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Abstract Computer-aided sports analysis is demanded
by coaches and the media. Image processing and ma-
chine learning techniques that allow for “live” recogni-
tion and tracking of players exist. But these methods
are far from collecting and analyzing event data fully
autonomously. In order to generate accurate results, hu-
man interaction is required at different stages including
system setup, calibration, supervision of classifier train-
ing, and resolution of tracking conflicts. Furthermore,
the real-time constraints are challenging: In contrast to
other object recognition and tracking applications, we
cannot treat data collection, annotation, and learning
as an offline task. A semi-automatic labeling of train-
ing data and robust learning given few examples from
unbalanced classes are required.

We present a real-time system acquiring and analyz-
ing video sequences from soccer matches. It estimates
each player’s position throughout the whole match in
real-time. Performance measures derived from these raw
data allow for an objective evaluation of physical and tac-
tical profiles of teams and individuals. The need for pre-
cise object recognition, the restricted working environ-
ment, and the technical limitations of a mobile setup are
taken into account. Our contribution is twofold: 1) The
deliberate use of machine learning and pattern recog-
nition techniques allows us to achieve high classifica-
tion accuracy in varying environments. We systemati-
cally evaluate combinations of image features and learn-
ing machines in the given online scenario. Switching be-
tween classifiers depending on the amount of training
data and available training time improves robustness
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and efficiency. 2) A proper human machine interface de-
creases the number of required operators who are incor-
porated into the system’s learning process. Their main
task reduces to the identification of players in uncertain
situations. Our experiments showed high performance in
the classification task achieving an average error rate of
3% on three real-world datasets. The system was proved
to collect accurate tracking statistics throughout differ-
ent soccer matches in real-time by incorporating two hu-
man operators only. We finally show how the resulting
data can be used instantly for consumer applications and
discuss further development in the context of behavior
analysis.

Keywords Sports analysis, Supervised learning,
Motion analysis, Human-machine interfaces

1 Introduction

Computer vision and image analysis are becoming more
and more important in sports analytics, the science of
analyzing and modeling processes underlying sporting
events. Sports with a high media coverage create a de-
mand for systematic review and objective evaluation of
the performance of individual athletes as well as of teams.
Across almost all sports, management and coaches make
use of statistics and categorized video material to sup-
port their strategies.

We consider a framework for real-time analysis of soc-
cer matches (Schlipsing et al 2013). It consists of two
high-definition cameras, one desktop PC, and two lap-
tops. Our system collects positional data for each player
during the whole match. These data can be accessed for
various purposes such as processing for television broad-
casting, mobile applications, and professional analysis. In
particular, processed tracking data provides important
insights for physical and tactical performance evaluation
by coaches (Beetz et al 2009) as depicted in Sec. 5.5.
Moreover, in contrast to commercial systems, the tar-
geted use case is extended to tracking at any soccer field,
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be it training pitch, small stadiums or away matches with
a system operated by two briefly trained laymen. Thus,
the development of the presented framework was driven
by the following design goals:

– Mobility : One is able to quickly set up and calibrate
the system at any location, be it stadium, training
site, or indoor court.

– Low cost : The hardware requirements are small, be-
cause only off-the-shelf hardware is used.

– High degree of automation: The recognition system
can be set up and run by only two human operators.

– Accuracy : State-of-the art pattern recognition tech-
niques ensure accurate detection and classification
performance.

In the following, we present our video-based sports anal-
ysis system in detail. We put an emphasis on the “online”
training task that has to be solved for a live application
of such a tracking system. This includes the efficient com-
bination of unsupervised and supervised multi-category
classification and the involved human machine interac-
tion (HMI).

Our approach takes into account requirements for ro-
bust object recognition and tracking, the constraint op-
erator working environment, and the technical limita-
tions of a mobile setup. This requires new techniques for
efficient data annotation and iterative classifier training
for the given scenario.

In our sample application, the classification task re-
duces to distinguishing different team clothing. There
are five main categories, outfield players and goalkeep-
ers of both teams and the referees. Being embedded in
a real-time process, the classification module is subject
to constraints regarding the choice of image features and
computational complexity of the classifier. We present a
comparative study that justifies our design choices for
the classification module. We employed combinations of
color histograms from three color spaces as a robust rep-
resentation of non-rigid objects and compare their per-
formance with PCA feature extraction and Spatiograms.
Moreover, different types of classifiers, namely a nearest
neighbor approach, linear discriminant analysis, and two
multi-class extensions of support vector machines were
evaluated.

The following sections present related work and give
an overview of our recognition system. Section 4 points
out the real-time constraints and their implications for
feature / classifier choice, describes the proposed proce-
dure, and states our empirical results. Section 5 discusses
the HMI approach followed by a brief review of its evalua-
tion. We finish with an overall conclusion and an outlook
towards future research directions.

2 Related Work

Video analysis of sports based on television broadcasts
has been done in order to categorize the material with

respect to the type of sport, the camera view (Zhang et al
2012), and interesting events like scores or offside (Ass-
falg et al 2003; D’Orazio et al 2009). Nevertheless, due
to the limited field coverage, TV material is not suitable
for robustly tracking all actors involved in the game.

