
Efficient update of the covariance matrix inverse in

iterated linear discriminant analysis

Jan Salmen, Marc Schlipsing, Christian Igel

Institut für Neuroinformatik, Ruhr-Universität Bochum, 44780 Bochum, Germany

Abstract

For fast classification under real-time constraints, as required in many image-
based pattern recognition applications, linear discriminant functions are a
good choice. Linear discriminant analysis (LDA) computes such discrim-
inant functions in a space spanned by real-valued features extracted from
the input. The accuracy of the trained classifier crucially depends on these
features, its time complexity on their number. As the number of available
features is immense in most real-world problems, it becomes essential to
use meta-heuristics for feature selection and/or feature optimization. These
methods typically involve iterated training of a classifier after substitutions
or modifications of features. Therefore, we derive an efficient incremental
update formula for LDA discriminant functions for the substitution of fea-
tures. It scales linearly in the number of altered features and quadratically in
the overall number of features, while completely retraining scales cubically in
the number of features. The update rule allows for efficient feature selection
and optimization with any meta-heuristic that is based on iteratively mod-
ifying existing solutions. The proposed method was tested on an artificial
benchmark problem as well as on a real-world problem. Results show that
significant time savings during training are achieved while numerical stability
is maintained.

Keywords: LDA, Feature selection, Feature optimization, Meta-heuristics,
Covariance matrix update

Email addresses: Jan.Salmen@neuroinformatik.rub.de (Jan Salmen),
Marc.Schlipsing@neuroinformatik.rub.de (Marc Schlipsing),
Christian.Igel@neuroinformatik.rub.de (Christian Igel)

Preprint submitted to Pattern Recognition Letters May 2, 2011

1. Introduction

Machine learning algorithms are standard tools for pattern recognition
in image processing. As execution speed matters for many computer vision
applications, often simple classifiers with low computational complexity are
used in practice. Linear discriminant analysis (LDA) is a simple, but still
state-of-the-art method to train such classifiers that can be sufficient for
many real-world applications. Of course, classification rates crucially depend
on the representation of the input patterns. Therefore, a set of good features
which capture the “dominant non-linearities” [2] has to be found.

When facing image-based pattern recognition problems, an immense num-
ber of features is available. As an exhaustive search is impractical even for
moderate sizes [8], it becomes essential to use heuristics: either feature se-

lection methods to find an optimal subset from a large pool or feature opti-

mization methods to construct such a set iteratively. Meta-heuristics such
as evolutionary algorithms, tabu search, simulated annealing etc. have been
successfully applied for these tasks. These and other [8] popular approaches
have in common that features are iteratively substituted or modified, fol-
lowed by training and evaluation of a classifier. Canonical meta-heuristics
for selection or optimization repeat the loop:

1. Generate candidate set of features based on existing set(s).

2. Train classifier using these features.

3. Evaluate trained classifier.

4. If termination criterion not met, go to 1.

In this cycle, most computational costs typically result from training the
classifier, even if it is a simple one. Training a classifier with LDA involves
calculating the inverse of the shared covariance matrix, which requires Ω(n2)
operations where n is the dimensionality of the input space (i.e., number of
features).

In this paper, we propose an efficient method to speed up iterated LDA
training for such scenarios. Instead of recalculating the inverse for every
change made in the feature set, we derive a formula based on the Woodbury

matrix identity for incremental update of the covariance matrix inverse. The
complexity for iterated training is reduced to Θ(n2), the asymptotic lower
bound, when a single feature is altered. This increase in efficiency allows
to analyze larger feature sets more accurately (e.g., by considering more
iterations or larger populations in population-based meta-heuristics).

2

This article is organized as follows. In the ongoing section, we introduce
the basic concept of LDA. Then, we give an overview of related work on
iterative LDA and distinguish the new approach presented here from oth-
ers. In section 4, the efficient incremental update is presented, in section 5
its application to iterated training during feature selection is shown. Our
experiments are described in section 6, finally the results are discussed.

