather than be helpful
in producing better hypotheses. We thus want to enforce the preference that
if the learning machine suggests a more complex hypothesis, it should have a
very good justification in terms of – sufficiently – high associated decrease in
training error. The hypothesis spaces considered in this chapter can be endowed
with a norm ‖ ‖H serving as a measure of complexity of a hypothesis. Then we
can express the aforementioned tradeoff within the regularized risk minimization
paradigm, in which h is found by minimizing the regularized risk PS ,

PS(ĥ) = ‖ĥ‖H + C

N∑
i=1

L(ĥ(xi), yi) . (4)

Here C ∈ R+ is the so-called regularization parameter and balances the pref-
erence for low training error (right summand) against keeping the hypothesis
simple (left summand), where complexity is assumed to correlate to the norm in
H, cf. [34, 39].

2.2 Support vector machines

In general a multitude of supervised learning algorithms exist, which may or
may not fall into the framework of regularized risk minimization presented in
the previous section. We in this chapter focus on support vector machines (SVMs,
[7, 29]), which are most commonly used for classification, but also applicable to
regression and density estimation tasks. Support vector machines can be seen as
composed of building blocks from originally different areas of research and for
example are linked to functional analysis and convex optimization. We next in-
troduce SVMs step by step as composition of concepts, namely straightforward
linear classification seeking for large separating margins; allowing for margin
violations in a regularized risk minimization framework; and non-linear classifi-
cation via kernel functions, which replace the scalar product in the original input
space by a scalar product in another, unrealized feature space.
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2.3 Linear classification

From now on we for clarity assume that all inputs are represented by an m-
dimensional, real-valued feature vector x ∈ Rm = X . Further we restrict our
considerations to two-class or binary classification and set Y = {−1, 1}. A two-
class hypothesis function h : X → {−1, 1} with a linear decision boundary can be
realized through an affine linear decision function f : X → R, f(x) = 〈x,w〉+ b
by taking the sign of f :

h(x) = sgn(f(x)) = sgn(〈x,w〉+ b) . (5)

Here the weight vector w ∈ X lies in the same space as the input data, b ∈ R is
a real-valued offset term, and sgn() is the standard signum function except for
an argument of zero, in which case it returns +1. The decision boundary is the
subspace of all points x for which 〈x,w〉+ b = 0. For two-dimensional input, this
subspace is a line, and a hyperplane of dimension m− 1 in general. The vector
w is perpendicular to the decision boundary. With an offset or bias term of zero,
b = 0, the decision surface passes through the origin. For b 6= 0 the decision
surface is shifted from 0 by a distance of b

‖w‖ .

The quantity yi(〈w, xi〉 + b) = yif(xi) is positive if the i-th pattern (xi, yi)
is classified correctly by the hypothesis sgn(f(x)). We call this quantity the
functional margin of (xi, yi) with respect to the linear decision boundary induced
by (w, b). The geometric margin of (xi, yi) with respect to the linear decision
boundary induced by (w, b) is given by yif(xi)/‖w‖. The absolute value of the
geometric margin is the distance of xi from the decision boundary in the input
space. A collection S of N two-class data points is called linearly separable if
there exists a linear classifier (w, b) separating both classes without error. This
implies yi(〈w, xi〉+b)/‖w‖ ≥ ρ > 0 for all 1 ≤ i ≤ N . The largest ρ for which this
holds true defines the geometric margin of the linear classifier (w, b) with respect
to S. Its value is determined by the data point having the smallest margin. In
the following, we will not explicitly distinguish between functional and geometric
margin when the meaning is clear from the context.

2.4 Linear support vector machines

We first introduce large-margin support vector machine classification for linearly
separable data. Figure 1 shows a separable two-class problem in two dimensions,
and in the upper left a “barely separating” hyperplane. Intuitively we see that
this hypothesis is quite vulnerable, as already little noise on samples close to the
boundary would lead to their misclassification. Therefore, hard margin SVMs
for separable training data S yield a hypothesis for which the smallest margin
of a training data point – the distance between the decision hyperplane and
the closest data point in S – is maximal. It can be shown that solving the
optimization problem

minimizew,b
1

2
〈w,w〉

subject to yi(〈w, xi〉+ b) ≥ 1 , 1 ≤ i ≤ N ,
(6)
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(a) Linear separation by a small margin. (b) The linear large-margin solution.

(c) Also allowing for margin violations. (d) Non-linear separation with outliers.

Fig. 1: Example of linearly separable two-class data, and different hypotheses for
a discrimination boundary between them. Subfigure (a) shows a hypothesis (bold
line) that might have been proposed by an algorithm not maximizing the mar-
gin (distance to dotted lines) between samples and the discrimination boundary.
In subfigure (b) a maximum-margin solution found by the linear hard-margin
SVM of eq. (6) is shown. We can expect the solution in subfigure (a) to be less
reliable when classifying data from the same generating distribution. The third
subfigure shows the hypothesis produced by a soft-margin SVM using C = 0.3
in objective (7). Note that its different slope and position could not have been
reached through objective (6). Subfigure (d) shows a curved decision surface
obtained by solving the canonical, non-linear SVM optimization problem (10),
using C = 3 and a radial basis function kernel (cf. Section 2.5) with γ = 0.5.
While (a) clearly is not a large-margin classifier, all three hypotheses in (b, c,
d) are valid solutions to the full SVM optimization problem. Solution (b) can
be seen as a special case of (c) with a strong preference against margin viola-
tions expressed through a large regularization parameter. Both linear solutions
are further special cases of the non-linear one, using the scalar product in the
original feature space as kernel function. In other words, (b, c, d) have all been
obtained by solving the SVM optimization problem (10) for different choices of
the regularization parameter C and kernel function k.
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leads to a decision function with a geometric margin of 1
‖w‖ , so that the objective

