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Abstract

Data transformations prior to analysis may be beneficial in classification tasks. In this article we investigate a set of such
transformations on 2D graph-data derived from facial images and their effect on classification accuracy in a high-
dimensional setting. These transformations are low-variance in the sense that each involves only a fixed small number of
input features. We show that classification accuracy can be improved when penalized regression techniques are employed,
as compared to a principal component analysis (PCA) pre-processing step. In our data example classification accuracy
improves from 47% to 62% when switching from PCA to penalized regression. A second goal is to visualize the resulting
classifiers. We develop importance plots highlighting the influence of coordinates in the original 2D space. Features used for
classification are mapped to coordinates in the original images and combined into an importance measure for each pixel.
These plots assist in assessing plausibility of classifiers, interpretation of classifiers, and determination of the relative
importance of different features.
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Introduction

In clinical genetics, syndrome diagnosis presents a classification

problem, namely whether and if so which syndrome is to be

diagnosed for the presenting patient. We here focus on facial

image data in order to facilitate this diagnosis. Facial features play

an important role in syndrome diagnosis [1]. We have previously

demonstrated that information from 2D [2–4] images can help in

this classification problem. Similar work in 3D, e.g. [5–7],

confirms this assessment.

This classification problem tends to be high-dimensional, i.e. the

number of covariates is bigger than the number of observations.

Previously, we employed classical dimension reduction by

principal component analysis (PCA) and showed that PCA has a

large contribution to classification errors [4]. This can be seen by

comparing cross-validation (CV) runs used to estimate error once

including a PCA within each fold and once performing PCA prior

to CV. It is well-known that feature selection must occur within

CV to accurately estimate prediction error [8] and indicates that

this step plays a crucial role in our application. Principal

components (PCs) can exhibit high variation in small data sets

[9] which is a possible explanation for our results. To test this

assumption, PCA is compared to low-variance transformation and

their classification performance is evaluated.

We here pursue penalized regression techniques that are

applicable in the high-dimensional setting and can be applied to

data directly without preceding dimension reduction [10]. The

process of fitting the regression model itself ensures that the final

model is low dimensional and asymptotically only contains true

predictors. Furthermore, in the low-dimensional setting, a trade-

off between variance of predictors and their unbiasedness leads to

improved accuracy (such as measured by classification accuracy or

the mean-squared-error) as compared to least-squares regression

[11]. One advantage of being able to directly work with high-

dimensional data is that the dimensionality of data can be even

increased further prior to performing classification. We combine

these ideas with geometric properties of our data set by applying

low-variance transformations on coordinates that represent

features in 2D images. For example, distances are computed

between graph vertices depending on only two of them. By

contrast, PCs in general depend on all vertices derived from a

given 2D image. We evaluate the performance of classifiers

resulting from such a strategy.

A second goal is to visualize resulting classifiers. If PCA is used

together with a linear classification technique such as linear

discriminant analysis (LDA) all transformations leading from one

group to another in a two-class classification problem can be

represented by a single direction in the original feature space. This

can be used to create caricatures by moving data points or means

away from each other along this direction [2]. If non-linear

transformations are involved visualization becomes more chal-

lenging. We develop a general framework that allows to create

visualizations that indicate importance of neighborhoods in the

original 2D space. We apply this methodology to the original

syndrome data.
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Materials and Methods

Ethics statement
Written informed consent was received from all patients or their

wardens and the study was approved by the medical ethical

committee of the Universitätsklinikum Essen, Germany. Consent

was documented on forms which were reviewed and approved by

the medical ethical committee of the Universitätsklinikum Essen,

Germany.

Data
Frontal 2D images of 205 individuals each diagnosed with one

of 14 syndromes were included in the study. This data set was used

in a previous study and is described in detail elsewhere [2].

Table 1 summarizes the number of individuals available per

syndrome. In this study, we used coordinates from 48 manually

placed landmarks (vertices) that were registered on 2D greyscale

images (Figure 1a). These landmarks represent anatomical

features in the face. The process of picture pre-processing and

landmark registration is described elsewhere [2].