Approaches to player tracking based on task specific
camera setups (mainly in the context of soccer) are re-
viewed by Xinguo and Farin (2005); D’Orazio and Leo
(2010). For alternative systems based on multiple cam-
eras distributed in the stadium we refer to Poppe et al
(2010); Ben Shitrit et al (2011); Ren et al (2010). In the
case of various camera positions within the stadium, dif-
fering lighting conditions have to be considered, e.g., by
a cumulative brightness transfer function (Prosser et al
2008). Other notable publications relevant in the con-
text of our study focus on detection and tracking using
color and depth information (Muñoz Salinas 2008), unsu-
pervised feature extraction (Liu et al 2009) and address
the tracking task with graph representations (Figueroa
et al 2004). The importance of analyzing different color
spaces for the image segmentation in soccer analysis is
pointed out by Xu et al (2004) and Vandenbroucke et al
(2003), who introduced an adapted hybrid color space.
As a state-of-the-art baseline we considered spatiograms,
an extension of histograms, proposed in the context of
region-based object tracking (Birchfield and Rangarajan
2005).

None of the aforementioned approaches is able to
identify players in person. They only recognize team mem-
bership. It is noteworthy that skilled humans are able
to identify players in the videos, incorporating different
hints like players’ physique, skin and hair color, course
of motions, and position relative to the rest of the team.

First commercial systems for the analysis of soccer
videos have reached the market, for instance Tracab1,
AmiscoPro2, Vis.Track3. They either use up to 16 mo-
bile cameras and a stereo vision approach for tracking or
require several permanently installed cameras. Statistics
are either captured live – with the help of up to eight
human operators – or offline after 48 hours. None of the
mentioned systems is able to operate fully autonomously.

For the given live scenario, where the visual appear-
ance of all actors is not known prior to the match, no
satisfying solution has been proposed yet. The standard
setup for classification modules presented in the men-
tioned literature is an offline-learning procedure. Com-
mercial systems counteract this issue by massive human
effort, e.g.,manually selecting representative colors dur-
ing warm-up in order to initialize segmentation and clas-
sification modules. Such approaches are neither efficient
nor robust.

In their review, D’Orazio and Leo conclude that “a
great deal of work should be directed towards the enhance-
ment of automatic analysis to reduce manual interven-

1 www.tracab.com
2 www.sport-universal.com
3 www.bundesliga-datenbank.de
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Fig. 1 System chart. Colors indicate independent module
topics covered in Sec. 3.

tion and improve their performance” (D’Orazio and Leo
2010). This study points out the machine learning part
in order to achieve high classification accuracy in varying
environments while requiring only little human interven-
tion. Still, human interaction is required for:

– system setup and calibration,
– supervision of machine learning algorithms,
– identification of individual players, and
– resolution of multi-object tracking conflicts in crowded

environments.

While there are numerous studies focusing on the im-
provement of computer vision techniques involved in the
recognition process, there is little work done in the field
of efficient human machine interaction. The goal of that
interaction is not limited to complementing weaker sys-
tem parts by human operators, but to incorporate the
operators into the process of machine learning for ensur-
ing an accurate and robust performance.

3 Video Processing Overview

The recognition system operates in real-time, allows to
analyze full field views, and relies on portable, affordable
hardware. Using two static high-resolution cameras we
produce a panoramic image capturing the whole field.
Based on this video stream we generate two cues for
object segmentation, namely adaptive background color
estimation and motion detection. Subsequent clustering
extracts regions of interest. The detections are then clas-
sified using color histogram features, which is detailed in
Sec. 4. Finally, we project recognized player positions
onto the ground plane and follow them over time. Each
track is stabilized by a Kalman-filter containing a phys-
ical motion model.

In this section, the image processing pipeline illus-
trated in Fig. 1 is presented. Mpeg attachment 1 shows
a demo sequence starting with the panorama, visualiz-
ing the segmentation cues followed by classified clusters
(colored ROIs) and the temporal integration (paths).

3.1 Full-HD panoramic video capturing

The image acquisition is realized by two stationary full-
HD cameras (Prosilica GE1910C) with a color-CCD res-
olution of 1920 × 1080 pixels and a horizontal angle of

view of 60◦, each covering half of the field. The Gigabit-
Ethernet cameras are directly connected to the process-
ing machine, which is a four-core Intel Xeon W3520 PC
equipped with a CUDA4 capable graphics card (Geforce
GTX 480 ). For a computationally efficient and reliable
backup parallel to image processing, the captured video
streams are stored in raw format on a RAID-controlled
storage (≃ 100MB/s).

Basis of all later processing steps is a panoramic im-
age composed from the two input images (cf. Fig. 2).
Moreover, this feed has a higher usability for match re-
views and other media purposes than a split view. For
a proper mapping of image positions into field coor-
dinates, the cameras and their pose are calibrated in
advance. Compensation of radial lens distortion is ap-
plied within the stitching process and allows for a lin-
ear mapping (homography) from image to world coordi-
nates (Zhang 2000). The homographies are estimated
from at least four point correspondences per camera.
These calibration points are chosen manually after in-
stallation by clicking, for example, the corner points and
the end points of the center line within the distortion
corrected image. The Direct Linear Transformation al-
gorithm (Hartley and Zisserman 2004, Sec. 4.1) is used
to compute the transformations for the two poses H1,2,
which allow us to project image points from both camera
coordinate systems (undistorted) to field coordinates.

By choosing an interpolated result pose Hp = αH1+
(1− α)H2 for the panorama we are able to map each of
its positions xp (pixels) back to a corresponding source

4 Compute Unified Device Architecture by Nvidia, see
www.nvidia.com/cuda

Fig. 2 Input images, panorama image, and segmentation
cues (color /motion).
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Fig. 3 Image planes and their corresponding transforma-
tions.

position xi = H−1

i Hpxp either in the left, right or both
images (cf. Fig. 3).

Image data is recorded in Bayer format (Bayer 1975),
which is converted to RGB employing an edge-adaptive,
constant-hue demosaicking approach in order to avoid
color corruption (Gunturk et al 2005; Ramanath et al
2002). In order to obtain color information in each pixel
xi we perform bilinear interpolation of the most proxi-
mate source pixels. For the area where the cameras over-
lap we interpolate between both gradually. As transfor-
mation parameters are assumed constant during a match
the result image can be computed using a lookup table
and parallel programming on the graphics card.