2. Linear discriminant analysis

Linear discriminant analysis is based on a maximum a posteriori estimate
of the class membership. Let the classification problem be described by
two random variables X and Y with joint probability distribution on R

n ×
{c1, . . . , cm}, where R

n is the feature space and {c1, . . . , cm} a set of m class
labels. Let P (Y = ck |X = x) denote the probability that feature vector x
belongs to class ck. For two classes a pattern x is assigned to class c1 or c2
depending on whether the log-ratio

ln
P (Y = c1 |X = x)

P (Y = c2 |X = x)
= ln

p(X = x |Y = c1)

p(X = x |Y = c2)
+ ln

P (Y = c1)

P (Y = c2)
(1)

is positive or negative. In LDA the classification rule is derived under the
assumption that the class densities p(X |Y) are multi-variate Gaussians hav-
ing a common covariance matrix Σ (i.e., p(X |Y = ck) ∼ N (µk,Σ)), and the
log-ratio above reduces to

ln
P (Y = c1)

P (Y = c2)
− 1

2
(µ1 + µ2)

TΣ−1(µ1 − µ2) + xTΣ−1(µ1 − µ2). (2)

Given training data S = {(x1, y1), . . . , (xℓ, yℓ)} ∈ (Rn × {c1, c2})ℓ, the class
priors are estimated by P (Y = ck) = ℓk/ℓ, the class centers by µk =
1
ℓk

∑

(x,y)∈S(k) x, and the covariance matrix Σ by

Σ =
1

ℓ− 2

2
∑

k=1

∑

(x,y)∈S(k)

(x− µk)(x− µk)
T (3)

with S(k) = {(x, y) | (x, y) ∈ S ∧ y = ck} and ℓk = |S(k)|.
Despite its simplicity, LDA gives surprisingly good results in practice [5].

Provided appropriate features, state-of-the-art results in many image-based
object recognition tasks [1, 20, 10, 14, 16] are reported.

3

3. Related work

Linear discriminant analysis as presented in the previous section relies
on a training data set S to compute a classification rule. For classification
tasks in computer vision, S typically contains feature vectors x1, . . . , xl ∈ R

n

computed by a function f : Rm → R
n from a set R = {r1, . . . , rl} containing

raw image data (w.l.o.g. we assume ri ∈ R
m for i = 1, . . . , l).

In many real-world applications, the available data R may change over
time. This occurs for example in online classification scenarios, where a
classifier is trained once on initially available data S0 computed from R0.
During runtime, new information can be collected continuously, therefore
new data sets R1, R2, . . . , Rn becoming available. It is a crucial issue to
adapt the classifier online according to that new knowledge.

But also in solely offline scenarios, efficient handling of changing train-
ing data plays an important role. Employing meta-heuristics during training
(e.g., feature selection, feature optimization, cross-validation) requires iter-
ated training on different but interrelated training sets S0, S1, . . . , Sn. For
real-world data, the näıve solution—complete retraining in each step—is of-
ten impossible due to time and memory restrictions.

Therefore, efficient update rules for suchlike scenarios have been studied.
The solution to a concrete problem at hand strongly depends on the type
of changes that are assumed from Ri to Ri+1, thereby from Si to Si+1, and
on the constraints on f . In general, changes that can occur may affect the
number of training samples |R|, the number of classes, and the representation
of training samples in S due to changing f .

The special case R0 ⊆ R1 ⊆ . . . and S0 ⊆ S1 ⊆ . . ., thus continuously
adding training data while keeping f fixed, was studied by Pang et al. [12]
who propose an incremental LDA for sequential and chunk updates, Kim et
al. [9] who present an approximation based on sufficient spanning set, and
Huang et al. [6].

Tapp and Kemsley [17] study update formulas for more efficient cross-
validation in LDA. They showed how the covariance matrix can be updated
when single training examples are exchanged, thus |Ri ∩Ri+1| = |Ri| − 1
while the feature calculation f is unchanged.

In this work, we consider a different scenario. We assume that the raw
training samples do not change (Ri = Ri+1), but their representation Si varies
due to variable feature extraction, thus f is assumed to be altered. A method
handling this efficiently can be used to continuously update a classifier while

4

feature calculation is altered (e.g., during selection or optimization). More
formally, we deal with the following task: Perform efficient training of an
LDA classifier in step i given

• new training data Si,

• training data Si−1,

• an LDA classifier trained for Si−1,

• and fi ≈ fi−1.

The notation fi ≈ fi−1 indicates that the representation of the training
examples changes only in few dimensions from Si−1 to Si. In the next section,
we present an efficient update rule for the case that only the representation in
one dimension is changing. This update can be repeated as often as required
when more changes happen.

