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Abstract— The “German Traffic Sign Recognition Benchmark”  built upon this dataset. We conducted experiments to déterm
is a multi-category classification competition held at IJCNN 2011.  human traffic sign recognition performance and compare them
Automatic recognition of traffic signs is required in advanced to the competition results. The competition is held in two

driver assistance systems and constitutes a challenging ale : . - ) .
world computer vision and pattern recognition problem. A stages, and the first stage has just finished at the time of this

comprehensive, lifelike dataset of more than 50,000 traffisign document’s writing. We asked the participants who achieved
images has been collected. It reflects the strong variationsn  the best results so far to provide brief descriptions ofrthei

visual appearance of signs due to distance, illumination, eather methods, which are presented together with the classditati
conditions, partial occlusions, and rotations. The imagesare accuracies

complemented by several precomputed feature sets to allow Th . ized foll ‘g I t lated
for applying machine learning algorithms without background € paper Is organized as follows. Sec. [l presents relate

knowledge in image processing. The dataset comprises 43 s$&s work. Sec. Il prOVideS details about the benchmark dataset
with unbalanced class frequencies. Participants have to atsify Sec. IV addresses the competition protocol. Finally, the-co
two test sets of more than 12,500 images each. Here, the resul petition results are reported and the so far best methods are

on the first of these sets, which was used in the first evaluatio described in Sec. V before the conclusions in Sec. VI
stage of the two-fold challenge, are reported. The methods ’ o

employed by the participants who achieved the best resultsra T
briefly described and compared to human traffic sign recogniion o )
performance and baseline results. Several approaches to traffic sign recogntion have been pub-

lished. In [2], an integrated system for speed limit detatti
tracking, and recognition is presented. The classifieris&d
Recognition of traffic signs is a challenging real-worldising 4,000 samples of 23 classes, with samples per class
problem of high industrial relevance. Although commerciahnging from 30 to 600. The individual performance of the
systems have reached the market and several studies on thassification component is evaluated on a training set&id,
topic have been published, systematic unbiased comparistmffic sign images with a correct classification rate of 94 %.
of approaches are missing and comprehensive benchmarkoutarde et al. present a system for recognition of European
datasets are not freely available. Sign recognition is aimuland U.S. speed limit signs based on single digit recognition
category classification problem with unbalanced classueeg [3] using a neural network. Unfortunately, they do not pdwvi
cies. Traffic signs show a wide range of variations betweémdividual classification results. The overall sytem irdihg
classes in terms of color, shape, and the presence of pactegr detection and tracking achieves a performance of of 89 % for
or text. However, there exist subsets of classes (e.g.dspék S. and 90 % for European speed limits, respectively, on 281
limit signs) that are very similar to each other. The classifi traffic signs.
has to cope with large variations in visual appearances dueBroggi et al. [4] use several neural networks to classify
to illumination changes, partial occlusions, rotationgather different traffic signs. Shape and color information frone th
conditions, scaling, etc. detection stage is used to select the appropriate neurabriet
Traffic signs are designed to be easily detected and rec@ply qualitative results are provided.
nized by human drivers. Accordingly, humans are capable ofln [5], a number-based speed limit classifier is trained on
recognizing the large variety of existing road signs withsel 2,880 images. It achieves a correct classification raf2 af%
to 100% correctness. This does not only apply to real-wortth 1,233 images. However, it is not clear whether images of
driving, which provides both context and multiple views othe same traffic sign instance are shared between sets.

a single traffic sign, but also to the recognition from single Various approaches are compared on a dataset containing
cut-out images. 1,300 preprocessed examples from 6 classes (5 speed limits
We present th&erman Traffic Sign Recognition Benchmarkand 1 noise class) in [6]. The best classification perforraanc

(GTSRB) a large, lifelike dataset of more than 50,000 traffiobserved wa97 %.
sign images in 43 classes. We describe the design and analysin [7], a classification performance &6.5 % is achieved
of the IJCNN 2011 competition of the same name that wasing support vector machines. The database comprises an