Data pre-processing
Vertices were standardized according to translation, rotation

and size analogously to a Procrustes analysis [12] (graphs were

rotated so that the average angle of symmetric points was 0, the

center of the graph was 0 (as defined by the sum of x and y

coordinates, respectively) and the size of the graph was scaled to

unit size; as defined by the bounding rectangle). On this data, all

possible pairwise distances between vertices were computed

(D = 1128). To avoid multicollinearity problems, pairs of symmet-

ric distances were averaged (Figure 1b) reducing the number to

778 distances. Using a Delaunay triangulation of the set of

averaged vertex positions, we constructed 41 triangles for which 41

areas and 123 angles were computed. Again, symmetric features

were averaged. To assess the role of symmetry in syndrome

discrimination, asymmetry scores for coordinate pairs, triangle

areas and distances were calculated as the sum of squared residuals

resulting from the averaging procedure between symmetric

information. In order to be able to estimate possible non-linear

effects, the square of each feature was also computed. In total,

261044 = 2088 covariates were derived per individual from the

initial 96 values.

Statistical Analysis
We performed both simultaneous classification and pairwise

classification of syndromes. Simultaneous classification serves to

evaluate the problem of assigning a syndrome to a given face, that

is, the problem of diagnosis. Pairwise comparisons of syndromes

can be used to evaluate similarity of syndromes and to compare

the performance achieved with the current data set to other data

sets published thus far.

Due to the high dimensionality of the data set (number of

individuals = 205 % number of covariates = 2088), dimension

reduction techniques need to be employed. For simultaneous

classification we trained classifiers using regularized multinomial

regression with an elastic net penalty [13]. Multinomial regression

is a generalization of linear logistic regression model to a multi-

logit model, when the categorical response variable has more than

2 levels. For pairwise classification we used regularized logistic

regression with an elastic net penalty. Elastic net penalty is a

penalized least squares method using a convex combination of the

lasso and ridge penalty (with mixing parameter a). In contrast to

the LASSO component, which as a general rule selects only one

covariate from a group of correlated covariates, the ridge penalty

has the effect of distributing effects over covariates that are highly

correlated, entering them together into the model. Parameter a
can therefore be chosen to control the sparsity of the final model.

We do not consider a to be a tuning parameter but instead

consider twenty values of a between 0 and 1 as alternative models.

To evaluate model performance, leave-one-out CV was per-

formed. For each of the twenty elastic net models and the PCA

analysis, four different covariate sets were used: coordinates of

points only, points and their squares, all features and all features

and their squared values. Comparisons between these covariate

sets allow determining the trade-off between introducing more

variation into the data by additional transformations and being

able to potentially use more accurate features for the purpose of

classification. Fitting an elastic-net model involves choosing a

tuning parameter l for the L1-penalty, which was chosen by a

nested loop of leave-one-out CV. Likewise, PCA uses an inner

Table 1. Description of data set with number of patients per class.

Syndrome Number of Individuals

Microdeletion 22q11.2 [22q] 25

Wolf–Hirschhorn syndrome [4p] 12

Cri-du-chat syndrome [5p] 16

Cornelia de Lange syndrome [CDL] 17

Fragile X syndrome [fraX] 9

Mucopolysaccharidosis Type II [MPS2] 6

Mucopolysaccharidosis Type III [MPS3] 7

Noonan syndrome [Noon] 13

Progeria [Pro] 5

Prader–Willi syndrome [PWS] 13

Smith–Lemli–Opitz syndrome [SLO] 15

Sotos syndrome [Sot] 15

Treacher Collins syndrome [TCS] 10

Williams–Beuren syndrome [WBS] 42

doi:10.1371/journal.pone.0109033.t001
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CV-loop to estimate principal components (PCs) and train a

regression model based on these PCs. In the outer loop, data was

mapped to these PCs onto which the prediction model was

applied. To directly compare classification performance with a

classical PCA approach, the outer CV loop was identical for the

elastic net and PCA models, i.e. outer CV-folds were computed

and identically used for all models.

To compute simultaneous accuracy for the PCA, we trained

classifiers using multinomial logistic regression. 70 PCs were

extracted from the whole data set. Subsequently, stepwise forward

selection was performed to select PCs relevant for the classification

decision based on the Akaike information criterion (AIC). The

selected models were used to predict the samples in the test set of

each CV-fold.