The formula we present here allows for an efficient rank-two update to
adapt the inverse of the covariance matrix. Similar rank-one updates have
been proposed for Kalman filtering [4] and recently in the domain of meta-
heuristics for variable metric evolution strategies [15].

4. Efficient incremental update

Given training data S = {(x1, y1), . . . , (xℓ, yℓ)} ∈ (Rn × {c1, . . .})ℓ, let
Ŝ = {(x̂1, y1), . . . , (x̂ℓ, yℓ)} ∈ (Rn × {c1, . . .})ℓ be the training data which
results from substituting or modifying a single feature. That is, if the ith
feature is altered, for any k = 1, . . . , l the feature vectors xk and x̂k may only
differ in their ith component while all other components are equal.

Let Σ denote a common covariance matrix as used by LDA trained on S
and Σ̂ the updated matrix resulting from changes in one input dimension.
We assume that iterative training of a classifier with LDA is performed and
that the inverse matrix Σ−1 is known. Then, the calculation of Σ̂−1 can be
done more efficiently, compared to explicit inversion, by an update based on
the decomposition

Σ̂−1 = (Σ +G)−1 (4)

and application of the Woodbury matrix identity

(A+ UCV)−1 = A−1 − A−1U
(

C−1 + V A−1U
)−1

V A−1. (5)

5

Here,

G = Σ̂− Σ =

0 · · · g1 i · · · 0

0 · · · ... · · · 0
gi 1 · · · gi i · · · gi n

0 · · · ... · · · 0
0 · · · gn i · · · 0

(6)

is a matrix with rank two.
The crucial point in order to benefit from eq. 5 is to bring G to a form

G = UCV where the matrix C has low dimensionality. This can be achieved
by choosing

U =

g1 i 0
g2 i 0
...

...
g(i−1) i 0
gi i 1

g(i+1) i 0
...

...
gn i 0

, (7)

C =

(

1 0
0 1

)

(8)

and

V =

(

0 0 · · · 0 1 0 · · · 0
g1 i g2 i · · · g(i−1) i 0 g(i+1) i · · · gn i

)

. (9)

Now Σ̂−1 can be computed as

Σ̂−1 = (Σ + UCV)−1 = Σ−1 − Σ−1U
(

C−1 + V Σ−1U
)−1

V Σ−1. (10)

Note that here C−1 = C.
This is more efficient than calculating the inverse directly: Σ−1U and

V Σ−1 are ordinary matrix products with 2n elements each. The only inverse

6

left to compute, (C−1 + V Σ−1U)
−1
, is a 2×2 matrix and therefore can simply

be calculated as

(

a b
c d

)−1

=
1

ad− bc

(

d −b
−c a

)

. (11)

Multiplying the resulting matrices on the right side of eq. 10 and merging
has complexity of Θ(n2).

The total complexity for this incremental update is Θ(n2). As the update
step can be repeated multiple times, the resulting complexity is Θ(Nn2) when
changes in N dimensions occur.

5. Application to iterative training with LDA

To benefit from the presented update rule during feature selection or
optimization using a meta-heuristic that performs iterated adaptations is
straight-forward: The covariance matrix has to be inverted only once di-
rectly to initialize the algorithm. All further changes to the feature set can
be adopted by the incremental update. For the substitution of one feature re-
sulting in new input values in dimension i, the following steps are performed:

1. Calculate new class means µ̂ki

2. Calculate new covariance matrix entries ĉ1 i, . . . , ĉn i and ĉi 1, . . . , ĉi n
3. Calculate values g1 i, . . . , gn i and gi 1, . . . , gi n as in eq. 6

4. Build U and V according to eq. 7 and eq. 9

5. Compute Σ̂−1 using the update rule from eq.10

If more than one feature is substituted, these steps can be repeated as often
as required.