. RELATED WORK

I. INTRODUCTION



Fig. 1. Screenshot of the annotation

impressive number 036,000 Spanish traffic sign samples of Fig. 2. A single traffic sign track
193 sign classes. However, it is not clear whether the tigini
and test sets can be assumed to be independent, as the random

split only took care of maintaining the distribution of fiaf gjnce subsequent images of a slowly passed traffic sign are
sign classes (see Sec. Ill). To our knowledge, this datalsasgery similar to each other, these images do not contributiesto
not publicly available. diversity of the dataset. On the contrary, it causes an lredes
imbalance of dependent images. Secondly, in spite of the firs
point, the visual appearance of a traffic sign does vary over
A. Data collection time. Far away traffic signs result in low resolution while

The dataset was created from approx. 10 hours of vid6l9Ser ones are prone to motion blur. The illumination may
that was recorded while driving on different road types iRhange, and the motion of the car affects the perspective wit
Germany during daytime. The sequences were recorded/§§Pect to occlusions. Fig. 2 provides an example. Setetin
March, October and November 2010. For data coIIectioFP,(ed number of images per traffic sign increases the diversit
a Prosilica GC1380CHcamera was used with automati©f the dataset and also avoids an imbalance by stronglyngryi
exposure control and a frame rate of 25 fps. The camera ima§sgnbers of nearly identical images.
have a resolution 0f360 x 1024 pixels. The video sequences The selection procedure outlined above reduced the number
are stored in ranBayerpattern format, but extracted trafficof images to approx. 50,000 images of the 43 classes that are
sign images are converted RGB color images [8]. shown in Fig. 3. The relative class frequencies of the ckasse

Data collection and manual annotation was performed &€ shown in Fig. 4.
ing NISYS Advanced Development and Analysis Framéwork The set contains images of more than 1,700 traffic sign
(see Fig. 1). instances. The size of the traffic signs varies betwier 15

We will use the termtraffic sign instanceto refer to a and 222 x 193 pixels. The images contain 10% margin (at
physical real-world traffic sign in order to discriminateasigst least 5 pixels) around the traffic sign to allow for the usafe o
traffic sign imagesvhich are captured when passing the traffiedge detectors. The original size and location of the ROI of
sign by car. The sequence of images originating from omiee traffic sign is preserved in the provided annotationg Th
traffic sign instance will be referred to &mick Each instance images are not necessarily squared.

is unique. In other words, the dataset only contains a singleror the purpose of the competition, the dataset was spdit int

track for each physical traffic sign. three subsets. Set | was published as training data, Set Il as
From approx. 133,000 labelled traffic sign images of 2,4%@st data for the online competition. Both sets may be used as

traffic sign instances in 70 classes, the GTSRB dataset Wagning data for the final competition which will be perfoemh

IIl. DATASET

compiled according to following criteria: on Set I1l (unpublished until then). Set | contains appr&@&
1) Discard tracks with less than 30 images. sets Il and Il approx. 25% of the images each. The split
2) Discard classes with less than 9 tracks. was performed randomly, class-wise, and on track level, to
3) For the remaining tracks: If the track contains more thanake sure that 1) the class distribution is preserved and 2) a
30 images, equidistantly sample 30 images. images of one traffic sign instance are assigned to the same se

Step 3 was performed for two reasons. First of all, the numbech of the test sets is consecutively numbered and shuffled
of traffic sign images per track was very different as it sylgn t0 prevent deduction of class membership from other images

depends on the velocity with which the car passed the sigif.the same track. In contrast, the training set preserves th
temporal structure of the images, which could be exploited b

thtt p: / / www. ni sys. de approaches capable of using privileged information [9].



Fig. 3. Traffic sign classes

IV. COMPETITION

The competition uses the dataset presented in Sec. Ill. It
consists of two evaluation phases. This paper focuses on the
first one that was performed in the run-up to IJCNN 2011.
This evaluation used Set | for training and Set Il for testing

Relative class frequencies (%)
L A A

A. Competition protocol
T-4F-——-——-41-—-——-—--1 -F——1 Participants had to classify individual images of the test s
The performance was evaluated based on the 0/1 loss.
The training set was published seven weeks before the
1 first evaluation. This initial evaluation was designed as an
II" I I I I |I II" online competition. At the beginning of the evaluation, test
0 L B B B B set was provided to the participants. Results were uploaded
0 5 10 15 20 25 30 35 40 as CSV file to the competition websitéor evaluation. The
Class number of submissions was (initially) not limited (see S¥k.
) _ o C for details), to allow participating teams to submit résul
Fig. 4. Relative class frequencies in the dataset .
for different approaches.
Since the test set contains images, participants were the-
B P lculated feat oretically able to manually annotate the samples with the