3.2 Real-time object segmentation

Regions of interest (ROIs) are separated from the scene
background performing two steps. We firstly extract pixel-
wise segmentation cues (see Fig. 2) and then cluster con-
spicuous pixels locally to ROIs.

The color segmentation cue makes use of the plain-
colored surface (i.e., grass-green), which is modeled by a
multivariate normal distribution in HSV-space. There-
fore, all pixels covering the field area are taken into ac-
count. In order to remove outliers covering the back-
ground (i.e., players or line markings) we discard data
exceeding a certain Mahalanobis distance, which is the
distance to the center of the distribution measured in
standard deviations. This is repeated on the inliers in
order to improve the background distribution estimate.
The estimated distribution is used to generate a lookup
table assigning colors to background or foreground. Al-
though the color estimate can be updated in regular
intervals in order to deal with lighting changes, it will
not help segmenting foreground into different-colored ar-
eas, for instance at lines, or in front of the perimeter
boards / stands.

Therefore, a second cue for the detection of short-
term color changes (“motion”) was considered. The back-
ground color b is modeled in each pixel individually
by exponential smoothing with parameter αb. The back-
ground color evolves over time from the pixel’ color p

into bt+1 = αbpt + (1 − αb)bt. Given this background
image, foreground pixels are identified by thresholding
the current image subtracted from the background. This
background model allows for motion perception under
varying lighting conditions as the model adapts quickly
to a new background characteristic (cf. Xu et al 2004).
Additionally, we introduced a second parameter αf <
αb which is used if the new pixel value lies within the
threshold distance (in color space) and is, thus, regarded
as background. Otherwise αf is applied, so that fore-
ground measurements do not affect the background esti-
mate much but still allow to adapt towards a persistent
change in background on a longer time scale.

To increase robustness against noise, both cues are
followed by morphological operators (cf. Figueroa et al
2004). To this point, all operations take less than 10ms
for a HD-panorama using an efficient GPU implemen-
tation (cf. Fig. 1, red and green modules). The cluster-
ing algorithm is a region growing along “activated” cue-
pixels, taking into account problem specific knowledge
(e.g., position of line markings, minimal or maximal ob-
ject size).

Limiting the size of clusters to reasonable player di-
mensions (with some tolerance) has helped to improve
robustness. Those limits are automatically determined
from the world coordinates xw of the segmented ob-
ject (i.e., the player’s foot position), the camera posi-
tion, a predefined interval of possible human heights (and
widths), and the perspective transformation Hp: The
vertical view angle of the camera is considered in order
to determine the perspective shadow point xs behind the
player’s head. The height is estimated as the distance (in
image rows) of mapped head and foot position |(H−1

p xs−

H−1
p xw)y|. The width is derived by regarding the object’s

expansion ∆ (orthogonal to the line of sight) within the
ground plane. We transform the extreme points onto the
image plane and receive a width estimate in pixels from
|(H−1

p (xw + ∆/2)−H−1
p (xw − ∆/2))x|.

Single ROIs may contain several objects overlapping
each other. This matter is addressed by the subsequent
classification module.

3.3 Multi-category classification

The development of the classifier is mainly driven by two
issues – performance and time. As team clothing, back-
ground color and visual appearance vary to a large extent
from match to match, we train the classifier during the
preparation phase or at the beginning of a match. There-
fore, classifiers which can be trained quickly and do not
require too many training examples are necessary.
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In addition to the obvious five classes outfielder 1/2,
goalkeeper 1/2 and referees we introduce an error cate-
gory for irrelevant objects and a group class which ap-
plies to ROIs containing at least one outfielder from each
team (see below). Preliminary experiments showed that
a fully unsupervised learning approach (e.g., clustering)
does not perform satisfactory. The procedures of fea-
ture extraction and classification for this special “online”
learning task are detailed and evaluated in Sec. 4.

3.4 Multi-object tracking

Once all detected objects of a single frame are classified,
they need to be matched to previously recognized ROIs
in order to collect path data for each player. Therefore,
ROIs’ root points are transformed to world coordinates
and integrated over time within tracks (see Fig. 4). Each
track is represented by a linear Kalman-Filter (Xu et al
2004; Gelb 1974), which in contrast to conventional time
series filters supports an explicit separation of the sys-
tem dynamics (physical player model) and the process of
measurement (positive classification at position z). The
state is modeled as player position and velocity transi-
tioning by laws of motion.

The Kalman process applied to the given task can
be outlined by the following initialization: The matched
root point in world coordinates defines the observation

vector zt =
[

xt yt
]T

at time t. Both are uncertain obser-

vations of the state xt =
[

xt yt x
′

t y
′

t

]T
.

zt = Htxt + vt, where Ht =

[

1 0 0 0
0 1 0 0

]

is the ob-

servation model mapping state space to observed space.
Observation noise vt ∼ N (0,R) is modeled as zero-mean
Gaussian noise with covariance R.

Fig. 4 Tracked paths for each player visualized in image and
world coordinates.

