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Abstract— In this study, we present a new indoor positioning
and environment perception system for generic objects based
on multiple surveillance cameras. In order to assist highly
automated driving, our system detects the vehicle’s position
and any object along its current path to avoid collisions. A
main advantage of the proposed approach is the usage of
cameras that are already installed in the majority of parking
garages. We generate precise object hypotheses in 3D world
coordinates based on a given extrinsic camera calibration.
Starting with a background subtraction algorithm for the
segmentation of each camera image, we propose a robust view-
ray intersection approach that enables the system to match and
triangulate segmented hypotheses from all cameras. Comparing
with LIDAR-based ground truth, we were able to evaluate the
system’s mean localization accuracy of 0.37 m for a variety of
different sequences.

I. I NTRODUCTION

In this study, we introduce an infrastructural embedded
approach for localization and tracking of generic objects for
indoor environments. We focus on the example of parking
garages to establish a positioning system in the context of
autonomous driving.

Its main target is to detect and track vehicles and sec-
ondary objects along its current path. Due to the lack of
GPS information and non-sufficient on-board vehicle sen-
sors an infrastructural system which communicates with the
autonomously driving car has to be precise, reliable and real-
time capable. If an object crosses the path of the vehicle, the
system has to raise a warning to avoid a collision. Because
arbitrary objects (e.g., other vehicles, small / tall humans,
bicycles, or animals) should be recognized by the system,
size and shape constraints are ignored.

To achieve these aims, we use surveillance cameras al-
ready installed in the majority of the parking garages and ex-
tend their purpose to an external vehicle localization system.
Thus, the approach is inexpensive, does not require addi-
tional hardware except the infrastructural car-to-environment
communication, and is transferable to other indoor scenarios,
e.g., tunnels, factories etc.

Firstly, an overview of the related work is described
in Sec. II. The developed system is presented in Sec. III
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and evaluated by comparison to a LIDAR-based system in
Sec. IV. A final conclusion and outlook is discussed in
Sec. V.

II. RELATED WORK

As an example for autonomous indoor-localization, we
elaborate on the idea of an autonomous valet parking system
mentioned in [1]. The paper describes a precise LIDAR-
based localization system which is part of a framework for
autonomous driving: A driver hands over his car at a parking
garage entrance, steps out, and the vehicle is autonomously
driven through the garage towards a free parking spot where
it can be claimed later. We also use an extended version
of this LIDAR-based setup to evaluate and compare our
system’s result in Sec. IV.

Another system for autonomous driving in a parking
garage – also using a network of video cameras – is discussed
in [2]. Einsiedler et al. used a motion template and the Viola-
Jones-Detector to detect a pre-trained vehicle. To determine
the vehicle’s position within the parking garage a lane has
been divided into segments of 1 m2. In contrast, our approach
focuses on generic object detection without any knowledge
or training of objects that will appear in the parking garage.
The authors report an uncertainty in their predicted vehicle
hypotheses of 1 m with a coverage of 14 m due to the cameras
extrinsic constraints.

Evans et al. presented a multicamera-based system for
object detection by using a synergy map based on a defined
ground plane and a pre-specified height [3]. In contrast
to that, we avoid making any assumptions concerning the
objects, the ground plane or the objects’ height.

In [5] the authors present a comparative study for multiple
person tracking with overlapping camera views. Because any
object can occur in the parking garage, we concentrate on
general object detection and tracking. Another very valid
approach is presented in [4]. By the use of volumetric 3D
reconstruction the visual hulls of the objects were trans-
formed and tracked inside a occupancy volume. The objects’
mass center on the ground plane is generated by an derived
occupancy map. A specific problem described by the authors
is the handling of objects with similar look within the
assignment of image regions to tracked 3D volumes.



Fig. 1. The problem at hand: The installed surveillance camera from a
parking garage captures several traffic participants. Our aim is to make use
of these images to measure their position and motion in order to detect
potentially dangerous situations.

III. PROPOSED SYSTEM

Our proposed system is based on video only and rec-
ognizes objects and their position inside the coordinate
system of a parking garage. A typical scenario captured by
a surveillance camera is shown in Fig. 1.

The following sections are structured analogously to the
system’s pipeline: At the beginning, each camera captures
images from its environment which are analyzed separately
(c. f. Sec. III-A): Moving objects are segmented by a back-
ground subtraction approach (c. f. Sec. III-B). Afterwards, all
foreground objects are transformed into view rays inside
a common world coordinate system, wherefore an initial
calibration is required (c. f. Sec. III-C). Subsequently, these
rays are combined in an appropriate manner to receive
plausible object hypotheses (c. f. Sec. III-D). Finally, frame-
wise object hypotheses are tracked over time to guarantee
continuous object localization.