- Fre-calculated teatures correct class ID. Although restricted to only 3 days, thersho

To allow scientists without a background in image praime frame of the evaluation phase could mpiaranteethat
cessing to participate, all three sets are provided with preheating would not occur. Therefore, a second evaluatidim wi
calculated feature sets. The following features are iredud fresh data will be held as live competition at IJCNN 2011.

1) HOG features:Three sets of differently configured HOG To allow more thorough training of the classifiers, the class
features (histograms of oriented gradients) [10] are plewi |Ds for the test set have been published after the online
To compute them, the images were scaled to a sizé0of competition. Furthermore, this mitigates any advantages a
40 pixel and converted to grayscale. The sets contain featd&m may achieve for the final competition by investing the
vectors of length 1568, 1568, and 2916 respectively. efforts of manual annotation.

2) Haar-like features: This feature set was intended tog  sypmission website
allow participants to apply fef_;lture selection methods siel, The website allows participants to upload their result files
Just like for HOG features, images were rescaled(toc 40 . . . ;

i and get immediate feedback about their performance. During

and converted to grayscale. We computed 5 different types in . " . . ;

. . ; the online competition, results were instantly publishedai
different sizes for a total of 11,584 features per image. .

3) Color histograms: This set of features was rovidedpUbIIC Ieaderboard._ . .

| gh ) dient-based f pr h After the submission deadline, some result analysis featur

Fo comp ement t € gra lent- ase eature sets wit Col%re activated. The participants could get a more detailed
information. It contains a global histogram of the hue value
in HSV color space, resulting in 256 features per image. http: // benchmark. i ni.rub. de



L : . — L TABLE |
insight into their results by investigating the confusioatrix
RESULT OVERVIEW. ID DENOTES THE SUBMISSION ID TO IDENTIFY THE

and the list of misclassified images for each of their own
submissions.
We intend to introduce a second leaderboard based on the

RESULT IN THE LEADERBOARD AT THE COMPETITION WEBSITE

final test set after the final competition. This ranking will CCR ) Team Method °
then be permanently open for submissions. Users will get 98.98 IDSIA cnnhog3 197
immediate feedback about their performance after upload, b~ 98.97 sermanet  EBLearn 2LConvNet ms 108 feats 178
the results will not automatically be publicly visible. Imder 99.81  INI-RTCV Human Performance 199
to publish results, users have to provide publication tetai 9788 VISICS IKSVM + PHOG + HOG2 183
about their approach. 97.35 vIsSICS SRC + LDAs I/[HOG1/HOG2 184
96.87 noob HOG + LDA + VQ 84
C. Flaws in challenge protocol
As far as the online competition is concerned, the miss
ing submission limit turned out to be problematic. A few 9632 INI-RTCV HOG features (Set 2) + LDA 2
participants started flooding the leaderboard with reséits 94.73  INI-RTCV.  HOG features (Set 3) + LDA 3
some submissions, the method description did not even allow 9451 IN-RTCV  HOG features (Set 1) + LDA 1

for discrimination of the methods (either because it was too
cryptic or because it was the same name for all submis=

. , . 73.89 INI-RTCV HOG 1 + 3-NN 7
sions only extended with running numbers). We assume the
. . o 73.82 INI-RTCV HOG 3 + 3-NN 9
major difference between such submissions to be parameter
. N 73.82 INI-RTCV HOG 3 + 1-NN 6
adjustments. However, optimization w.r.t. the test sefseau
" . 73.65 INI-RTCV HOG 1 + 1-NN 4
overfitting and biases the results. In order to protect therot
teams from this misbehavior, we had to introduce a subntissio 7281 INFRTCV HOG 2+ 1-AN >
’ 72.81 INI-RTCV HOG 2 + 3-NN 8

limit during the online competition. To avoid (or at least
mitigate) penalizing teams with only a couple of submissjon
we set the limit to ten submissions. This allowed most teams t REEER
submit at least one more final result. For future competiion

we would set a limit of three to five submissions and would
perhaps not show the exact ranking during the submission ‘@

phase.