One could incorporate the perspective transforma-
tion into the filter and define the observation noise in
image coordinates. As this cannot be modeled in a lin-
ear Kalman filter, an Extended or Unscented Kalman
filter (Julier and Uhlmann 2004) would be required. To
ensure real-time capability, we simply assumed the noise
for measuring the depth to be higher than for the lateral

component: R =

[

1/4 0
0 1

]

. Given the internal state at

t− 1 the filter dynamics assume the following true state
xt to emerge according to xt = Ftxt−1 +wt, where the
state transition model

Ft =







1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1







describes the physical behavior of a player in the ground
plane and process noise wt ∼ N (0,Q). Process noise
is basically introduced by the non-modeled acceleration
with variance σ2

a, which translates to

Q =

[

∆t2

2

∆t

] [

∆t2

2

∆t

]T

σ2
a =

[

∆t4

4

∆t3

2
∆t3

2
∆t2

]

σ2
a

where σa should be chosen in a physically reasonable
range (here: σa = 3m/s2). The presented filter model is
able to robustly estimate the player’s trajectory and to
predict his / her position in the next time step in real-
time.

Consequently, we are left with a constrained match-
ing problem of new measurements and the Kalman pre-
dictions in each frame. Groups are treated as “jokers”
that are able to serve as an update for more than one
track of different classes. As we do not distinguish be-
tween players of the same team, a human operator needs
to assign “new” tracks to individual players to complete
the database. Experiments show sufficient tracking per-
formance for an operator to easily assign all players of
one team in real-time (cf. Sec. 5.6) .

4 Classification

This section focuses on the classification module. We
present image features and classifiers considered in the
following empirical evaluation.

4.1 Feature extraction

The requirements for valuable image features in the given
scenario are

– low dimensionality,
– fast computability, and
– good class discrimination.
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(a) R and G;
B=0.3

(b) H and S;
V=0.9

(c) U and V;
Y=0.5

Fig. 5 Visualization of two-dimensional color histograms
with a resolution of 3 bits (i.e., 8 bins) in each dimension
(row, column).

Due to the fact that we detect non-rigid objects, recog-
nition should be invariant to player pose and orienta-
tion. Moreover, team shirts are designed to be distin-
guished well by their color. Therefore, we decided not to
use shape or spatial information but color histograms,
which proved to be valid features for object classifica-
tion (Chapelle et al 1999; Zivkovic and Kröse 2004).

The images are recorded in RGB-space but there are
good reasons to evaluate other color spaces. An HSV
representation separates the color properties hue, satu-
ration, and brightness and enables us to rely less on those
ones the recognition process should be invariant against.
The YUV-space has a single brightness channel and de-
fines the hue in two dimensions without periodicity. Full
resolution three-dimensional histograms result in feature
vectors of size 2563. Discarding channels and/or reducing
their resolution make the histograms usable in the given
scenario and generally less prone to noise (cf. Fig. 5).
Histogram entries are normalized in order to cope with
varying size and aspect ratio of the detected image re-
gions.

Given the foreground segmentation (see Sec. 3.2) we
are able to identify object relevant pixels in each detected
image region. Thus, only those pixels are considered for
the histogram. Preliminary experiments showed a signif-
icant increase in performance using this more descriptive
representation.

As a benchmark for feature extraction, we considered
two state-of-the-art methods in the given context. We re-
garded image features extracted by principal component
analysis (PCA) applied to uniformly scaled RGB train-
ing images (see Fig. 6). PCA is arguably the best known
linear feature extractor (Jain et al 2000). It was success-
fully employed for several recognition tasks based on the
Eigenface approach (Turk and Pentland 1991) and lately
in the context of sports analysis to distinguish between
players’ body postures (Leo et al 2009).

As a second reference method, spatiograms proposed
by Birchfield and Rangarajan (2005) were applied. Spa-
tiograms extend color histograms by spatial information
without the need of preset image regions. Each histogram
bin additionally stores the mean position and covariance
matrix of its associated pixels and, thus, enables a clas-
sifier to learn spatial relationships during training.

Fig. 6 First 30 principal components of dataset I (cf. Fig. 7,
top row). Contrast and saturation adjusted for visualization.

4.2 Real-time classification

We evaluate different real-time capable classification al-
gorithms: Linear discriminant analysis (LDA), nearest
neighbor (NN), and one-vs-all multi-class support vec-
tor machines (SVMs).

The time spent on training these classifiers as well
as the time they need for classification crucially depend
on the features used and the size of the training set.
For our experiments we only considered combinations
that are real-time capable in the given setup. The model
selection is realized by grid search and cross-validation,
independently for each dataset. Runtimes reported in the
experimental evaluation always include the time needed
for model selection.

Linear discrimination using LDA gives surprisingly
good results in practice despite its simplicity. Dealing
with underrepresented classes, we apply regularization
to ensure proper conditioning of the covariance matrix
in LDA (Hastie et al 2001, Sec. 4.3.1).

Nearest neighbor classifiers are of particular interest
due to their fast training. We employ class-wise hierarchi-
cal clustering of training examples to reduce the amount
of prototypes and, thus, guarantee real-time classifica-
tion (Jain et al 2000), (Hastie et al 2001, Sec. 13.2.1). The
distance of two training examples is defined by their Eu-
clidean distance in feature space. Clustering is performed
in an agglomerative complete-linkage fashion, separately
for each class, until the desired number of prototypes is
reached. Finally, the classification decision for test data
is given by the class label of the nearest cluster (i.e., 1-
NN).

Support vector machines (Cortes and Vapnik 1995)
mark the state-of-the-art in binary classification. They
are theoretically well-founded and usually show excel-
lent classification results in practice. However, the train-
ing time of non-linear SVMs scales unfavorable with the
number of training patterns. There are multiple exten-
sions of SVMs to multi-category classification. In this
study, we consider the popular one-versus-all approach
(Vapnik 1998; Rifkin and Klautau 2004). For fast train-
ing of the SVMs, we use the optimization algorithm pro-
posed by Glasmachers and Igel (2006).
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4.3 Evaluation

For the evaluation of the classification module the fol-
lowing questions were addressed:

– Which features / classifiers can we use at all in the
given scenario?