A. Camera network

To demonstrate a garage parking scenario with a surveil-
lance camera system, we use multiple grayscale cameras
connected by a local area network (LAN).

The cameras are mounted on high tripods to simulate
a typical surveillance system, where cameras are usually
installed below the ceiling. We ensure that each camera
shares its field of view with at least one of the other cameras
to handle occlusions and to enable multiple-view vision. The
best case should be a complete coverage of a large area of
the parking garage with only two cameras.

The cameras are synchronized by the IEEE1588 proto-
col over the LAN to guarantee simultaneous exposure and
processing of all images. Depending on its position in the
parking garage, we use different types of lenses to capture a
wide area with a minimum number of cameras (e.g., wide-
angle lenses in corners). In the evaluated setup, 4.8 mm,
9 mm, and 12.5 mm lenses were used.

B. Foreground Segmentation

Since a surveillance camera is embedded in a static
environment, most parts of the camera image are constant
background, e.g. traffic signs, walls, etc. These regions ofan

image are called image background, and only minor image
regions contain objects of interest, defined as the image
foreground. In order to separate regions of interests (ROIs)
of a single camera image, we decided to model the static
background appropriately.

We propose a pipelined approach for the separation of
those ROIs from the background (see Fig. 2): First, we
generate a representation of the background using the well-
established background subtraction method [6]. Then, the
difference between the current camera image and the back-
ground representation is calculated. The difference contains
moving objects, but also noise, e.g., caused by shadows or the
vehicle’s spotlights). Morphological operations (Opening)
were used to reduce this kind of noise.

To minimize false segmentation caused by shadows or ac-
tive light sources, we apply the normalized cross-correlation
(NCC) method by identifying structurally constant image re-
gions in combination with background subtraction presented
in [6]. Afterwards, the segmented regions are clustered to
obtain connected regions, which are represented by single
ROIs. A further prepossessing step is to merge overlapping
and adjacent ROIs. In order to establish a background rep-
resentation, we use an exponentially smoothed mean-image:

B(x, y) = (B(x, y) ∗ (1− α)) + (I(x, y) ∗ α) (1)

whereB(x, y) represents the background image,I(x, y) the
current image with the same size asB(x, y) and a weight
0 ≤ α ≤ 1. To reduce the negative effects of active
light sources the background subtraction method ignores
overexposed pixels.

An example of a typical parking garage scenario is shown
in Fig. 2(b). The difference of the background imageB(x, y)
and the current imageI(x, y) is stored in a binary segmen-
tation imageS(x, y) using thresholdt:

S(x, y) =

{

1 , |B(x, y)− I(x, y)| < t

0 , else
(2)

To diminish weak or strong intensity changes, we extended
the expression|B(x, y)−I(x, y)| by clipping it to a minimum
and maximum, respectively. In Fig. 2(c) an example of a raw
(before any preprocessing step) binary segmentation image
is shown.

The background learning process takes place during an
initialization phase. To speed up the initial learning, we apply
a parameterized decreasing ofα starting with value1. For
an immediate initialization, the system is alternatively able
to load a precalculated background image, e.g., if there is no
time for a learning phase.

Reflections of strong illumination sources cause false seg-
mentation. Discarding overexposed pixels does not eliminate
all false positives. By applying the NCC method to the
segmentation image we reduce these influences. We divide
background imageB(x, y) and the current imageI(x, y) into
equally sized grid cells. To minimize the workload, a grid
ROI is examined only if it contains a minimal number of
segmented pixels.



The NCC calculates the degree of structural similarity,
i.e., lighting-independent, of these corresponding grid ROIs.
If the NCC is above a threshold the grid ROI of the
current imageI is similar to its corresponding ROI in the
background imageB and the complete ROI is discarded in
the segmentation image, i.e.,S(x, y) is set to 0.

An exemplary NCC procedure is shown in Fig. 2(d). Each
point of the grid represents the center of an ROI: green relates
to a not considered ROI, yellow to a maintained ROI and red
marks refused ROIs. The resulting enhanced segmentation
image is shown in Fig. 2(e).