of problem (6) exactly ensures a hypothesis with maximum margin [29]. The
term “hard margin” refers to the fact that the constraints in eq. (6) strictly
enforce a functional margin of at least one for each training pattern, which
implies correct classification of all examples. Applied to the previous example
in Figure 1, the large-margin objective (6) generates the hypothesis shown in
the upper right. In practice few datasets are linearly separable in the input
space. But even for those, it may be beneficial to allow for misclassification of
training patterns if in turn a more appealing hypothesis can be established with
respect to the overall data. Obviously, if the Bayes risk is non-zero and the pool
of training data sufficiently large, the Bayes optimal hypothesis makes errors
on the training data. We thus want to allow for margin violations, that is, for
training patterns (xi, yi) for which yi(〈w, xi〉+b) < 1. This includes misclassified
patterns, for which yi(〈w, xi〉 + b) < 0 indicates that they lie on the “wrong”
side of the hyperplane. We for these reasons return to the concept of regularized
risk minimization established in Section 2.1. To make usable an objective of the
form of eq. (4), a loss function L(h(x), y) has to be chosen. For classification we
would ideally like to use the 0-1-loss, which returns 0 for correct classification,
h(x) = y, and 1 otherwise. Incorporating the non-convex 0-1-loss into eq. (6)
would however complicate the optimization procedure by voiding convexity of
the overall problem. For this reason SVMs commonly rely on the hinge loss
L(f(x), y) = max(0, 1 − yf(x)) defined on the SVM decision function f as a
convex surrogate loss function. Introducing the possibility for margin violations
into eq. (6) and penalizing them by the hinge loss yields

minimizeξ,w,b
1

2
〈w,w〉+ C

N∑
i=1

ξi

subject to yi(〈w, xi〉+ b) ≥ 1− ξi , 1 ≤ i ≤ N
ξi ≥ 0 , 1 ≤ i ≤ N .

(7)

Problem (7) is the linear soft margin SVM optimization problem. Each variable
ξi ≥ 0 measures the margin violation of pattern (xi, yi). Their sum accounts
for all violations of the separability paradigm by exactly the sum of the corre-
sponding hinge loss, which in turn is penalized within the objective function.
The lower left of Figure 1 shows the result of solving eq. (7) for C = 0.3. While
the difference on the toy dataset is not drastic, it exemplifies the fact that eq. (7)
allows for solutions not reachable through eq. (6). The hard-margin solution can
however still be obtained by letting C tend to infinity. We are now only an ad-
ditional step short of obtaining the canonical non-linear SVM formulation as we
will also employ in the experimental Section 3.

2.5 Kernelized support vector machines

Solving problem (7) will yield a regularized large-margin hypothesis, however
always using a linear decision function. This can be a disadvantage, for example



8 M. Tuma, C. Igel, M. Prior

when imagining a two-dimensional classification problem in which samples of
one class all lie within a circle around the origin, and samples of the second class
surround them in a ring-like fashion, as illustrated on the left of Figure 2. SVMs

(a) Using (x1, x2) as representation (b) Using (x2
1, x

2
2,
√

2x1x2)

Fig. 2: Example of an embedding into a feature space that turns linearly non-
separable data into linearly separable data. Squares and crosses indicate ex-
amples of two different classes. The feature map φ : R2 → R3 changes the
representation of input patterns (x1, x2) to (x21, x

2
2,
√

2x1x2).

incorporate non-linear hypotheses by implicitly transforming the input data to
an unrealized, possibly high- or infinite-dimensional dot product space via kernel
functions. In this feature space, different from the input space, SVMs perform
linear classification. This in general gives rise to non-linear decision surfaces in
the original input space. From another angle, one might imagine subjecting the
input data to a non-linear transformation and only then solving problem (7)
for the transformed input. In the right of Figure 2, the result of carrying out
such a non-linear transformation from the input space into a higher-dimensional
space is shown. If the new feature space however is of high dimension, carrying
out computations dimension-wise is time-consuming, and the transformation
might be as well. Instead, we use the fact that a solution w of eq. (7) admits a

representation of the form w =
∑N
i αixi with α ∈ RN [9, 31]. In other words

it is guaranteed that the solution is a linear expansion of the training examples.
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Substituting into (7) yields

minimizeξ,α,b
1

2

N∑
i,j=1

αiαj〈xi, xj〉+ C

N∑
i=1

ξi

subject to yi

( N∑
j=1

αj〈xj , xi〉+ b
)
≥ 1− ξi , 1 ≤ i ≤ N

ξi ≥ 0 , 1 ≤ i ≤ N .

(8)

Looking at problem (8) we see that the objective is solely formulated in terms
of scalar products between training examples. Were the examples mapped to
another dot product space F by the map φ : Rm → F before solving eq. (8),
each occurrence of 〈xi, xj〉 would simply have to be replaced by 〈φ(xi), φ(xj)〉F .
In order to allow for efficient computation of the dot product in F , we can use
a function k : Rm × Rm → R with k(xi, xj) = 〈φ(xi), φ(xj)〉F . More impor-
tantly one can proceed the other way around and specify a kernel k in order to
solve problem (8) in another dot product space. The theory of reproducing ker-
nels [1, 2, 29] establishes the requirements k has to fulfill in order to be sure that
substituting k(xi, xj) for the scalar product will actually correspond to solving
problem (8) in some valid dot product space. The only condition on a symmet-
ric function k is that k must be positive definite, in the sense that for every
collection of points from X , the matrix K of kernel entries between these points,
Kij = k(xi, xj), must be positive definite. In detail, for a non-empty input set
X and a function k : X × X → R the following holds:

∀ n ∈ N, x, z, x1, . . . , xn ∈ X , c1, . . . , cn ∈ R :

k(x, z) = k(z, x) ∧
n∑

i,j=1

cicjk(xi, xj) ≥ 0

⇒
∃ (F , φ : X → F) : ∀x, z ∈ X k(x, z) = 〈φ(x), φ(z)〉F . (9)

Equation (9) states an equivalence between a kernel function k and a scalar prod-
uct in some dot product space F as long as k is symmetric and positive definite.
We list commonly used families of positive definite kernels below. Completing
the kernelization of the SVM optimization problem, we state the final objec-
tive which allows for both misclassified training examples as well as non-linear
decision surfaces using kernel functions:

minimizeξ,α,b
1

2

N∑
i,j=1

αiαjk(xi, xj) + C

N∑
i=1

ξi

subject to yi

( N∑
j=1

αjk(xj , xi) + b
)
≥ 1− ξi , 1 ≤ i ≤ N

ξi ≥ 0 , 1 ≤ i ≤ N .

(10)
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Problem (10) constitutes the canonical SVM optimization problem [7]. The de-
cision function f of an SVM is linear in the kernel-induced feature space. In the
original input space the SVM’s final hypothesis h takes the form

h(x) = sgn(f(x)) = sgn
( N∑
i=1

αik(x, xi) + b
)
. (11)

The lower right of Figure 1 shows a classifier obtained from eq. (10) using C = 3.2
and a radial basis function kernel of γ = 0.5 (see below). The solution would
differ considerably for different values, and even more so for other kernel func-
tion families. The final SVM hypothesis does not depend on correctly classified
training examples with a distance to the decision hyperplane larger than the
safety margin. Their coefficients αi will hence be zero. All samples with non-
zero coefficients αi will lie on the margin or violate it (i.e., have yif(xi) = 1
or yif(xi) < 1, respectively). These are called support vectors, and only they
contribute to the sum in eq. (11). This sparsity property of SVMs reduces the
computational burden when evaluating the hypothesis on unseen examples.

2.5.1 Kernel functions

The question arises how to choose a proper kernel function. We first introduce
two families of kernels commonly used for real-valued input vectors.

Polynomial kernel. For a non-negative, real-valued offset parameter c and a
positive integer exponent d, the function k(x, z) = (〈x, z〉+ c)

d
is a kernel on

real-valued input vectors x, z ∈ Rm. For c = 0 and d = 1 it reduces to the
standard scalar product.

Gaussian kernel. A general Gaussian kernel on real-valued input vectors x, z ∈
Rm is given by k(x, z) = e−(x−z)

TQ(x−z), where Q is a positive definite m×m ma-
trix. The most common variant is the radial basis function (RBF) kernel using a
positive scaling of the identity matrix I, Q = γI , γ ∈ R+, which introduces γ as
single free parameter. A theoretically appealing property of RBF kernels is that
they fulfill a necessary condition for an SVM to be universally consistent [35]:
an SVM using an RBF kernel will under mild conditions converge to the Bayes
optimal hypothesis as the collection of training examples grows. Another variant
is the automatic relevance detection (ARD) kernel, for which Qij = δijγi, with
Kronecker delta δ. The ARD kernel owes its name to the fact that learning values
for the m positive parameters γi ∈ R+ can provide insight into the relevance of
individual features for classification. As a drawback, the ARD kernel introduces
as many free parameters as there are input space dimensions. However, efficient
parameter optimization has been demonstrated for both the ARD and the gen-
eral Gaussian kernel ([14, 15], also see Section 2.7).

Individual application domains, for example in biology or natural language pro-
cessing, can require the use of highly specific and task-tailored kernel functions.
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Their design and analysis often constitutes an active area of research of its own
(e.g., [13, 30]). Positive definite kernels further exhibit convenient closure prop-
erties in the sense that several operations between kernels again yield a valid
kernel [2]. For two kernels k1 and k2 their product k1 · k2 and sum k1 + k2 is
positive definite. Similarly, all following operations on a kernel k retain positive
definiteness: scaling by a positive constant to ak, a ∈ R+; taking k as exponent
ek; or normalizing k to kn(x, z) = k(x, z)/

√
k(x, x)k(z, z). Further, closure un-

der sum and product also imply closure under direct sum and direct product:
let ka(x, z) be a kernel on A×A and kb(u,w) a kernel on B ×B. Then kernels
k((x, u), (z, w)) on (A × B) × (A × B) are both given by ka(x, z) · kb(u,w) and
ka(x, z) + kb(u,w). This for example is useful when working with combinations
of features from different domains.

Convolution kernels. Not a standard choice of kernel function as such, we list
Haussler’s convolution kernel4 [18] in preparation for an application in Section 3.
Suppose the input space X = Rm can be split up into g subspaces. For simplicity,
we assume that these subspaces are equal and write X = Sg. This yields a
partitioning of an input vector x into g sub-vectors x(i) ∈ S = R(m

g ), 1 ≤ i ≤ g,
of equal length. Further assume that we have g corresponding sub-kernels k(i) :
S × S → R defined on the subspace S. By the above composition rules we can
construct a composite kernel on X × X by for example adding all sub-kernels,
k(x, z) =

∑
i k

(i)(x(i), z(i)), or multiplying them, k(x, z) =
∏
i k

(i)(x(i), z(i)). The
convolution or ANOVA kernel kD of order D, D ∈ {1, . . . , g}, generalizes from
these two exemplary compositions by viewing both as sums over all possible
monomials (multiples excluded) of degree D:

kD(x, z) =
∑

1≤j1<···<jD≤g

D∏
d=1

k(jd)(x(jd), z(jd)) . (12)

Here the sum runs over all possibilities to draw unique subsets of size D from
{1, . . . , g}. Clearly the convolution kernel kD is the direct sum kernel for D = 1
and the direct product kernel for D = g. In general, kD yields the sum of all
monomials (multiples excluded) of order D.