– Are the proposed color histograms (see Sec. 4.1) pow-
erful features for player recognition?

– Is there a common best feature setup (i.e., color space
and histogram resolution) for our application?

– How does the classification performance scale with
collection / training time?

– How long does it take from the beginning of the data
acquisition until we have a reliable classifier?

– Does our solution offer sufficient performance, in par-
ticular, for the underrepresented classes?

4.3.1 Setup

For evaluation, three datasets covering matches from dif-
ferent stadiums and various team clothing were collected
(see Fig. 7). The image data was extracted by the seg-
mentation algorithm detailed in Sec. 3.2 followed by the
considered feature extraction. Data was sampled with a
frequency of 1Hz. In order to mimic the live collection
and classification task, training sets only contain images
from the first couple of minutes of each match (includ-
ing the running-in period) and the test data is drawn
from the rest of the game. Therefore, they are not in-
dependent and identically distributed (i.i.d.). We do not
address this problem explicitly (this is a direction for fu-
ture work). Each training and test data set contained
about 4,000 and 2,000 examples, respectively.

The SVMs and LDA are based on the implementa-
tions in the Shark5 machine learning library (Igel et al
2008). The SVMmodel parameters were selected through

5 see http://shark-project.sourceforge.net

Fig. 7 Examples from the three datasets (one per row). Left
to right: outfielder team 1/2, goalkeeper 1/2, referees, group,
error.

grid search from

C ∈ {1, 10, 100, . . . , 104} and

γ ∈ {2, 3, 4, . . . , 25} with kernel

k(x, z) = exp(−γ‖x− z‖2) .

The LDA was regularized by adding

σ̂2 ∈ {10−4, 10−3, . . . , 1}

to the diagonal elements of the empirical covariance ma-
trix. Regularizing LDA can lead to better generalization
(Hastie et al 2001) and ensures numerical stability at
the same time. The NN operated on up to 50 clustered
prototypes per class. All parameters were determined by
3-fold cross-validation independently for each dataset.

We conducted experiments for all valid pairs of fea-
tures and classifiers in order to identify the best perform-
ing combinations. As mentioned in Sec. 4.1 we compared
the proposed features with PCA and Spatiograms. We
extracted about 80 principal components, which explain
90% of the variance (computed as sum of used eigen-
values by the sum of all eigenvalues of the data covari-
ance matrix). The Spatiograms were applied as proposed
by Birchfield and Rangarajan (2005), which basically re-
sults in a YUV histogram with a bit resolution of (2:3:3)
extended by mean and variances.

4.3.2 Results

Looking at the influence of the chosen features, Tab. 1
documents the overall and individual performance on all
datasets with maximal number of training examples. The
results identify setups that violate time constraints either
for training (< 2min) or for test (< 20ms for 40 exam-
ples per frame). Throughout all experiments, we found
superior performance of the color histograms. Moreover,
PCA is much more expensive as it has a complex training
phase, needs image scaling and has a rather high dimen-
sional input space. We assume that the rigid spatial
mapping of PCA features impairs performance in many
situations, for example, in the case of inaccurate segmen-
tations or strongly varying player poses. Learning poses
explicitly might require more data.

Similar conclusions can be drawn from the Spatiogram
experiments. The strong increase in training time is
caused by the feature vector expansion (by a factor of
5). Results show that even the very flexible spatial infor-
mation offered by Spatiograms do not improve perfor-
mance.

We were able to identify a channel resolution for each
of the two color spaces HSV and YUV that is superior
to the rest. It is noteworthy that these solutions have a
lower resolution of the brightness channel (V and Y, re-
spectively), supporting robustness towards varying light-
ing conditions. Nevertheless, discarding the brightness
decreases performance.
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Table 1 Overall error rate (0/1-loss) for the best performing classifier of each method, i.e., the one-versus-all SVM and the
NN using 50 prototypes per class. The last six rows indicate the computational complexity (runtimes) of feature / classifier
combinations for training and classification of a single image patch.

col. res. [bits]: RGB HSV YUV PCA Spatio-

dataset method 2:2:2 3:3:3 6:0:0 3:3:0 4:4:0 2:2:2 3:3:2 3:3:3 4:3:2 0:4:4 2:2:2 2:3:3 3:3:3 grams

LDA 7.3 6.3 8.9 8.7 9.0 10.2 7.2 6.7 7.3 9.0 10.3 6.5 5.9 9.5 7.6

I SVM 4.7 – 5.3 4.0 6.9 6.2 2.9 – – – 5.3 3.3 – 8.3 10.3

NN 4.1 6.5 6.5 6.3 7.3 7.7 5.2 5.1 4.5 4.8 6.0 2.8 6.0 18.2 5.8

LDA 4.8 3.1 13.2 9.6 9.2 3.8 2.0 2.3 2.3 13.1 11.3 8.8 7.5 13.9 3.4

II SVM 1.5 – 6.7 4.2 4.0 1.7 1.8 – – – 3.1 2.7 – 11.7 9.2

NN 3.2 1.3 10.1 6.7 5.9 3.6 2.0 2.1 2.1 6.2 4.4 3.9 3.2 19.5 12.4

LDA 16.8 10.3 19.9 23.2 18.4 11.4 10.5 9.5 9.3 22.3 23.6 11.6 10.1 9.2 7.2

III SVM 6.6 – 8.2 9.1 8.3 4.6 4.2 – – – 5.9 4.6 – 5.1 14.2

NN 13.2 6.5 17.3 16.5 10.4 9.2 7.7 6.8 7.0 24.9 15.7 13.2 9.0 16.9 18.8

training LDA 1 81 1 1 11 1 11 79 82 11 1 11 73 273 1.3 · 106

time SVM 30 133 39 31 94 26 70 143 146 150 54 66 134 442 1.4 · 106

[s] NN 6 27 6 6 15 6 14 26 27 14 6 14 25 274 1.2 · 104

classification LDA 0.03 2.10 0.03 0.03 0.50 0.03 0.50 2.10 2.10 0.49 0.03 0.49 2.10 0.96 14.51

per ex. SVM 0.03 0.19 0.05 0.04 0.14 0.03 0.13 0.24 0.27 0.10 0.04 0.09 0.19 1.81 5.38