After exchanging features, the classifier can be retrained by LDA based
on class means µ̂k and the covariance matrix Σ̂−1 updated this way. This
retraining is simply done (cf. eq. 2) by calculating the new weight vector

ŵ = Σ̂−1(µ̂1 − µ̂2) (12)

and the constant

b̂ = −1

2
(µ̂1 + µ̂2)

TΣ̂−1(µ̂1 − µ̂2). (13)

7

6. Experiments

The goal of our experiments is to study two aspects:

Numerical stability. The numerical stability regarding the incrementally up-
dated inverse Σ̂−1 can be evaluated based on the terms Il = Σ̂−1Σ̂ and
Ir = Σ̂Σ̂−1. Both, Il and Ir, should result in the identity matrix I. The
max-norm ‖A‖∞ defined by

‖A‖∞ = max {|aij|} (14)

was used to determine the largest deviation

e = max {‖I − Il‖∞ , ‖I − Ir‖∞} (15)

at the end of the training process (e.g., when the meta-heuristic has termi-
nated).

Time measurements. In order to show that the theoretical results really lead
to an improvement in practice, we compared the runtime of meta-heuristics
using the proposed incremental update to the basically same algorithms per-
forming complete retraining in every iteration.

We studied feature selection on an artificial test problem (in sec. 6.1) and
feature optimization for a real-world classification problem (in sec. 6.2).

6.1. Artificial feature selection example

For our first experiment we consider the classical example by Trunk [18][8].
In this binary classification problem, n-dimensional feature vectors x ∈ R

n

have to be assigned to one of two classes. Both classes are equally likely
a priori. The likelihood of observing x ∈ R

n given the class y ∈ {±1} is a
Gaussian

p(x | y) = 1√
2π

e−‖x−ym‖2/2 (16)

with mean ym and unit covariance matrix. The vector m has components
mi =

√

1/i for i = 1, . . . , n.
The Bayes optimal decision rule assigns an input x to class 1 if xTm > 0

and to class 0 otherwise. The Bayes error is given by Pe

(

√
∑n

i=1 1/i
)

, where

the auxiliary function Pe is defined as Pe(r) =
∫∞
r

1√
2π
e−z2/2dz.

8

Since
∑n

i=1 1/i diverges for increasing n it is easy to see that increasing
the number of features reduces the error probability, which converges to zero
for growing n [18].

A simple Bayes plug-in classifier (with prior knowledge that the class-
conditional densities are Gaussians with unit covariance matrix and that the
problem is symmetric) given a training sample S = {(x1, y1), . . . , (xℓ, yℓ)}
converges to the Bayes optimal decision rule for ℓ → ∞ for any dimensional-
ity n. However, Trunk showed that for fixed ℓ the error probability converges
to chance level for n → ∞.

6.1.1. Experimental Setup

We considered the problem of selecting an optimal subset S of fixed
size out of a feature pool P . For our experiments we chose |S| = 100 and
|P| = 2000.

In total, ℓ = 6000 training samples were generated randomly according to
eq. 16 using stratified sampling. These examples were partitioned into three
sets to allow for cross-validation, thus resulting in 1000 samples per class in
each set.

In our experiments, we tried to keep the algorithm as simple as possible.
Therefore, a stochastic hill-climbing strategy was used to perform feature
selection. This meta-heuristic considers one candidate solution, the feature
set C, which is iteratively improved by evaluating possible substitutions. The
cross-validation error of the linear classifier was computed in every iteration
after modifying the solution. If this error increased, all changes were reversed,
otherwise held.

The set C was initialized with n = 100 random features from P . In each
of the gmax = 106 generations, features from C were randomly replaced by
others from P\C. The number of features N to exchange was determined
in every iteration g according to a Poisson distribution with expectation
λ = |C| · 10−1− g

gmax .
We performed 40 trials where P was randomly initialized every time. Our

C++ implementation was based on the Shark open-source machine learning
library [7]. The OpenMP standard1 was used to benefit from parallel program
execution on the test PC2.

1http://openmp.org
2Intel Core 2 Duo CPU E6300 with 3GB RAM

9

6.1.2. Results

Analysis of the performed trials showed the following results:

Numerical stability. The largest error (cf. eq. 15) measured at the end of a
trial was 9 ·10−15. The mean error in all trials was 6 ·10−15. These deviations
have practically no influence on the performance of the classifier.

Time measurements. The mean runtime for feature selection was 63min.
The reference implementation without the incremental update was slower by
a factor of 40.

The test problem also allows to evaluate and verify the convergence of
the meta-heuristic used. The histogram in figure 1 shows how often each of
the best 200 features was selected for the final set in the performed trials.
The most important features have been reliably found by the heuristic used.
Thus, our simple feature selection algorithm performed reasonably well.