All statistical analyses were performed using the software

package R (version 3.0.1 [14]). We used the package geometry
for the Delaunay triangulation and package glmnet to perform

model selection and regularized multinomial and logistic regres-

sion with an elastic net penalty.

Visualization
The aim of our visualization strategy is to assign an importance

value to each point in an average image of a class that represents

how important features in that location are to discriminate the

given class. While this strategy does not directly represent changes

in, for example, distances, it allows to combine all features relevant

for a classification decision in a single image. Figure 2 illustrates

the process of computing the color coefficient for a point d based

on the following significant features: a point p1, a distance d1, an

area of triangle t1 and an angle of a traingle a1. We assume that a

weight is assigned to each feature, in our case regression

coefficients denoted with bp1, bd1, bt1 and ba1. To calculate the

importance of point d we define the distances of this point to the

significant features. For p1 we compute the Euclidean distance of d
to p1, for d1 we compute the Euclidean distance of d to m1, the

midpoint of d1, for t1 we compute the Euclidean distance of d to

c1, the centroid of t1 and for a1 we compute the Euclidean

distance to c1, the vertex of a1, respectively. The importance of

each point is then defined as the sum of the weights, in our case

regression coefficients, inversely weighted by the distances. This

definition assumes that all weights are measured on the same scale,

which can be assured by standardizing covariates in the regression

setting. Finally, we normalize these importance values to (0, 1) by

using the logistic function and we map resulting values to a color

palette. As we symmetrized our data set, we also create

symmetrized plots, i.e., one half is computed and mirrored to

the other part. We overlay these maps on average facial images for

the class corresponding to the respective classifier. The procedure

of producing average images is described elsewhere [15].

For glmnet we used the regression coefficient of each feature as

weights. To obtain the coefficients of each feature when PCA was

performed, regression coefficients of PCs are back-calculated to

the original feature space using the loadings matrix. The weight

for each feature is the sum of contributions over all PCs.

Figure 1. Illustration of data set. (a) Example of registered nodes. (b) Distances between coordinate pairs excluding symmetries. Numbers 1 to 48
correspond to landmarks; red: pairwise edges, excluding symmetries; black: Delaunay triangulation. Example of symmetric distances (25, 24) and
(23,24).
doi:10.1371/journal.pone.0109033.g001
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Results

Model Selection
Average misclassification error (AME) rate for each choice of

the mixing parameter a and feature set are reported in Table 2. In

the last row of the table, we list the results for the PCA. In

Figure 3, we illustrate these results together with the 95%

confidence intervals. The best model for glmnet is obtained for

a= 0.11 when the set of all features was used with an AME = 0.38

(95% CI: 0.31–0.44). PCA performed best when only points were

used with AME = 0.53 (95% CI: 0.46–0.60). The AME of glmnet
decreased with increasing number of features. In contrast, the

AME of PCA increases.

Results from the inner leave-one-out CV for glmnet models for

a= 0.11 to choose tuning parameter l that gives the lowest AME

rate are plotted in Figure 4. The lowest AME rate was obtained

for l= 0.047.

The difference between the best glmnet model for all features

and best PCA model (points) is significant (Z-test for 2 population

proportions, P-value = .0015).

Simultaneous classification
Results for simultaneous classification using the best glmnet

model are reported in Table 3 and 4. Specifically, Table 3 shows

breakup of AME per syndrome. The best performance was

achieved for WBS (AME = 9.5%) and 22q (AME = 20%). The

lowest performance was achieved for the syndromes with the

smallest sample sizes, MPS2 (AME = 100%) and MPS3 (AME

= 70%). Table 4 shows the corresponding confusion matrix, i.e.
what were the classification decisions per syndrome? For example,

22q was confused with 5p, Sot and WBS, whereas MPS2 was

confused with MPS3, 22q, SLO and WBS.

We summarize the number of components used for the

classification decision in Table 5. Approximately 200 features

were selected per syndrome. Distances seemed to be more

important (ca. 150 distances per syndrome) as compared to the

other features (points between 10 and 25, angles between 20 and

40, , 20 for areas and coordinates).