[ms] NN 0.05 0.38 0.05 0.05 0.20 0.05 0.19 0.38 0.38 0.19 0.05 0.19 0.38 0.92 0.95
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Fig. 8 Behavior of test error in relation to data collection
and training time from dataset I.

Moreover, the one-versus-all SVM approach outper-
formed alternative methods in terms of accuracy. In av-
erage the SVM yielded a 50% lower classification error
compared to LDA.

Keeping in mind the need for a classifier that offers
proper results early in the match, we examined the per-
formances of each method after certain periods of time.
To receive a meaningful estimate in the given context,
we took into account the time spent for data collection,
annotation and training. Figure 8 illustrates this using
the example of dataset I.

The NN was fastest and yielded the best results within
the first minute. In the beginning, the non i.i.d. issue dis-
cussed above is most severe and presumably 1-NN can
cope better with it than the other classifiers. The best
performing SVM needed several minutes which is a draw-
back in practice. A reasonable trade-off solution was to
employ NN classification at the beginning of each match
– waiting for the SVM to take over. In this case, we are
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Fig. 9 Precision and recall per class for the final SVM (red)
and NN (blue).

moreover able to support the data collection phase by
presorting the training examples with the NN class la-
bels. This reduces manual annotation effort compared to
the use of clustered data and, thus, allows for an earlier
SVM training (cf. Sec. 5).

Figure 9 presents the class-wise precision and recall,
which document the SVM’s high performance even for
the underrepresented classes. In particular, the recall
percentage was close to 100% throughout the six rele-
vant classes. That is, once a relevant player is detected,
it is then classified correctly, which is desirable for the ap-
plication at hand. Minor precision for the smaller classes
was caused by misclassification of images from the error-
class. We are able to compensate this using temporal
integration within the subsequent tracking module.
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Fig. 10 Validation of SVM classification showing the mean
performance throughout six further matches. Thereby, each
test set n = {1, . . . , 9} was classified by an SVM trained on
examples from sets 0, . . . , n− 1. Thus, index 0 is a training
error.

4.3.3 Final evaluation

For a final validation of the documented results, six fur-
ther datasets were recorded. To evaluate the stability
of the chosen SVM-based classifier throughout an entire
match, examples were drawn from ten equidistant inter-
vals of two minutes. Thus, each match generated ten sets
containing ≈ 5.000 samples each. Figure 10 depicts the
mean performance of the two examined configurations
over time. The predominance of feature configuration
HSV3:3:2 was confirmed (cf. Tab. 1). A mean classi-
fication rate of about 98% was reached. The standard
deviation of all subsets was 1.8%, the minimum perfor-
mance 90.5%. Notably, the validation data included a
team with green shirts, which did neither impair classi-
fication nor segmentation performance.

5 Human-Machine Interaction

By a considerate choice of features and machine learning
algorithms our classification module achieves very high
accuracy in object recognition. Still, the multi-object
tracking problem at hand, namely distinguishing between
similar dressed players in crowded scenes, can hardly be
solved fully automatically over the period of a whole
match.

The aspired classification performance can only be
achieved by supervised learning methods (see Sec. 4) that
have to be trained in order to perform well under local
conditions (e.g., lighting and shirt colors). Therefore, we
need to systematically integrate a necessary number of
human operators, the recognition system, and the con-
sumer access into one efficient technical framework.

In this section we propose operator integration meth-
ods that feature mobility, high data accuracy, and low
personnel expense through a powerful interface to the
distributed system sketched in Fig. 11.

PC DB 

Camera 2 

Operator 2 
(Laptop) 

Operator 1 
(Laptop) 

Camera 1 

Fig. 11 Human-machine interaction overview: Operators’
and consumers’ interface.

5.1 System Setup and Calibration

Transportation and setup of the hardware can be easily
managed by two operators. Figure 12 shows our setup at
two different sites. As introduced in Sec. 3, the genera-
tion of the panorama video and later tracking requires
an image-to-world mapping which is derived by manual
registration of at least four points in each camera image.
At this stage, as all external parameters are known, the
fully automatic calibration of the background segmenta-
tion algorithm follows.

After establishing a local database connection we pre-
pare an entry for the upcoming match to be referenced
in all tracking datasets generated later. With SQL the
database has a well-defined interface and represents the
central data storage, shared within the distributed sys-
tem. With the beginning of the match two remote op-
erators control the system via laptops. With only little
space in the stadium – especially at the camera stand –
a remote architecture with only two regular seats on the
press gallery is a very feasible setup.

5.2 Human Supervision of Machine Learning

Data collection and annotation is naturally a manual
process. Nevertheless, we drastically reduce human effort
in order to make supervised learning techniques applica-
ble in the given scenario.

Figure 13 illustrates the situation shortly before the
beginning of a soccer match. Teams enter the stadium,
line up, and finally distribute for the kick-off. The whole

Fig. 12 System setup for live acquisition in a German soc-
cer stadium (left) and at an international field hockey tour-
nament (right).
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Fig. 13 Running-in of the teams. Typical activities during the last 2 or 3 minutes before the start of a match.

procedure normally takes 2 or 3 minutes. This is gener-
ally the first time that the team shirts are visible (during
warm-up usually different shirts are worn) and, therefore,
the first opportunity to collect valid training examples.