2.6 SVM optimization

One of the canonical approaches to SVM optimization, that is, to solving prob-
lem (10), is to derive the corresponding dual program via Lagrange multipli-
ers [7, 39]. The resulting constrained quadratic optimization problem would be
solvable using off-the-shelf methods, but highly efficient tailored methods have
been derived. Decomposition methods for SVMs [21, 25] are iterative algorithms

4 The special form of convolution kernel as we consider here has also been studied
in [28, 39] as ANOVA kernels. We refer the reader to Haussler’s overarching con-
struction as the most systematic one.
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that operate on a fixed subset of (usually two) variables per iteration. It is gen-
erally accepted that such solvers have a runtime complexity between quadratic
and cubic in the number of training examples [21]. When working with large
datasets, fast solvers specialized on linear kernels can be employed, at the cost
of purely linear decision functions (e.g., [10, 33]). Alternatives that also support
non-linear kernels are online SVM solvers (e.g., [3]), which aim for an approxi-
mate solution.

2.6.1 SVM execution

In general, the hypothesis put forth by an SVM is sparse: it only depends on the
fraction of training examples that are support vectors. SVM execution can thus
be faster than for example naive implementations of nearest neighbor classifica-
tion. It has however been shown that the number of support vectors itself grows
linearly with the number of training examples if the Bayes risk is non-zero [36]. A
number of different approaches have been proposed for approximating the final
solution when classification speed is important (e.g., [24, 32]).

2.7 Model selection

Maybe the most important aspect in SVM usage is that of model selection –
the process of choosing the regularization parameter C and a kernel function
family as well as values for the kernel parameters. A multitude of methods for
hyperparameter selection exist. Most of them optimize an approximation of,
bound on, or heuristic substitute for the generalization error, that is, for eq. (2)
using the 0-1-loss. We present the standard method, grid search on the cross-
validation error, together with a gradient-based maximum-likelihood approach
better suited for kernels with more than a few parameters.

2.7.1 Direct search

One common estimator of the generalization error is the n-fold cross-validation
error. By partitioning the available training data S into n different parts or
folds, one obtains n possibilities for training a classifier on n − 1 parts of S.
The average of the n validation errors on each remaining single evaluation fold
is the n-fold cross-validation error (CV-n). It can be shown that the CV-n is a
slightly biased estimator of the generalization error [17], and choices of n = 5 or
n = 10 have proven reasonable in practice. Because CV-n is not differentiable,
the hyperparameter space is generally probed at multiple locations using some
direct (zeroth-order) search heuristic.

Grid search. The most common SVM model selection procedure, grid search,
defines a multi-dimensional grid of points in the hyperparameter search space,
where the grid points may for example be spaced evenly on a linear or logarith-
mic scale. For each point on the grid, n SVMs are trained (each on a different
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set of n− 1 folds) using the corresponding hyperparameter vector. The param-
eter combination yielding lowest CV-n over the entire grid is in turn chosen to
train the final classifier, now using all data in S. Due to the curse of dimen-
sionality, CV-n gets prohibitive for more than a few free SVM hyperparameters.
Sometimes variations such as nested grid search are employed, where the grid
resolution iteratively increases while focusing around the previously best point.
Beyond grid search, more elaborate direct search techniques, such as evolution
strategies, have successfully been applied to SVM model selection [11, 19].

2.7.2 Gradient-based model selection

A lot of research has been devoted to developing and evaluating differentiable
estimates of, bounds on, or heuristic substitutes for the generalization error
(see e.g. [5]). Even if such an objective is not convex (i.e., does not prevent
gradient-based optimizers from getting stuck in suboptimal local minima) gra-
dient descent is still appealing. First, the directional information provided by
the gradient guides the search. Second, the derivative of the objective might be
faster to evaluate at a given point in the hyperparameter space than training
n SVMs for CV-n. As a consequence, gradient-based approaches can have sig-
nificant advantages over direct search, especially when the parameter space has
more than a few dimensions.

Maximum-likelihood model selection. We present one recent gradient-based model
selection algorithm which has been shown to outperform several established
methods on a large benchmark set [15]. The classification error in general is
a non-differentiable quantity with respect to the parameters of a determinis-
tic hypothesis. In contrast, assume a probabilistic classifier approximating the
probability P (y |x) of observing class y ∈ Y given input x ∈ X by some model
P̂ (y |x), where P̂ depends smoothly on its parameters and the hyperparameters
of the learning algorithm. A typical approach for learning these parameters is
maximizing the logarithmic likelihood function L =

∑
(xi,yi)∈S log P̂ (yi |xi) with

respect to the adaptive parameters, which can be done using gradient ascent.