Pairwise classification
Results for pairwise comparisons of syndromic conditions are

reported in Table 6, which lists AME. For many pairs, such as

FraX/22q or FraX/4p, we achieve an AME of 0%. The highest

AME was observed when discriminating between MPS2/MPS3,

two syndromes with similar facial appearance (38%).

Visualization
Results from the visualization process are depicted in Figure 5

and 6, for best glmnet and PCA model, respectively. For these

figures, importance below a threshold is ignored to better show the

underlying average image. The same color mapping scheme and

scale is used for all sub-figures, making colors comparable. As a

comparison, features were also visualized by drawing line

Figure 2. Importance weighting. Illustration of the procedure to compute importance for point d. Contributions of point p1, area of triangle t1,
distance d1, and angle a1 (blue) are weighted according to distance to d (red). Distances to p1, centroid c1, midpoint m1, vertex v1 are used for p1, t1,
d1, and a1, respectively.
doi:10.1371/journal.pone.0109033.g002
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Table 2. Average misclassification error (AME) with 95% confidence interval for leave-one-out cross validation for glmnet, 20 different
values of a (see text), and PCA using only points (p), all features (a), only points and their squares (p+p2) and all features and their
squares (a+a2).

p a p+p2 a+a2

a= 0 .400 (.333,.467) .444 (.376,.512) .498 (.429,.566) .493 (.424,.561)

a= .05 .415 (.347,.482) .390 (.323,.457) .488 (.419,.556) .454 (.385,.522)

a= .11 .410 (.342,.477) .376 (.309,.442) .502 (.434,.571) .468 (.400,.537)

a= .16 .415 (.347,.482) .380 (.314,.447) .488 (.419,.556) .478 (.410,.547)

a= .21 .415 (.347,.482) .385 (.319,.452) .483 (.414,.552) .493 (.424,.561)

a= .26 .405 (.338,.472) .405 (.338,.472) .498 (.429,.566) .502 (.434,.571)

a= .32 .395 (.328,.462) .410 (.342,.477) .498 (.429,.566) .493 (.424,.561)

a= .37 .415 (.347,.482) .405 (.338,.472) .493 (.424,.561) .498 (.429,.566)

a= .42 .415 (.347,.482) .415 (.347,.482) .488 (.419,.556) .507 (.439,.576)

a= .47 .429 (.361,.497) .405 (.338,.472) .483 (.414,.552) .512 (.444,.581)

a= .53 .434 (.366,.502) .415 (.347,.482) .498 (.429,.566) .522 (.453,.590)

a= .58 .439 (.371,.507) .420 (.352,.487) .502 (.434,.571) .517 (.448,.586)

a= .63 .434 (.366,.502) .420 (.352,.487) .512 (.444,.581) .537 (.468,.605)

a= .68 .434 (.366,.502) .434 (.366,.502) .517 (.448,.586) .527 (.458,.595)

a= .74 .444 (.376,.512) .434 (.366,.502) .512 (.444,.581) .532 (.463,.600)

a= .79 .439 (.371,.507) .424 (.357,.492) .512 (.444,.581) .541 (.473,.610)

a= .84 .463 (.395,.532) .424 (.357,.492) .507 (.439,.576) .541 (.473,.610)

a= .9 .493 (.424,.561) .424 (.357,.492) .512 (.444,.581) .541 (.473,.610)

a= .95 .493 (.424,.561) .439 (.371,.507) .507 (.439,.576) .541 (.473,.610)

a= 1 .493 (.424,.561) .439 (.371,.507) .507 (.439,.576) .546 (.478,.615)

PCA .532 (.463,.600) .810 (.756,.864) .527 (.458,.595) .727 (.666,.788)

doi:10.1371/journal.pone.0109033.t002

Figure 3. Average misclassification error glmnet. Average misclassification error with 95% confidence intervals across leave-one-out cross-
validation for models with different values of mixing parameter a. (a) all features (red) and only points (blue) were used and (b) all features and their
squares (red) and only points and their squares (blue) were used.
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segments, points, areas, and small triangles to visualize the

importance of distances, coordinates, areas, and angles, respec-

tively. In supplementary images we provide importance plots for

the different data components.