As it is required to gather all statistics from the very
beginning of the match, a first classifier has to finish its
training during this short period. To address this require-
ment and with the knowledge of the preceding sections,
we propose a combination of unsupervised and super-
vised learning in an iterative approach. As soon as the
teams enter the stadium, ROIs are collected and a clus-
tering algorithm (i.e., unsupervised learning), based on
the same color histograms used for classification, is em-
ployed. The resulting clusters of similar images are in-
stantly presented to the human operators (see Fig. 14)
who pick a couple of representative examples for each
of the seven classes if possible (cf. Fig. 7 in Sec. 4.3).
Shortly before the match starts, we create an 1-NN clas-
sifier based on that early data. Thus, tracking and data
collection starts off.

This early classifier cannot work perfectly robust for
several reasons. For instance, it is not guaranteed to col-
lect sufficient examples of groups or misdetections in the
first minutes. The NN classifier will then assign such im-
ages to any of the other classes. Apart from these issues,

Fig. 14 Operator interface for the assignment of pre-sorted
object clusters to the trained classes. The shown cluster is
assigned to one of the classes indicated by the colored buttons
in the top row. Examples that do not fit this class are labeled
individually. By confirming the dialog, the assignments are
sent to the processing machine.

as stated earlier in Sec. 4.3, the classification accuracy
can generally be increased by using a more sophisticated
classifier incorporating more training examples and more
training time.

Therefore, the collection phase is continued in par-
allel, but at this stage enhanced by taking into account
the NN class assignments for automatic pre-sorting. The
resulting clusters are presented to the human operators.
Although they are already engaged in resolving tracking
conflicts and identification of players (see below), they
can still approve the results of unsupervised data collec-
tion during game interruptions.

The SVM training starts as soon as enough exam-
ples are available for each class. This number is empiri-
cally chosen and increases with the number of classes and
the dimensionality of the feature vectors. Due to cross-
validation for model and feature selection (cf. Sec. 4),
the training itself is completely automated and does not
need human input.

5.3 Identification of Individual Players

The classifier is able to distinguish different clothes but
does not identify each player in person. The shirt num-
bers that could be used for this purpose are not reli-
ably recognizable even using HD cameras. It is note-
worthy that skilled humans are able to identify players
in the videos, incorporating different hints like players’
physique, skin and hair color, course of motions, and po-
sition relative to the team.

We propose the integration of two operators – one
for each team – in order to assign player identities and
enhance recognition performance. The operators are sup-
plied with all recognized player tracks, visually integrated
into the live panorama video feed. As all tracking data
is written to the database in real-time, the operator only
needs to add the players’ personal tag in order to com-
plete his dataset. Starting the match, all tracks are still
anonymous and require identification. Tracked players
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Fig. 15 Operators’ mouse menu for one-click player assign-
ment.

are marked by a colored bounding box coding their sta-
tus. Tracks that require operators’ action are highlighted
by signal colors while identified tracks carry their corre-
sponding shirt number (see Fig. 15).

The assignment is solved through an intuitive one-
click interface visualized in Fig. 15. The mouse menu
shows shirt numbers, arranged according to the team’s
tactical formation. With the given interface the operator
is able to assign identities to all players of his team and
keep track of them while following the match. As tracks
typically last several minutes, this does not cause too
much workload.

Rarely it may occur that operators are not able to
identify all tracks in real-time. In this case open tasks
are queued for later treatment (e.g., during oncoming in-
terruptions). This task list is integrated in the operators’
main GUI allowing short video replays for each task (see
Fig. 16). For superior visibility of the field and individual
players, the operator’s view is flexible supporting zoom-
ing and scrolling within the full panorama.

5.4 Solving Recognition Conflicts

Although the classification of single images works ro-
bustly with the presented approach, multi-target track-
ing does not perform sufficiently reliable in every situa-
tion. All team sports comprise scenes in which even the
most sophisticated tracking approaches run into prob-
lems:

– Players wearing same shirts occlude each other for a
longer time.

Fig. 16 Conflict review: The operator is presented a video
clip of the missed situation and corresponding team assign-
ments – again one click solves the problem.

0

10

20

30

40

50

F
re
q
u
e
n
c
y

St
an
d

W
al
k

T
ro
t

R
un

Sp
ri
nt

0

10

20

30

40

50

F
re
q
u
e
n
c
y

St
an
d

W
al
k

T
ro
t

R
un

Sp
ri
nt

Fig. 18 Speed histograms of two players based on tracking
data from a whole match.

– Corners or free-kicks result in crowded areas lead-
ing to multiple occlusions and even incomplete player
segmentation.

– Players leaving and entering the field for treatment
or due to exchange.

– Non-relevant individuals enter the field (e.g.,medics,
fans).

Thus, none of the currently published player tracking
systems is able to generate valid statistical data over a
whole match without continuous supervision.

Given our Kalman-filter based multi-object tracking
approach (see Sec. 3.4) confidences for each track are de-
rived. In particular we are able to identify uncertain situ-
ations where we cannot guarantee valid data. In this case
the operators’ attention is drawn to the conflict requir-
ing his approval. One special case of conflicting tracks
arises from two or more players from the same team ap-
proaching and possibly taking over each others tracks.
This uncertain situation is indicated by the bounding
boxes mentioned above, allowing for an instant identity
swap.