Learning a model of P (y |x) is a more general and therefore usually more
difficult task than “just” learning a hypothesis for classification. While a perfect
model gives the Bayes optimal hypothesis by h(x) = arg maxy∈Y P (y |x), a bad
model leads to bad classification results. In the SVM framework one therefore
searches for a proper hypothesis directly without estimating P (y |x). This at
the same time prevents us from using the maximum-likelihood approach for
model selection as described above. Therefore, Glasmachers and Igel [15] use a
probabilistic interpretation of the output of an already trained SVM solely for the
purpose of model selection. They follow an approach by Platt [26], who proposed
to estimate class membership probabilities P (y = +1 | f(x)) from SVM decision
functions f by fitting a simple sigmoid σr,s(f(x)) = 1/(1+exp(s·f(x)+r)) around
f , where s ∈ R− and r ∈ R are the scaling and offset parameter, respectively.
This fitting can be done by gradient-based optimization of a cross-validation
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estimate of the likelihood. For an SVM decision function f , a sigmoid σr,s around
f , and validation data S′ the likelihood is:

L(S′, σr,s, f) =
∑

(x′,y′)∈S′
y′=+1

log σr,s(f(x′)) +
∑

(x′,y′)∈S′
y′=−1

log (1− σr,s(f(x′))) . (13)

In [15], this quantity is optimized with respect to the kernel parameters and
the regularization parameter C of the SVM using gradient ascent. This requires
the kernel function to depend smoothly on its parameters. The derivative of the
SVM with respect to its hyperparameters and the kernel can be computed using
the procedure proposed in [22]. It has to be stressed that the probabilistic inter-
pretation of the SVM output is a heuristic, because the SVM (on purpose) does
not aim at learning proper probabilities. However, the probabilistic interpreta-
tion is solely used to guide model selection. In practice, this maximum-likelihood
approach to SVM model selection achieves state-of-the-art results and especially
performs well when optimizing flexible kernels on small datasets [15].

The model selection algorithms described in this chapter are all available as
part of the open source machine learning library Shark [20].

2.8 Summary

To conclude our introduction to support vector machines for classification we
emphasize the following properties of these powerful learning machines:

+ Convex optimization. When all of an SVM’s hyperparameters are fixed, SVM
training corresponds to solving a convex quadratic optimization problem,
which is free from suboptimal local extrema. In other words, SVMs always
return some best solution possible given a fixed set of hyperparameters.

+ Consistency. Under relatively mild conditions, standard SVMs are known to
be universally consistent. As the number of training examples increases, the
SVM solutions converge to the Bayes optimal hypothesis, which is the best
classifier possible given the data generating distribution [35].

+ Kernel trick. As long as a kernel function can be defined between them,
the input patterns may be arbitrary elements. For example text documents,
graphs, or trees can directly serve as input to an SVM if a valid kernel
function between them is defined. Kernel-based algorithms in general can be
seen as elegantly separating the general part of a learning machine from the
problem specific part. The kernel function (as well as the regularization pa-
rameter) allows for incorporation of domain-specific prior knowledge into the
learning process, which is necessary to achieve well generalizing hypotheses.

◦ Model selection problem. Support vector machines – as most other learning
machines – are not parameter-free in the sense that they do not intrinsi-
cally determine all entities their behavior is influenced by. The regulariza-
tion parameter and a kernel function with additional free parameters must
be specified externally. However, there cannot be a “universal” learning ma-
chine that excels across all possible problems (e.g., [4]). That is, one has to
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incorporate prior knowledge to tailor a learning machine to some given task.
For SVMs this includes choosing the SVM hyperparameters such as a proper
family of kernel functions.

◦ Multi-class classification. There is no canonical extension of the binary SVM
formulation (10) to multi-class problems with |Y| > 2. Many application
studies in the multi-class case rely on training and combining a number of
binary machines. At the same time, several multi-class SVM formulations ex-
ist that solve the multi-category classification task in one joint optimization
problem [8, 23, 40]. These all have different properties and require solvers
distinct from those used for purely binary problems.

- Training and execution time. Training time in general is between quadratic
and cubic in the number of training examples and additionally influenced
by input dimension and kernel function [21]. Evaluating an SVM on an
unseen example benefits from the sparseness property and is linear in the
number of support vectors times the number of operations per kernel function
evaluation. If the Bayes risk is non-zero, the number of support vectors scales
linearly with the number of training examples [36]. Several extensions or
modifications have been proposed to reduce training and execution times.
The latter can be achieved, for instance, by approximating the SVM solution
after training [27, 37].

In summary, consistency and convexity constitute convenient theoretical advan-
tages that provide certain guarantees on the solution obtained by an SVM. In
order for a practitioner to obtain truly meaningful results however, some famil-
iarity with the model selection problem and standard techniques to approach
it are essential. While SVM learning for non-standard domains – such as trees,
graphs, or text – is well supported conceptually, this often gives rise to highly
expertized fields of research in itself.

3 Hydroacoustic signal classification

We consider an application task of hydroacoustic signal classification using re-
mote sensor data from the Comprehensive Nuclear-Test-Ban Treaty verification
network.

3.1 Nuclear-Test-Ban verification

International arms control treaties must be verifiable with high confidence. A
verification regime is a set of technological and administrative measures that
discourages attempts towards treaty violation from the start by making actual vi-
olations detectable with high probability. The Comprehensive Nuclear-Test-Ban
Treaty (CTBT) is an international agreement banning all nuclear explosions.
As of 2011, it awaits formal ratification by nine further states before it will en-
ter into force. Since 1996, the Preparatory Commission for the Comprehensive
Nuclear-Test-Ban Treaty Organization (CTBTO) is tasked with building up a
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global verification system for operation under the treaty. Nuclear weapons have
been detonated underground, underwater, and in different altitudes of the atmo-
sphere. While the latter two forms are banished under the Partial Nuclear Test
Ban Treaty of 1963, the CTBT would also forbid, and hence require verification
against, underground tests.