20 40 60 80 100 120 140 160 180 200
0

0.25

0.5

0.75

1

Feature index

R
el

at
iv

e
fr

eq
ue

nc
y

Figure 1: Relative frequency that feature i = 1, . . . 200 was chosen for the final set. The
smaller i the more discriminative the feature.

6.2. Real-world feature optimization example

As a real-world example, we consider the problem of optimizing a set of
Haar wavelet features for pedestrian classification. Solving this task in real-
time plays an important role for many applications, amongst others driver

10

assistance systems and surveillance. A classifier based on LDA can meet
real-time constraints when an appropriate set of features is used.

Haar wavelet features are state-of-the-art for real-time computer vision.
Their popularity is mainly based on the efficient computation using the in-

tegral image [19]. They were successfully applied, for instance, for object
detection, classification, and tracking [19, 13, 14, 3]. Figure 2 shows ex-
amples of six basic types of Haar wavelet features. Their responses can be
calculated with 6 to 9 look-ups in the integral image, independently of their
absolute sizes.

Figure 2: Basic types of Haar wavelet features.

Haar wavelet features can serve as a universal basis (i.e., offer a corpo-
rate preprocessing) when different computer vision applications have to be
run in parallel. We therefore assume that a small fixed number of Haar
wavelet features is evaluated for every pixel in a camera image. Each of
those features can be described by its width, height, and type. The goal of
our experiments here is to automatically construct an optimal feature set for
pedestrian detection.

6.2.1. Experimental Setup

We considered the pedestrian classification benchmark dataset introduced
by Munder and Gavrila [11], where 29, 400 examples are available for training
and 19, 600 for testing, all of them 18× 36 pixel grayscale images. Figure 3
shows some samples from the database.

Figure 3: Samples from the pedestrian classification benchmark dataset [11].

We chose a feature set size of 7. As six different feature types are consid-
ered (see fig. 2) and the size varies from 3 × 3 to 16 × 16 pixels, more than

11

1020 different feature sets were possible. This number can not be handled by
exhaustive search and employing meta-heuristics here is essential in order to
find an optimal setup.

Each feature vector consists of the absolute responses. Pixels outside the
image border were set to the mean image value for border handling.

We performed 5 trials of feature optimization, each consisted of 500 gen-
erations. In each generation, one new candidate solution resulted from mu-
tating one parent solution. Mutations were realized by randomly choosing
one of the seven features and either change its parameters (size and type) or
substitute it by a random new one. If the 3-fold cross validation error on the
training sets did not increase, the offspring solution was kept as parent for
the next generation.

During optimization, we trained the classifier based on responses of the
features at every second pixel (therefore, n = 952). As the same features are
evaluated across the whole image, changing the parameters of one feature
leads to changes in N = 136 dimensions of feature vectors.

6.2.2. Results

Analysis of the performed trials showed the following results:

Numerical stability. The largest error measured at the end of a trial was
5.2 · 10−5. The mean error in all trials was 7.1 · 10−6. These deviations have
practically no influence on the performance of the classifier.

Time measurements. The mean runtime for feature optimization was 22.4 h.
This is 60% less than the implementation without the incremental update
requires. The speed-up in this experiment is not as high as in the other
experiments presented in section 6.1. This is because changing one Haar
wavelet feature here influences one seventh of the dimensions in the feature
vectors. Nevertheless, even in this case the gain in speed is significant and
important for real-world applications.

Figure 4: Optimized feature set. The features have sizes of 16 × 8, 3 × 3, 6 × 5, 3 × 9,
4× 3, 4× 4, and 3× 5.

The best set of features found in the trials is shown in figure 4. We
evaluated the performance of the optimized classifier on the two test sets

12

according to the method proposed in [11]. The resulting ROC curve given in
figure 5 illustrates all possible trade-offs between false alarm rate and correct
detection rate. As the classifier considered here is extremely fast, it is very
well suited for initial detection in a whole camera image to compute regions
of interest for final pedestrian classification.

Figure 5: ROC curve of optimized classifier.