All visualizations show distinct patterns of important regions in

the face. In general, the central part of the face is included for all

syndromes. As an example, progeria is described to exhibit

midface hypoplasia and micrognathia (MIM #176670 [16]) thus

featuring a relatively enlarged forehead. Overall importance is

focused around the nose whereas the coordinate component shows

importance in forehead regions as well as the nose (Figures S1, S2

and S3), a finding that is discussed below.

Figure 4. Average misclassification error for values of tuning
parameter l when a = .11.
doi:10.1371/journal.pone.0109033.g004

Table 3. Simultaneous average misclassification error (AME)
per syndrome.

Syndrome AME

22q 0.20

4p 0.58

5p 0.50

CDL 0.53

fraX 0.33

MPS2 1.00

MPS3 0.71

Noon 0.46

Pro 0.40

PWS 0.62

SLO 0.33

Sot 0.33

TCS 0.40

WBS 0.10

doi:10.1371/journal.pone.0109033.t003
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Discussion

Dimension reduction can pose a formidable problem in

classification problems if data sets are small. It is well known that

methods like PCA can induce big additional variation in data sets

thereby reducing classification accuracy. Partly in response to

problems like this, penalized regression techniques were developed

to estimate classifiers that trade unbiasedness (i.e., parameter

estimates that are correct on average) for more stable estimation of

classifiers (as measured by the variance of parameter estimates)

[10,11]. We have used these ideas in the current study and

demonstrate that additional data transformations can even

improve classification accuracy. We chose data transformations

with low variance as compared to variation of PCs. If these derived

features better describe differences between groups, the tradeoff

(more variation, more accurate features) can result in a net benefit

in terms of classification accuracy, as was the case in this study. As

a conclusion, carefully chosen data transformations that increase

dimensionality of data sets can improve classification accuracy

even if a problem is already high-dimensional. Which transfor-

mations to choose is data set specific. As a general rule, each

transformation should only depend on few original features (e.g.,
distances, angles, areas in our case depend on maximally 6

coordinates) in contrast to many (PCA at the other extreme).

Pair-wise classification results can be used to get exploratory

insights. For example, the pair MPS2/MPS3 has an AME close to

40% implying that the features used in this study do not allow to

distinguish this pair of syndromes. In the genetic context, pair-wise

classification accuracies can be used as a descriptive measure of

phenotypic distinctness.

Our attempt at visualization has the advantage of being generic.

As long as a distance of a feature with a point can be defined, we

Table 5. Number of non zero coefficients for each syndrome for the best glmnet model (a= .11 using all features).

Syndrome t p d ar an

22q 244 27 157 12 46

4p 204 28 138 9 28

5p 243 26 173 15 28

CDL 200 22 120 13 43

fraX 170 14 106 8 40

MPS2 150 12 99 10 28

MPS3 187 17 118 11 40

Noon 197 17 118 15 46

Pro 150 10 105 6 28

PWS 203 20 144 9 28

SLO 235 20 183 8 21

Sot 220 25 153 9 31

TCS 171 16 111 10 33

WBS 257 19 181 17 38

total 1045 96 778 41 123

t: total, p: points, d: distances, ar: areas and an: angles.
doi:10.1371/journal.pone.0109033.t005

Table 6. Pairwise average misclassification error rate for the best glmnet model.