3.1.1 The International Monitoring System

At the heart of the CTBT’s verification regime lies the International Monitor-
ing System (IMS), a network of 321 geophysical monitoring stations positioned
around the entire globe. Both the sensor technologies they employ as well as
their locations have been defined by the treaty and its annexes. Any additional
on-site inspection would be limited to an area of 1000 square kilometers through
the treaty, which poses implicit constraints on the localization performance of
the IMS. The IMS relies on four different monitoring technologies to achieve
its goal [16, 38]. In full operation around 15 gigabyte of incoming data are ex-
pected each day, mostly transmitted in real time through a global VSAT satellite
network. The largest subnetwork of 170 seismic stations, including arrays for en-
hanced detection capability, measures seismic energy traveling through the earth.
Further, 60 infrasound stations record low-frequency pressure variations in the
atmosphere, and 11 hydroacoustic stations measure energy transmitted through
the world’s oceans. These three sensor types constitute the so-called waveform
technologies. While the analysis of waveform data can indicate that a detected
event might not be of natural origin, the fourth sensor network, radionuclide
measurements, can provide valuable evidence for a certain event being a nuclear
explosion rather than an earthquake, chemical explosion, or other source not
violating the treaty.

3.1.2 Hydroacoustic monitoring

The hydroacoustic network’s main purpose is to monitor the oceans for under-
water nuclear tests. The main signature of a test would be water pressure waves
generated by the underwater explosion. Other sources of underwater sound are
natural events like iceberg calving, suboceanic earthquakes, underwater volca-
noes, and marine mammals. Man-made events include intentional or acciden-
tal chemical explosions (for example in military exercises or dynamite fishing),
seismic air-gun surveys, and marine vessels. As a secondary use case, the hy-
droacoustic network can also contribute to processing of signals originating from
the continents. Conceptually, global hydroacoustic monitoring relies on a natural
phenomenon of underwater sound propagation. The deep sound channel (DSC)
or SOFAR (sound fixing and ranging) channel is a certain depth region in the
ocean around a minimum in the vertical sound speed profile. While local chan-
nel depths vary from close to the ocean’s surface to around 1200 meters below,
the DSC as a whole exhibits waveguide properties for underwater sound on a
global scale. Due to this phenomenon, the relatively small number of IMS hydro-
acoustic stations is sufficient for global ocean coverage. The IMS hydroacoustic
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Fig. 3: Locations of hydroacoustic stations defined by the treaty.

network consists of 11 stations. Six of these use hydrophones placed underwater
at the local deep sound channel axis, and five use seismometers residing near
the coastline of steep-sloped oceanic islands. Figure 3 shows the locations of all
hydroacoustic stations as defined by the treaty. Every on- and offshore station
consists of several individual sensors, facing different sides of the island which
hosts the communication infrastructure.

We classify signals recorded by IMS in-ocean hydrophones, learning to label
them as either having explosive or non-explosive signature. Information about
sensor or source location is not taken into account, and also no assumption is
made that the same signal might have been recorded by multiple sensors. As
a consequence, we solve a classical classification task as if all signals had been
obtained independently and identically distributed through a single sensor.

3.2 Preprocessing

We want to evaluate the baseline potential of SVM hydroacoustic signal classifi-
cation while relying on as few as possible modifications of the existing processing
pipeline. We hence use for representation a set of pre-calculated features pro-
vided by the CTBTO’s Provisional Technical Secretariat. The raw sensor data
were sampled at 250 Hz and from the outset filtered into eight partially overlap-
ping frequency bands between 1 and 100 Hz. Table 1 shows the filter band lower
and upper frequency limits. In each band, detection and feature extraction are

Table 1: List of the eight frequency bands used for feature extraction.

Frequency filter bands [Hz]

Lower limit 1 2 3 6 8 16 32 64
Upper limit 2 80 6 12 16 32 64 100

carried out independently, but according to the same algorithm. Within the con-
tinuous data stream, a detection algorithm for each band monitors if the ratio of
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a short-term average (10s window) to long-term average (150s window) exceeds
a station-specific threshold. If detections in different frequency bands occur close
enough in time, they are grouped into a signal, which is hence defined by one
or more contemporaneous detections across frequency bands. For each signal
a fixed set of 16 identically calculated features is extracted from every band
with an associated detection. The union of all extracted features then serves as
representation of the event which triggered the detections. Each event is thus
represented by ` · 16 real numbers with ` ∈ {1, . . . , 8}. As a consequence the
feature sets of any two given signals can differ and need not even overlap. The
16 features extracted in every frequency band are listed in Table 2. They can be

Table 2: Features extracted from each band with a detection.

Temporal Energy Statistical Cepstral Peak (2x)

Peak Time Peak Level Time Spread Position
Mean Arrival Total Energy Skewness Level
Total Duration Average Noise Kurtosis Variance
Zero Crossing Rate

grouped into (i) time-related, (ii) energy-related, (iii) statistical moments, and
(iv) cepstral features. The power cepstrum is a good indicator of periodicity in
the signal’s power spectrum, that is, the presence of harmonics. For this reason
cepstral features may be good indicators of the bubble pulses possibly accompa-
nying underwater explosions. They are also in general considered to well separate
the propagation Green’s function from the source function. The cepstral features
listed in Table 2 were calculated in two variants, once from a low-pass filtered
and once from a detrended spectrum.