E Y o
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V. RESULTS |

The competition attr_acted more than 20 teams from _aII HHH HH“ :
o e A e o e |0V @OOS WP
to) several kinds of neural networks, support vector maasin @‘KH&‘AE&‘@HGH@ @3

linear discriminant analysis, subspace analysis, enseohis- —— A
sifiers, slow feature analysis, kd-trees, and random ferest \:\‘ T‘ ‘
We present the results of the four best-performing teams in é"é‘é“@“@\@ g‘
addition to results of baseline algorithms and an experimen AHAH‘ |
to determine human traffic sign recognition performances Th | I

results that are reported in this section are summarized in
Tab. I. This table is limited to the top four teams and their
characteristic methods. Details about these methods can be
found in Sec. V-C. Our results are shown with team naNie
RTCV. The complete result table is available at the competitiéh Human performance
website.

Fig. 5. Test application to determine human performance

To determine the human traffic sign recognition perfor-
A. Baseline mance on isolated images, the test set was presented inchunk

We report three kinds of baseline results: Linear discrimfl 350 randomly chosen images to 36 test persons. Over all

nant analysis (LDA) on HOG features, k-nearest neighbor (R4PIECtS, each image was presented exactly once for otassifi
NN) on HOG features and human performance. The LDA HOn- Each image was presented in two resolutions (see Fig. 5
based on the implementation in the Shark Machine Learning the original resolution of the image and scaled to a height o

Library3 [11]. Nearest neighbor results were computed on 40 pixels to improve readability of small images. The black
HOG feature sets for 1-NN and 3-NN usihgdistance. border around the scaled image was chosen to improve contras

perception for dark and low-contrast samples. The testopers
3htt p: / / shar k- proj ect . sour cef or ge. net assigned a class ID by clicking the corresponding button.



C. Top-ranking methods 2) Team sermanetTeamsermanefconsists of Pierre Ser-

) ) ) ) “manet and Yann LeCun from Courant Institute of Mathemat-
This subsection provides an overview of the best-perfogmif.;| sciences at New York University, United St&tes

methods in the competition. The method descriptions are a) Convolutional Neural NetworksConvolutional Net-

author(_ed by thg part|<_:|pa_nts themselvgg. They are Orde(ﬁgrks (ConvNets) [17] are a biologically-inspired architee
according to their ranking in the cqmpetmon. _ ‘that can learn invariant features. While traditional wisio
1) Team IDSIA:TeamIDSIA consists of Dan Ciresan, Ueli methods use hand-crafted features such as HOG, ConvNets
Meier, Jonathan Masci and Jiirgen Schmidhuber from IDSIAgtyally learn each feature extraction stage. Features can
USI, SUPSI, Switzerlarfd therefore be optimized for a given task and learned without
a) Committee of CNN and MLPOur approach uses aprior knowledge for any new modality where our lack of
flexible, high-performance GPU implementation of a convantuition makes it difficult to engineer good features. Njlk:
lutional neural network (CNN). We improve the performancstages of features extraction provide hierarchical andisbb
of a single CNN by forming a committee that also includes @presentations to a multi-layer classifier. Each stageiis-c
multilayer perceptron (MLP) trained on the provided featur posed of convolutions, non-linearities and subsamplingn-N
The architecture of a CNN is characterized by many buildinearities used in traditional ConvNets are th@h() sigmoid
ing blocks set by trial and error, but also constrained Hynction. However more sophisticated non-linearitieshsas
the data. In most studies a fixed, handcrafted architectuhe rectified sigmoid and the subtractive and divisive local
is used to perform the experiments. With respect to otheermalizations are used here, enforcing competition betwe
implementations of similar neural network architectures aneighboring features (both spatially and feature-wiseitpOts
GPUs [12], [13] that are hard-coded to satisfy the hardwataken from multiple stages can also be combined to enrich
constraints of the GPUs, our implementation [14] is flexibleeatures fed to the classifier with a multi-scale component.
and fully on-line (i.e. weight updates after each image). A8fe use the C++ open-source implementation of ConvNets
subsampling layers we use max-pooling layers which acalled EBLearf [18]. This architecture was trained by full
crucial for invariant object recognition. CNNs with a maxsupervision of the (colored) traffic sign dataset (us3ag< 32
pooling layer consistently outperform conventional nétS]] raw images) and reached 98.97% accuracy during the first