Afterwards our system calculates clusters based on the en-
hanced segmentation image: The cluster algorithm operates
by considering an 8-neighborhood of each pixel. An initial
cluster result is shown in Fig. 2(f). We substitute overlapping
and adjacent clusters for their aggregation and track them in
subsequent images with an Alpha-beta-filter (c. f. Fig. 2(g)
and Fig. 2(h)). Afterwards we process them to the next
module.

C. System calibration

In order to interpret and combine detections from multiple
cameras it is imperative to know their exact relative positions
and orientations, a. k. a. extrinsic calibration. Furthermore,
an intrinsic calibration, i.e., a mapping between the camera
frame and the world coordinate frame, encompassing the lens
distortion parameters of each camera, must be determined.
For the latter part, we rely on the methods by [7] to obtain
vertical and horizontal focal lengths and radial distortion
parameters.

For the extrinsics, we measure the three-dimensional co-
ordinates of distinct points in the depicted scene w. r. t. a
chosen world origin along with the corresponding image
coordinates in the respective camera frames. The goal is
now to minimize the squared distances between the backpro-
jected scene points and the marked image coordinates. The
backprojection computation includes the inverse distortion
function to directly compare distances within the raw im-
ages. We follow a steepest-descent optimization technique
without known local gradients starting with several initial
solutions to avoid local minima. In order to guarantee for
numerical stability we initialize the camera center with the
measurement of the camera position in the world coordinate
system and keep it fixed during the first iterations of the
optimization. In later optimization loops we optimize for all
parameters, the orientation and the translation. We refer to
Sec. IV for a detailed evaluation of the calibration accuracy.

D. Image-World Transform

In this section, we describe the processing steps that follow
foreground segmentation to yield single-frame hypothesesfor
world objects. In principle, a single camera detection would
suffice to generate a world representation of the object via
projection onto the ground plane. However, depending on the
camera geometry, this procedure can be unstable since small
errors in the detected ROI lead to strong misestimations of
the points where the object touches the ground plane. The

(a) Original image section. (b) Mean Image.

(c) Binary image before
preprocessing.

(d) NCC grid, ROI colour:
green=̂ ignored, yellow=̂
retained, red̂= dropped.

(e) Binary image after
NCC.

(f) Initial clusters.

(g) Merged (green colour)
and tracked (yellow) clus-
ters.

(h) Same time and process-
ing step from the second
camera.

Fig. 2. Foreground segmentation pipeline for an image sectionof Fig 1.



main idea to circumvent this problem is to fuse detected
regions from several camera images with overlapping field
of view. One has to carefully approach this problem because
the number of image regions in different cameras can be
different. We can regard this situation as a marriage problem
with symmetric distances. The image regions from different
cameras should be matched together by means of a distance
measure that is still to be defined.

We make use of the fact that the cameras are all aligned
upright w. r. t. the ground plane, thus, all detected regions
share the same vertical orientation. We propose the following
ROI distance measure shown in Fig. 3. Let us regard a pair of
ROIs from two different cameras. In a first step we compute
the view rays emerging from the respective camera center of
all ROI corner points. The rays corresponding to the upper
and lower ROI corners are intersected with those from the
respective other image1. The distance in 3D space would be
a quality criterion on the matching ROIs. Since it depends
on perspective, we suggest to consider the backprojected
coordinates of the intersection points into the corresponding
camera frames. We arrive at four backprojected points for the
upper two and four backprojected points for the lower two
ROI corners. The average of the distance from each corner to
the closer of its two backprojections computed for both ROIs
finally donates a matching distance for the regarded ROI pair.
Formally, let R1, R2 be two ROIs in two camera frames,
r
1,...,4
1 , r

1,...,4
2 their respective corner points, andqj,(1,...,2)i

the two backprojected intersection points ofr
j

i (c. f. Fig. 3).
The matching distanced(R1, R2) is then defined as

d(R1, R2) =
1

2

2
∑

i=1

1

4

4
∑

j=1

min
{

||q
j,(1)
i − r

j

i ||, ||q
j,(2)
i − r

j

i ||
}

With the help of this measure we set up the marriage
problem and compute an optimal matching via the well-
known propose-and-reject-algorithm. Since not every ROI
pair corresponds to the same object we define a distance
threshold that leaves us with only those object detections
that can reliably be assigned to one another. Those useful
detection pairs yield two polygons in 3D space consisting
of the aforementioned intersection points, one for the upper
and one for the lower ROI corners. The polygons define the
detected world object contours.