3.3 Classifying incomplete data

The classification task described above falls into the group of missing data
problems (e.g., [12]). For such it is common to consider a missingness matrix
R ∈ {0, 1}mN of the same size as the matrix formed by all feature vectors
xi ∈ S. Each of its Boolean entries Rij ∈ {0, 1} indicates whether the corre-
sponding feature xij is present in the sample xi or not. The missingness matrix
R of given training data S is then often interpreted as one specific instance or
draw from an underlying missingness distribution pR, just as S is assumed to
be drawn from a data generating distribution p. This presumes that the missing
values actually existed and would have been observable, but were for some reason
not obtained. Such missing data problems are often grouped according to three
possible relations between these two generating distributions. If pR is completely
independent of p, the data is coined missing completely at random (MCAR). A
situation where pR depends on p, but is conditionally independent of all missing
values is termed missing at random (MAR). For all other relations between pR
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and p one speaks of data missing not at random (MNAR). In addition there
are cases where a feature’s absence is not simply due to non-observation, but
the entity to be observed was undefined or did not exist for some reason. This is
referred to as structural absence. CTBT hydroacoustic data constitute a mixture
of features being MNAR and structurally absent.

The most convenient way to deal with samples holding missing values is to
eliminate them from the training data, or to discard all features which exhibit
missing values. Since the missingness ratios in the hydroacoustic data are high
across both features and samples, and incomplete test cases with possibly unen-
countered missingness pattern have to be classifiable, neither is a viable option.
In general, deletion can significantly bias both classifier and results, and hence
a wide range of more systematic approaches have been suggested, see for exam-
ple [12] for a review. Among these, imputation techniques are the most common,
where missing values are filled in according to some heuristic. Traditional im-
putation techniques include constant value imputation (for example imputing
zero or the mean feature value), and guessing a good imputation value, possi-
bly through regression or by using the value of another example that is similar
in some sense. More elaborate techniques include for example multiple imputa-
tion, a Monte Carlo technique for which an imputation model first has to be
specified. Then multiple complete datasets are generated by sampling from the
imputation model, analysis is carried out on each of the imputed datasets and
then combined into one final result. In maximum-likelihood based approaches,
an underlying model for the data generating process is assumed and its parame-
ters estimated from the available data. Besides imputation, learning algorithms
can also be modified to directly deal with incomplete input. For example, an
elegant SVM variant by Chechik et al. avoids imputation by altering the margin
interpretation for samples with values that are structurally absent [6].

In practice it is often tedious to identify among all possible approaches one
that performs well on a given application problem. In addition, many of the
above methods have been formulated for MAR and MCAR settings rather than
MNAR or structural absence which are relevant for CTBT hydroacoustic data.
We here use a straightforward approach and impute a single value of zero for all
missing values. For many features in Table 2, this would constitute a physically or
statistically plausible continuation for the limit case of a zero-threshold detector.
For example peak and total energy as well as skewness of a non-present signal
might be well represented by zero. For others, such as the average noise level,
zero cannot be seen as a logical continuation and our choice is far from ideal. In
addition to zero-imputation, we use the “flag” approach which was found to be
a well-performing baseline method in [6]. For each of the eight frequency bands,
a Boolean variable is added to the imputed feature set, indicating whether or
not that band has been detected and its features extracted. We further extend
this “flag” approach by using kernel functions which have a bipartite structure,
with one sub-kernel operating on the Boolean missingness representation and
another on the real-valued, imputed features.



20 M. Tuma, C. Igel, M. Prior

3.3.1 Heterogeneous kernel functions

Let Sr denote the zero-imputed hydroacoustic training data and xr one of its
samples, a 128-dimensional real-valued vector. Then we write xb for the corre-
sponding missingness vector of eight Booleans indicating whether the features of
each band are present or not. Thus each sample x = (xb, xr) is represented by a
vector in a 136-dimensional joint feature space X , which is the Cartesian product
Xb × Xr of the space of the according Boolean and real-valued feature vectors.
In order to allow the machine to incorporate information held by the Boolean
and real values differently we employ kernel functions with a bipartite structure,
where one sub-kernel kb operates on the Boolean features xb ∈ Xb and another
sub-kernel kr on their real counterparts xr ∈ Xr. On Xr we employ a standard
radial basis function (RBF) kernel k(xr, zr) = e−γ‖xr−zr‖2 . For Xb, a polynomial
kernel k(xb, zb) = (〈xb, zb〉+ c)d is used. When combining the sub-kernels kb and
kr into one joint kernel k through a function f ,

k : (Xb ×Xr)× (Xb ×Xr)→ R , k(x, z) = f(kb(xb, zb), kr(xr, zr)) , (14)

f must be of such a form that the overall kernel k remains positive definite.
Recalling the kernel composition rules of Section 2.5, we consider two intuitive
possibilities. First, a direct product kernel

kp(x, z) = (〈xb, zb〉+ c)d · e−γ‖xr−zr‖2 , (15)

and a weighted direct sum kernel

ks(x, z) = (〈xb, zb〉+ c)d + we−γ‖xr−zr‖2 (16)

with weighting factor w ∈ R+. The structure of kp and ks stresses the similarity
of features across all bands on the one hand and inherent differences between
the Boolean and real-valued features on the other.

Independent of the combination of kb and kr, we might desire an overall kernel
family that is more suitable for our hydroacoustic application task. Especially
given that underwater signal propagation is frequency-dependent, the overall
kernel could better account for the fact that the input vector concatenates infor-
mation from eight different frequency bands. Mirroring the steps above, we view

X as the Cartesian product of the band-wise feature spaces:
∏8
i=1(X (i)

b ×X
(i)
r ).