All CNNs have seven hidden layers. The output layer h&$iase of the competition. It is interesting to note that sope
43 neurons, one for each class. networks have since then been obtained without the use of

We select the ROI of the original images and resize it fPlor information (fully described in [19]).
48 x 48 pixels. The contrast of each image is normalized in- 3) Team VISICS:Team VISICS consists of Radu Timo-
dependently. We try different contrast normalization roeth fte and Luc van Gool from ESAT-PSI-VISICS/IBBT at the
The best one proved to be histogram equalization. Katholieke Universiteit Leuven, Belgiufn

We use a system with a Core i7-920 (2.66GHz), 12 GB &) IK-SVM based methodThe method employs a fast
DDR3 and four GTX 580 graphics cards. The implementdatersection Kernel Support Vector Machine (IK-SVM) [20]
CNN has a plain feed-forward architecture trained by ofver concatenated HOG features. We used computed pyrami-
line gradient descent. We split the provided training set Bl HOG features over resized x 28 pixels patches using the
training and validation sets and train various architexgur Same settings used in [20] for handwritten digits clasdifica
The best architecture is then trained on all images from ti&ese were concatenated with the HOG Set 2, as provided
training set. Weights are initialized from a uniformly ramd Py GTSRB, giving a2172 + 1568 dimensional feature space.
distribution. Each neuron’s activation function is a sdaleWe trained 43 one-against all models (one for each class)
hyperbolic tangent. and the classification decision was taken by picking thesclas

After having trained all the individual CNNs and MLPS,corresponding to the best estimated probability in the nsdde

we form various committees. The MLPs have 1 hidden lay8HtPuts. While running the classifiers over the testing data
with 200 hidden units and are trained in batch mode usifgatively fast, in order of minutes, the time spent forniag
second order information. Individual MLPs perform wors& Pig, over 15 hours. More details about choices made and
than CNNs. Being trained on features, however, they offer 4 overall systems are to be found in [21].

additional source of information and might correctly clgss b) l;-minimization based methodThis is a sparse
images misclassified by the CNN. Since both CNNs and ML@presentation-based classification (SRC) inspired byirthe
produce output class probabilities, we can easily average £reasingly popular field of compressed sensing (CS). The
corresponding neuron’s outputs. This averaging resulta int€Sting query samples are assumed to be recovered (with a
slight performance boost, and allows us to obtain the be&&ry low error) as a linear combination of the sufficiently

result with a committee of a CNN and an MLP trained off’ge Set of training samples. Furthermore, the combinatio
HOG features (HO®3). weights corresponding to the training samples from the same

More details concerning this approach can be found in [16].5{ @ 4
ser manet, yann S. nyu. edu

Shttp://ebl earn. sf. net
4{dan, ueli, jonathan, juergen}@dsia.ch “{Radu. Ti nofte, Luc.VanGool }@sat . kul euven. be



class as the query sample to recover tend to be largé {in D. Result analysis

norm sense). In an ideal case the remaining weights are Z€r0, . o be seen in Tab. I, the best performing teams achieved

This is a sparse linear combination, with ab%monzeroes, : . o
a very high recognition accuracy which is comparable to

where C is the number of classes. We are interested in this . - . X
; . . : umans. To gain a deeper insight into the results, the traffic
sparse vector of weights which we can obtain by solving a

I -minimization problem formulated as in [22]. We use &N classes are grouped into subsets of similar signs diogpr