Remaining ROIs, that cannot be matched due to a too high
distance measure, are projected to the ground plane: The
lower ROI corner of the remaining single camera detections
are projected to the ground plane and, thus, still define a
coarse approximate object contour. These unmatched and
ground-plane-projected ROIs are later utilized to confirm
stable tracks.

E. Tracking

The tracking module receives the hypotheses from the
image-world-transformation and has to guarantee a complete

1For the sake of simplicity we use the notion of intersection also for skew
lines where it refers to computing the single point in space that minimizes
the distance to botḧıntersetcting̈lines.

Fig. 3. Our object reconstruction method: Four view rays, emanating from
the origin of the camera (red dots), are projected through thefour ROI corner
pointsr1,··· ,4

1
of a detected object in the left imageI1 into the world scene.

Together with four other view rays corresponding to the ROI of image I2
they are generating eight 3D intersection pointsp1,...,8 in the scene, i. e.
points with minimal distance to the respective view rays, shown in blue.
The backprojected points are illustrated in the right cameraframe by the
green dashed line starting from the intersection point to the image plane
I2. The green pointsq22, (1), q22, (2) on the image plane represent the
reprojected points of the intersection point. The shortestdistance between
a reprojected and the next ROI corner is the reprojection error. This error
is used to match multiple detections from different cameras.

temporal integration, either based on an observation, or a
plausible prediction and closes gaps where no valid hypothe-
ses are generated.

We use an extended Kalman filter (see [8]) with a physical
motion model and reasonable observation noise.

We assign a previously unobserved hypothesis to a new
track, which becomes stable after receiving further similar
hypothesis in the following time steps. It is eliminated after
a certain period of predictions by the Kalman filter without
measurement. The stable tracks are the final output of our
system.

IV. EXPERIMENTS

In this section, we discuss the evaluation and comparison
of the presented system with a LIDAR-based reference
system both deployed in a parking garage that serves as
proving ground for our experiments.

A. Reference System

We used the LIDAR system presented in [1] as a reference.
Briefly, an array of distributed LIDAR sensors is installed a
few centimeters above the ground to detect and measure the
distance to nearby obstacles. Learning to distinguish between
static and dynamic, i.e., active points, the setup is then used
to recognize and accurately track the four wheels of a vehicle
and create a trajectory thereof.

This reference system was extended to detect general ob-
jects: We subtract the amount of active LIDAR measurements
with the measurements of a final vehicle hypothesis to obtain
only those points that are not related to a vehicle. These
filtered active points are clustered locally. If they exceeda
given size, clusters are regarded as general object detections
(e.g. feet of a pedestrian).



Fig. 4. The experimental setup: Thered triangles represent the cameras,
the blue triangle their shared field of view, and thegreen rectangles the
LIDAR sensors. The parking garage (30m × 15m) layout is taken from
the aforementioned CAD representation. An image captured from the right
camera is shown in Fig. 1. The yellow rectangle (Coordinates:Upper corner
left (28, 27), lower right corner(34, 30)) represents the observed area for
the experiments. Fig. 6 plots this area left rotated through90◦.

In [1] the LIDAR system’s results were compared to
human-labeled ground-truth data. Based on this comparison
the authors report a mean lateral and longitudinal error of
0.063m and0.085m for vehicle detection. Additionally, they
achieve a mean distance between the system’s result and
the reference data of0.121m with a standard deviation of
0.051m. Thus, being highly accurate, these object detections
are used as reference data in the following comparison.

B. Evaluation of the Reference System

In order to generate a more objective evaluation of the
LIDAR-based system than a human labeling approach, we
evaluate their system with our own precise reference system.
As recommended by the authors in their experiments section,
we used a setup with a precise Inertial Measurement Unit
(IMU) and a Differential-GPS (DGPS). Both results were
transformed into the world coordinate system and compared
to the LIDAR-based system result. Within different test runs
(parking manoeuvre, circle drive and half-circle-drive),we
determine the distances between the trajectories producedby
the LIDAR-based system and by the presented positioning
system with a mean euclidean distance of0.19m.

C. Setup

We installed two GigE-Vision Prosilica AVT GT 1380
monochrome cameras, with an image resolution of1360 ×
1024, equipped with9mm lenses mounted on a2m tripod.
Both were positioned vis–́a–vis and share an intersecting
field of view. We utilize two SICK LMS 500-20000pro as
LIDAR sensors in the reference system. The setup is shown
in Fig. 4, an example image in Fig. 1.