5.5 Consumer Access and Data Visualization

The information stored in the database can be used in-
stantly for a variety of applications: Fans in the stadium
directly access detailed statistics using smartphones, the
media improve live TV coverage with interesting facts,
and finally coaches are offered a valuable tool for detailed
analysis already during the match.

Having those applications in mind, we process the
raw data in order to provide different flavors of informa-
tion visualization – exceeding conventional quantitative
data plots and tables (see Fig. 17 and 18). Tracking data
of individual players, for example, can either be visual-
ized in an artificial bird’s eye view or integrated into the
camera perspective (cf. Fig. 4).

Apart from collecting statistics online, a full high-
definition Mpeg-video of the panorama view is generated.
This is available immediately after the match for detailed
review together with the collected data.



12

(a) Raw player path (b) Heat map indicating a spatial
probability distribution

(c) Team grid showing the most frequent
player for each grid cell

Fig. 17 Offered positional data visualization.

5.6 Experimental HMI Evaluation

During development all modules were regularly tested
by different subjects with background in sports analy-
sis. Thereby we recorded data and performed live ex-
periments in 7 different stadiums. The system has been
extensively evaluated concerning the following aspects:

– Field calibration: The calibration for generating the
live panorama video was tested successfully on-site
for different sports fields (soccer, hockey, tennis).

– Segmentation: Automatic real-time player segmen-
tation using an adaptive background model worked
robustly. Experiments were conducted under various
external conditions (i.e., weather, ground texture).

– Accuracy test : Human subjects were tracked on pre-
defined paths in order to evaluate the tracking ac-
curacy against ground-truth data. The error of the
measured distances did not exceed 3%.

– User feedback : Sports scientists have accompanied
the development of useful data preparation techniques.
Customers’ feedback helped to refine visualization
methods and validated their relevance for professional
sports analysis.

– Full system test : The complete system, including op-
erators and database, was deployed successfully dur-
ing an official match of the highest German soccer
league (Bundesliga) and assessed offline with several
recordings.

These experiments were conducted in order to assess
the commercial applicability of the system, however, not
with a strict scientific protocol.

6 Conclusions

Video-based sports analysis is an active field of research.
The resulting live data is valuable, amongst others, for
professional match analysis, media coverage, and sports
betting. But also fans (at home or on site in the stadium)
are interested in more detailed statistical information.

This paper proposed a self-contained system for video-
based sports analysis featuring high accuracy, mobility

and low system cost. While recognition systems such
as the one presented here can operate autonomously in
many situations, human operators are still needed in
order to assure high reliability needed for the applica-
tions mentioned above. The contribution of this study is
twofold.

On the one hand, we pointed out the appropriate in-
tegration of human operators into the processing chain.
Regarding the limitations of the given working environ-
ment (i.e., crowded stadium), we designed an efficient
system architecture keeping interactions intuitive and as
simple as possible. The system was successfully tested at
official sports events. Valid results were collected online,
providing positional data live through a slim database in-
terface. The experiments proved low manpower require-
ment for the supervision of our recognition system. We
showed that collection of individual player statistics in
real-time is possible by incorporating two human opera-
tors only.

A second focus was put on the classification task. Due
to the live scenario this module is constrained in terms
of time spent on data collection, training and classifica-
tion. Evaluating color histogram features together with
either nearest neighbor combined with clustering (NN),
linear discriminant analysis, or support vector machines
(SVMs) we were able to achieve an overall misclassifica-
tion rate of 1.8% to 4.2% throughout different datasets,
obtaining a close to 100% recall for the six relevant
classes.

Performance crucially depended on the choice of his-
togram resolution and less on the color space itself. The
proposed histogram features outperformed state-of-the-
art baselines, namely PCA (applied to RGB training
images) and Spatiograms, significantly. These findings
support our hypothesis that spatial information is not
necessary to solve the classification task at hand. More-
over, experiments showed superior performance of the
NN approach for early classification (i.e., , considering
only examples from the first few images). After a longer
collection phase (> 5min), SVMs outperformed alterna-
tive classifiers.

These findings suggest a two-stage solution, using NN
as an ad-hoc classifier first, which is then replaced after
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some minutes by a fully trained SVM operating for the
rest of the match. Further evaluation of the SVM-based
classifier was carried out on a validation dataset taken
from six matches. With a mean classification rate of 98%
the high performance was confirmed.

In order to improve classification performance it is
intended to apply domain adaptation techniques to ac-
count for the difference in class distribution between
training and test data (also known as class imbalance
problem, see Japkowicz and Stephen 2002). For SVMs
in binary classification a suitable approach was already
proposed (Lin et al 2002) and could be transferred to the
multi-class problem. Moreover, we think it is worthwhile
to look into new developments in semi-supervised learn-
ing for reducing labeling cost (e.g., group induction as
proposed by Teichman and Thrun 2013). We will speed-
up the training times of the employed classifiers even
further by also utilizing the GPU (e.g., see Gieseke et al
(2014) for an overview of efficient nearest neighbor classi-
fication on GPUs) and more efficient training and model
selection algorithms available in the forthcoming Shark
release (Igel et al 2008).

A further research direction of our project is the anal-
ysis of the extracted statistical data by means of data
mining in order to identify behavioral and tactical pat-
terns of teams. Therefore, not only spatial but also tem-
poral features need to captured on different time scales.
This will support the acquisition of higher level statis-
tical data, so-called event data (such as an automatic
indexing of corner, free-kick or even one-on-one situa-
tions), and an automatic scene categorization for sys-
tematic match reviews and error analysis. Looping this
information back, the recognition process will profit from
a learnt player distribution for each team in order to re-
alize a fully automatic identification of players in person.
This should be backed up by recognition of shirt numbers
and additional visual cues.
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