7. Conclusion

We proposed an incremental update of the covariance matrix inverse for
iterated training of a classifier with linear discriminant analysis. This up-
date reduces the complexity for iterated retraining from cubical to Θ(Nn2)
when N components of the input dimensions are changed. For N = 1 this is
the asymptotic lower bound.

Our experiments on an artificial feature selection problem and a real-
world feature optimization problem showed that the update rule allows for
significant time saving during training while being numerically stable. There-
fore, exploring larger feature pools more accurately becomes possible.

The problem of analyzing an immense number of features is common
for many computer vision applications. Almost all meta-heuristics for LDA
feature selection or LDA feature optimization can benefit from the proposed
update rule.

[1] P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman. Eigenfaces vs.
Fisherfaces: Recognition using class specific linear projection. IEEE

13

Transactions on Pattern Analysis and Machine Intelligence, 19(7):711–
720, 1997.

[2] D. P. Bertsekas and J. Tsitsiklis. Neuro-Dynamic Programming. Athena
Scientific, 1996.

[3] H. Grabner and H. Bischof. On-line boosting and vision. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 260–267, 2006.

[4] M. S. Grewal and A.P. Andrews. Kalman Filtering: Theory and Prac-

tice. Prentice-Hall, 1993.

[5] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statisti-

cal Learning: Data Mining, Inference, and Prediction. Springer-Verlag,
2001.

[6] Z. Huang, K. Ding, L. Jin, and X. Gao. Writer adaptive online hand-
writing recognition using incremental linear discriminant analysis. In
Proceedings of the IEEE Conference on Document Analysis and Recog-

nition, pages 91–95, 2009.

[7] C. Igel, T. Glasmachers, and V. Heidrich-Meisner. Shark. Journal of

Machine Learning Research, 9:993–996, 2008.

[8] A. K. Jain, R. P. W. Duin, and J. Mao. Statistical pattern recogni-
tion: A review. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 22(1):4–37, 2000.

[9] T.-K. Kim, S.-F. Wong, B. Stenger, J. Kittler, and R. Cipolla. Incre-
mental linear discriminant analysis using sufficient spanning set approx-
imations. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 1–8, 2007.

[10] J. Lu, K. N. Plataniotis, and A. N. Venetsanopoulos. Regularization
studies of linear discriminant analysis in small sample size scenarios with
application to face recognition. Pattern Recognition Letters, 26(2):181–
191, 2005.

[11] S. Munder and D. M. Gavrila. An experimental study on pedestrian
classification. IEEE Transactions on Pattern Analysis and Machine In-

telligence, 28(11):1863–1868, 2006.

14

[12] S. Pang, S. Ozawa, and N. Kasabov. Incremental linear discriminant
analysis for classification of data streams. IEEE Transactions on Sys-

tems, Man, and Cybernetics, 35(5):905–914, 2005.

[13] C. Papageorgiou and T. Poggio. A trainable system for object detection.
International of Journal Computer Vision, 38(1):15–33, 2000.

[14] J. Salmen, T. Suttorp, J. Edelbrunner, and C. Igel. Evolutionary op-
timization of wavelet feature sets for real-time pedestrian classification.
In A. König, M. Köppen, N. Kasabov, A. Abraham, and C. Igel, edi-
tors, Proceedings of the IEEE Conference on Hybrid Intelligent Systems,
pages 222–227. IEEE Press, 2007.

[15] T. Suttorp, N. Hansen, and C. Igel. Efficient covariance matrix update
for variable metric evolution strategies. Machine Learning, 75:167–197,
2009.

[16] F. Tang and H. Tao. Fast linear discriminant analysis using binary bases.
Pattern Recognition Letters, 28(16):2209–2218, 2007.

[17] H. S. Tapp and E. K. Kemsley. Optimizing the efficiency of cross-
validation in linear discriminant analysis through selective use of the
sherman-morrison-woodbury inversion formula. Journal of Chemomet-

rics, 22(6):419–421, 2008.

[18] G. V. Trunk. A problem of dimensionality: A simple example. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 1(3):306–
307, 1979.

[19] P. Viola and M. Jones. Robust real-time object detection. International
Journal of Computer Vision, 57(2):137–154, 2004.

[20] J. Ye and Q. Li. LDA/QR: an efficient and effective dimension re-
duction algorithm and its theoretical foundation. Pattern Recognition,
37(4):851–854, 2004.

15