22q 4p 5p CDL fraX MPS2 MPS3 Noon Pro PWS SLO Sot TCS

4p .05

5p .20 .14

CDL .05 .00 .09

fraX .03 .00 .04 .15

MPS2 .10 .11 .18 .04 .00

MPS3 .09 .11 .22 .00 .06 .38

Noon .11 .28 .14 .07 .00 .11 .05

Pro .03 .12 .05 .00 .00 .00 .00 .00

PWS .16 .04 .24 .27 .14 .11 .10 .04 .00

SLO .05 .11 .16 .06 .00 .10 .18 .04 .05 .11

Sot .02 .19 .19 .00 .00 .10 .05 .14 .00 .04 .07

TCS .06 .18 .12 .04 .00 .12 .00 .13 .00 .04 .04 .04

WBS .06 .06 .09 .08 .04 .08 .08 .02 .00 .09 .12 .00 .02

doi:10.1371/journal.pone.0109033.t006
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Figure 5. Importance plots glmnet. Visualization of simultaneous classification for syndromes. For each syndrome an importance plot (row I) and
a plot visualizing classification features (row F) is provided. Importance plot assigns an importance with respect to classification to each point as
described in the text. Feature plots visualize absolute regression coefficients by thickness of line segments (distances), size of points (coordinates),
color of areas (areas; dark red more important than light red) and small triangles (angles; dark red more important than light red).
doi:10.1371/journal.pone.0109033.g005
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can apply this approach and produce images representing

importance of image neighborhoods for the classification decision.

At the same time this is a disadvantage as no distinction is made

between different types of features and it is impossible to derive

such information from our images in general. This shortcoming

can be partly addressed by visualizing different data components,

Figure 6. Importance plots PCA. Visualizations analogous to figure 5 for PCA based classification.
doi:10.1371/journal.pone.0109033.g006
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which might give important additional information. For example,

in the progeria example mentioned above, the nose was visualized

as the most important feature in this data set. A narrow nose

bridge is a distinguishing feature for progeria in our data set,

however, visualizing coordinates and angles alone also indicates

the forehead as a selected feature for this syndrome which would

be a more expected feature from the genetic perspective. It is

therefore possible to get a better understanding of classifiers by

means of such stratified importance plots.

A related problem is that in high-dimensional problems

penalized methods have to be selective and choose few features

for the final model from the set of all input features. This can well

lead to the omission of features that are more easily recognized by

human raters. We tried to mitigate this problem by two

approaches. First, by using elastic net regression we tried to create

less sparse models, thereby retaining more features as compared to

a pure LASSO. As a striking example, had we not symmetrized

our data, the LASSO would have ignored one of the highly

correlated symmetric features whereas elastic net (for an appro-

priate value of a) would have split the effect almost equally

between the two. Second, our means of creating importance plots

takes into account the locality of features. If two distances share

one vertex, and their vectors are not linearly independent, they are

likely to be correlated. Even if one of the distances would be

omitted from the model its importance would still be mapped

through the correlated distance that shares close proximity.

It follows that the best performing classifier is not necessarily the

most intuitive to visualize and we accept that our approach has

limitations in overcoming all possible difficulties. Yet, we believe

that the visualizations presented here have several merits. First,

plausibility of classifiers can be checked. In our case the more

variable positions in the hair should be less likely to be important

as is the case. Second, these visualizations could be used to refine

data pre-processing. In our case we could decide to omit

coordinates from the upper rim of the graph altogether, as they

do not appear to be important. Third, these visualizations can

make it more easy to interpret the actual regression models and

can potentially lead to deeper insights for the data expert, in our

case the clinical geneticist.

Finally, it is challenging but possible to produce actual

caricatures, which would overemphasize images features relevant

for the classification decisions. Such caricatures would have to

account for the potentially selective nature of the model selection

discussed above and presents a computational problem due to the

high dimensionality of the feature space (D = 2088 in our case).

We intend to pursue such an approach.

Conclusions

In conclusion, we have demonstrated the importance of small

variance transformations in classification problems of facial data to

improve accuracy. Visualization and interpretation remains

challenging and can be guided by importance plots that can

summarize highly complex classifiers in a single figure or few

figures.

Supporting Information

Figure S1 Visualization of simultaneous classification
for syndromes. For each syndrome importance plots of

different data components are shown. This figure contains

syndromes 22q, 4p, 5p, CDL, and Fragile X.

(TIFF)

Figure S2 Visualization of simultaneous classification
for syndromes. For each syndrome importance plots of

different data components are shown. This figure contains

syndromes MPS2, MPS3, Noonan, progeria, and PWS.

(TIFF)

Figure S3 Visualization of simultaneous classification
for syndromes. For each syndrome importance plots of

different data components are shown. This figure contains

syndromes SLO, Sotos, TCS, and WBS.

(TIFF)
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