For each band’s subspace X (i) a band-wise bipartite direct product kernel k(i)

can in analogy to eq. (15) be defined as

k(i)(x(i), z(i)) = k
(i)
b · k

(i)
r = (〈x(i)b , z

(i)
b 〉+ c)d · e−γ

(i)‖x(i)
r −z

(i)
r ‖

2

. (17)

Here the polynomial kernel parameters c and d are chosen identical across all
sub-kernels k(i). The RBF bandwidth parameters γ(i) are however allowed to
vary from band to band since we expect different feature distributions across
the frequency bands. Note that in each sub-kernel (17) the Boolean sub-kernel
operates on two single Boolean values only. The corresponding scalar product
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can hence only yield one (if both samples have a detection in band i) or zero
(if only one or none of them do). In the special case of c = 0 this has the effect
of switching on or off the contribution of the overall sub-kernel: if two samples
both have detections for band i, k(i) returns the RBF kernel evaluation between
their real-valued features in band i. If only one or none hold detections in band
i, k(i) returns zero. For this reason, and because it would introduce again more
hyperparameters, we consider the direct product kernel (15) on the subspaces
X (i) rather than the weighted direct sum kernel (16). For combining all sub-
kernels k(i) into one overall kernel, both addition and multiplication are feasible
options. As seen in Section 2.5, convolution kernels allow for multiplication as
well as addition of sub-kernels and also cover an intermediate range by varying
the integer degree D as single free parameter. The convolution kernel kD of
degree D on the eight sub-kernels k(i) is

kD(x, z) =
∑

1≤j1<···<jD≤8

D∏
d=1

k(jD)(x(jD), z(jD)) . (18)

With equations (15, 16, 18) we have three candidate families of kernels for the
imputed, Boolean-augmented data S on X . All three kernels have as free pa-
rameters the real-valued polynomial offset c ∈ R+

0 and integer degree d ∈ N+.
For eq. (15) and (16) the RBF kernels introduce the bandwidth γ ∈ R+ as
single parameter, while eq. (18) holds one RBF parameter γ(i) ∈ R+ for each
frequency band. An SVM using kernel (18) has 11 free kernel parameters plus
the SVM regularization parameter C. In the following we describe our experi-
mental setup, including the model selection procedure to determine these SVM
hyperparameters.

3.4 Experiments

In total 778 expert-labeled samples were available for classifier training, valida-
tion and testing. Of these, less than 5% had values for all 128 features, while 91%
of samples held values for the most common frequency band between 6 and 12
Hz. For all experiments described below we obtained the test error as an average
over five different splits into 80% training and 20% test data. Within each of
these 80% of training data we for all SVM classifiers used another “inner” 5-fold
cross-validation procedure for SVM model selection. The best hyperparameters
were used to re-train an SVM on the entire 80% before obtaining the test er-
ror on the remaining 20% of test data. For the direct sum and direct product
kernel, we conducted simple grid search on the five-fold cross-validation error
CV-5 to find the best values for c, d, (w), γ, and C. For the convolution kernel
grid search is far from feasible and we employed the maximum-likelihood based
approach described in Section 2.7.2. We optimized the real-valued parameters
only and repeated this for different combinations of integer values for the kernel
parameters d and D.
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3.5 Results

We compared SVMs using the three candidate kernels (15, 16, 18) on the zero-
imputed and Boolean-augmented dataset S to two baseline methods which oper-
ated on the zero-imputed, but not Boolean-augmented dataset Sr only. Table 3
shows the results obtained. In the first column, LDA refers to a baseline linear
discriminant analysis [17]. The SVM baseline classifier svm used one single RBF
kernel and was optimized by grid search as well. The three entries svm-s, svm-p,
and svm-c all operated on the zero-imputed and Boolean-augmented training
data S, and correspond to the candidate SVMs with a direct sum kernel (eq. 16),
direct product kernel (eq. 15), and convolution kernel of degree one (eq. 18), re-
spectively. In summary, all SVMs performed better than the linear approach,
and the two bipartite kernels from eqs. (15, 16) were on par with the baseline
RBF kernel not having access to the Boolean-encoded missingness pattern. Ad-
ditionally passing the Boolean indicators to the baseline svm did not influence its
performance. The convolution kernel of degree one, which corresponds to sum-
ming up all band-wise sub-kernels, performed best among all approaches. With
increasing degree however, error rates tended to increase as well. At the highest
value of D = 8, which corresponds to multiplying all band-wise sub-kernels, the
test error with 5.9% was higher than that of LDA.

Table 3: Average classification test errors for the binary case.

Classifier

LDA svm svm-s svm-p svm-c

Error [%] 5.2 4.9 4.9 4.8 4.3

It should be noted that SVMs allow to control the trade-off between sen-
sitivity and specificity, or false positive and false negative rates, by penalizing
positive and negative misclassification differently through two different values
for the regularization parameter C. Table 3 should hence be seen as ranking
the different approaches at some generic operation point rather than providing
actual error rates for the practical application. It might be desirable to operate
such a classifier at high sensitivity at the cost of more false alarms having to be
rejected during human analyst review.

4 Summary

We introduced support vector machines (SVMs) as one specific approach to solv-
ing supervised classification tasks. Motivated by the concept of regularized risk
minimization we iteratively refined the SVM optimization problem from linear
large-margin classification to the canonical kernelized case. Emphasizing sev-
eral properties of SVMs relevant to practitioners, we in particular discussed the
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model selection problem and two approaches towards it: simple grid search as
well as one gradient-based method for hyperparameter selection. In the second
part of the chapter, we described an exemplary application task of classifying
hydroacoustic signals recorded by the sensor network for verification of the Com-
prehensive Nuclear-Test-Ban Treaty. We combined information from different
frequency bands via task-specific kernel functions also incorporating informa-
tion about a sample’s missingness pattern. This custom classifier, in combination
with parameter optimization through a maximum-likelihood approach to model
selection, showed improved performance over baseline linear methods as well as
support vector machines using standard kernels.
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