For a more precise detection we only use the lower
intersection pointsp5,...,8 (see Fig. 3) as the view rays of
the upper ROI cornersr1 and r2 tend to intersect in a very
narrow angle. Thus, the localization of the reconstructed
object corner pointsp5,...,8 is numerically more stable than
for p1,...,4.

D. Calibration

For a precise determination of world calibration points, we
used a Leica Builder 306 tachymeter. We define a distinct

Fig. 5. Both systems’ results within the experimental setup (described in
Fig. 4). It is the same scene as shown in Fig. 1 and in Fig. 2. Theviolet
points represent active LIDAR measurements, theblue rectangle the vehicle
hypothesis, thegreen polygon the LIDAR-based system result of the above
mentioned cluster, and thered polygon our system’s final hypothesis.
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Fig. 6. The plots illustrates the world-trajectories of thepedestrian-centers
inside the yellow rectangle in Fig. 4: Reference data by the LIDAR-based
system ingreen, camera hypothesis inred. At position32.5, 30 the vehicle
switches on its lighting and causes the aberration in our system’s result.

world origin, measure it, and transfer the origin and all
measured calibration points into a CAD representation of
the test environment. We used the same CAD representation
within the presented and the LIDAR reference system for a
valid comparison.

E. Results

For a demonstration of both systems’ trajectories we
choose a representative sequence of a pedestrian. The se-
quence is recorded with 15 fps. A single frame result is
shown in Fig. 5, a camera image of this result in Fig. 1.
The origin of the coordinate system is in the left bottom
of the image. Both trajectories are presented in Fig. 6. This
figure is an excerpt from the CAD representation located in
the right part of the image from Fig. 4. The pedestrian starts
at position of31, 30, walks to34, 30 and back to31, 30.

The sequence exemplifies four difficult situations:

• Time frame 0–250: Moving pedestrian in front of a
static background.

• Time frame 251–500: Pedestrian overlaps with the ve-
hicle in one camera and creates a merged ROI.

• Time frame 501–750: The vehicle switches on its light-
ing and the ROI with the pedestrian in overexposed.

• Time frame 750 – 850: The vehicle switches off the
lighting, similar scenario as in time step 0–250.
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Fig. 7. The deviation of the LIDAR and the camera-based hypothesis. The
red vertical lines separate the above-named four difficult situations.
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Fig. 8. The viewing angle over the examined sequence of the walking
pedestrian. The viewing angle represents the angle in the triangleγ between
both camera world-centers and the systems world-center.

This composition of different scenarios within the se-
quence is documented in Fig. 7 where the distances cor-
respond to these scenarios. The mean deviation between the
LIDAR cluster center and the camera polygon center over
the entire sequence is0.37m with a standard deviation of
0.28m.

Still, the localization does not only deteriorate due to
strong illumination and overlapping image regions. Another
impact on the system’s precision is the viewing angle: We
construct a triangle between both involved world-camera-
centers (A and B) and the resulting world-center of our
system (C) and measure the triangles angleγ, from now on
called viewing angle. This effect is shown in Fig. 8: When
the person is located away from the virtual line connecting
both cameras, the positioning error is significantly lower.
We substantiate this assumption with a comparison of the
localization error to the viewing angle in Fig. 9.

V. CONCLUSION AND OUTLOOK

This study presents an indoor positioning system for
generic objects by means of a camera network. Objects are
segmented using a background representation. To generate
precise and plausible world hypotheses we intersect view
rays of these objects and track them in a world representa-
tion. We focus on the detection of generic objects of arbitrary
size which can be performed without prior training.

The system’s mean positioning error in a sequence con-
taining several difficult situations is0.37m. Compared to the
LIDAR-based reference system with an error of0.19m this
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Fig. 9. The correlation between the positioning error of Fig. 7 and the
viewing angle of Fig. 8.

value is fairly high. Similar camera-based systems proposed
in the literature report higher deviations, e.g. [2], with a
positioning error of 1 m.

However, our system is indeed precise enough to locate
an object for applications like collision warning. We also
want to point out that the proposed system is based on
surveillance cameras, a majority of modern parking decks
are equipped with. Therefore, it does not require additional
hardware expense.

In the future, we want to investigate refinements of the
image processing pipeline to handle remaining drawbacks
we have identified. The effect of strong light sources needs
to be reduced by further segmentation methods. The problem
of overlapping objects in a single ROI – which occurred in
only one camera image – has to be analyzed more deeply
and can be solved by extending the proposed triangulation
method.
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