Homotopy solver [23] stopped after reaching a sparse smpp.cc))r Fig. 6. The individual results per team and subset aredist

of less than 20 nonzeroes. In our challenge entries we iy, Tab. 1. Since both the LDA and the k-NN approaches

not use thecross-and-bouquemodel which deals explicitly 8Poduced very similar results for the different HOG feature
with noise, heavy corruption, occlusion in the query sample

sets, only the best result each is considered. Fig. 7 shavs th
As basic features we use HOG Sets 1 and 2 (as providpe%ﬁfusmn matrices for the different approaches. The eklss

by GTSRB), and the raw grayscale pixel values (). Thare ordered by subsets as defined in Fig. 6a to 6f, from left-

features are projected using the obtained direction vedigr to-right and top-to-bottom respectively. The grey lineszsate

. . T . the subsets.
applying Linear Discriminant Analysis (LDA) method. Thus, . .
PPyIng 1 serim! ysis ( ) » Notably, all solutions — both human and machine — share

we work on low,42-dimensional spaces and benefit from the NI . .
discriminant power of LDA based on the training labels. Faihe sw_nﬂanty, although to a d|ffe_ren_t extent. A. cl_ustgmf
each type of features we separately compute LDA projecti&[lrors in the top-left corner, that 1S, 1N thm_eed I|m|t_subset,
matrices. The final used representation for the top scoriR@ scan l.)e.obs.erved. LOW. resolution and motion biur impede the
method is a concatenation of the LDA projections of each tyrgiéscr|m|_nat|_on of the dn‘feren_t r_1umb§rs. . o

of features (I, HOG Set 1 and HOG Set 2). The concatenated-0nsidering theother prohibitory signs (s. Fig. 6b), it is
features were normalized by-norm. The running time was noticeable that the error is generally smaller than for freed

about two hours on a single core. More details about choiddgit signs, although this subset contains two very sirTffigns

made and the overall systems are to be found in [21]. as well fio overtakingfor cars and trucks). However, in case
4) Team noob:Teamnoob consists of Nhat V& Subhash of misclassification, they were usually confused withinsatb

Chall2 and Bill Moran'® from University of Melbourne, (a) and (b). L _

Australia, and Duc V& from NICTA, Australia. The derestrictionsigns cause little problems. The largest

a) Discriminant Analysis on HOG features and Vectof' o> @€ provided by the 3-NN classifier which mostly

Quantization: The proposed idea is based on histograms Spnfuses the derestric-tion signs among each other. ,
oriented gradients (HOG), linear discriminant analysig), ~ 1he bluemandatorysigns are nearly perfectly recognized by

and vector quantization (VQ). HOG is used to capture illumans. The machine-learned classifiers perform worse. The

cal object appearance and shape within traffic sign imag&&/Ors concentrate mostly on the sign clagsesidaboutpass

followed by LDA. To further improve the recognition rateON right, andpass on leftThe latter two are generally mounted

and recognition speed, we apply VQ on projected samplequSe tc_; .thg grounq whi<_:h makeg them easily accgssiblerThei
remove outliers or bad samples in training set. A recognitig®@dability is often impaired by stickers or spray painte Tact
rate of 96.87 % was obtained in the competition. This wholfat they are mostly mistaken for speed limits can be atetbu

algorithm called HOG+LDA+VQ can briefly be summarized® the use of HOG features — which do not contain any color
as follows: information — in most algorithmic approaches. Color featur

HOG feat ¢ tracted f training | were only used by Teasermanetvhich reduces the confusion
* calure vectors are extracted irom fraining IMagegy yhe piye mandatory signs with speed limits to a minimum.

We use precalculated HOG2 features provided with GT- For the dangersigns, a similar observation can be made.

ESE gfﬁjﬁt erformed on these HOG? features to finThe focus on edge features allows classifiers to discriminat

¢ EDA IS then periorme - . 91e triangular signs from other subsets, but leads to canfus
dlscr|m_|nat|ve pro;egtmns._AII j[rammg HOG f_eat_ure_s W.'I within this group of traffic signs. Obviously, the provide®O&
erO'grc?eedthiitSrr;sthls projection to form dlscrlmm"mvefeatures capture the general sign shape well, but are not dis
broj ) 8riminative enough to distinguish the different pictogearfhe

» VQ by k-means algorithm 1S performed on proj(.':‘Ctegroup of human test subjects outperforms most algorithmic
features of each class to find some representatives “or

) ) ; .aﬁproaches. Only the convolutional neural networks aehéev
codebooks which are used as templates in recognitio
.comparable performance.

fr:ggc?étiyr?igalg tg;séev(\j/eu%a?erceorg(;x;gutglrlneésa(;]rdbﬁgpt:g:/n- Finally, the unique signs are nearly perfectly classified.
' §ince they are very different in their general shape, even th

the performance. . . .
i ) ) ) nearest neighbor approach — which generally only provided
More details concerning this approach can be found in [24},,14erate accuracy — achieves a very small error rate.

s Gar ad. uni el b. ed In many cases, the human errors are much more scattered
n.vo@graad. uni nel b. eau. au . . P
9subhash. chal | a@i ct a. com au than the algorlt_h_mlc rgsults. Except _for the speed limitssp
19 or an@e. uni mel b. edu. au most errors visible in the confusion matrices are caused
Udvo@i ct a. com au by single misclassifications. These errors can be partially
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(a) Speed limit signs (b) Other prohibitory (c) Derestriction signs (d) Mandatory signs
signs
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(e) Danger signs (f) Unique signs

Fig. 6. Subsets of similar traffic signs
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(b) sermanet - EBLearn 2LConvNet (c) Human performance (d) VISICS - IKSVM+PHOG+HOG2

ms 108 feat
I =
a .
. ES -
N | -
e || P
.-_'!l._ ] .-:.:.__.
g'.rl' !:_:.."l

(e) VISICS - SRC+LDAs I/HOG1/2

() noob - HOG+LDA+VQ

(g) INI-RTCV - HOG2 + LDA

(h) INI-RTCV - HOG1 + 3-NN

Fig. 7. Confusion matrices. The grid lines separate thdidrafgn subsets defined in Fig. 6. Values in [0,1]; White desatero, (0,1] is colored red to
yellow to green.

TABLE Il
INDIVIDUAL RESULTS FOR SUBSETS OF TRAFFIC SIGNSBOLD TYPE DENOTES THE BEST RESUL(S) PER SUBSET

Speed limits Other Derestriction ~ Mandatory Danger Unique
prohibitions
cnn.hog3 99.14 99.57 10000 97.89 98.83 10000
EBLearn 2LConvNet 98.87 99.80 99.00 97.78 98.72 10000
Human Performance 97.39 99.59 99.67 99.72 9904 99.90
IKSVM + PHOG + HOG2 97.91 99.25 99.67 96.78 96.17 99.95
SRC + LDAs I/[HOG1/HOG2 97.63 99.46 10000 96.05 94.54 99.95
HOG + LDA + VQ 95.73 98.50 99.33 96.72 95.39 99.90
HOG 2 + LDA 95.76 97.28 99.33 95.00 95.00 99.35
HOG 1 + 3-NN 61.39 87.28 87.00 93.39 53.83 98.76




explained by the design of the test application, which dif7]
rectly advanced to the next image after one of the buttons
was clicked. Unintended mouse movements and double-clicks
could, therefore, easily cause accidental misclassifioati [8]
This case was reported by some of the test persons.

VI. CONCLUSIONS E)

We presented the design and analysis of the "German Tra ]!8]
Sign Recognition Benchmark” dataset and competition. The
results of the competition show that state-of-the-art nraeh [11]
learning algorithms perform very well in the challengingka

of traffic sign recognition. The participants achieved ayvef
high performance of up to 98.98% correct recognition rate

which is comparable to human performance on this data: 5]
Some of the human error originated from the design of the

test application. For the final competition, we are confident

that human performance can be "improved” by a few chang@él
to this application to prevent pure accidental misclassifins.

We are looking forward to the final competition at IJCNN15]
2011 which completes GTSRB competition. This session will
use the currently unpublished Set IlI. After the final sessio[ig)
the complete dataset will be published. We intend to install
new, permanent leaderboard on the competition WebsitehNh'%]
allows for submissions of new results and comparison of new
approaches. As many participants relied on the provided HOG
features, we are curious to see whether different featuars ilg]
improve the recognition performance. For the future, wepl
to add more benchmark tasks and data to the competition
website. In particular, we consider to provide a benchmal¥!
data set for the detection of traffic signs in full camera iemg

20
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