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Abstract— In this study, we present a new indoor positioning and evaluated by comparison to a LIDAR-based system in
and environment perception system for generic objects based Sec. |V. A final conclusion and outlook is discussed in
on multiple surveillance cameras. In order to assist highly Sec. V
automated driving, our system detects the vehicle’s position o
and any object along its current path to avoid collisions. A
main advantage of the proposed approach is the usage of
cameras that are already installed in the majority of parking Il. RELATED WORK
garages. We generate precise object hypotheses in 3D world
coordinates based on a given extrinsic camera calibration.

Starting with a background subtraction algorithm for the As an example for autonomous indoor-localization, we
segmentation of each camera image, we propose a robust view- elaborate on the idea of an autonomous valet parking system
ray intersection approach that enables the system to match and entioned in [1]. The paper describes a precise LIDAR-

triangulate segmented hypotheses from all cameras. Comparing o L.
with LIDAR-based ground truth, we were able to evaluate the based localization system which is part of a framework for

system’s mean localization accuracy of 0.37m for a variety of autonomous driving: A driver hands over _hiS carata parking
different sequences. garage entrance, steps out, and the vehicle is autonomously
| INTRODUCTION Qrwen through the garage towards a free parking spot wh(_are
) ) ] it can be claimed later. We also use an extended version
In this study, we introduce an infrastructural embeddegs iyis | IDAR-based setup to evaluate and compare our
approach for localization and tracking of generic objeots f system’s result in Sec. IV.
indoor environments. We focus on the example of parking L :
Another system for autonomous driving in a parking

gi{gﬁg;;igeztriﬁgzh a positioning system in the context ggrage — also using a network of video cameras — is discussed

lts main target is to detect and track vehicles and Sei [2]. Einsiedler et al. used a motion template and the Viola
t

ondary objects along its current path. Due to the lack g Oen?,;Ei)gigtoggigﬁtx:h?np{ﬁ;rag:ﬁﬂ veh;cr:;e.eT(; cljaer:frﬁ;s
GPS information and non-sufficient on-board vehicle serB - P P 9 garag

. . . : een divided into segments of Znin contrast, our approach
sors an infrastructural system which communicates with t

autonomously driving car has to be precise, reliable anid re OCUSES on generic object c_ietectlon w|thout any knowledge
r training of objects that will appear in the parking garage

time capable. If an object crosses the path of the vehicte, t e ) , .
system has to raise a warning to avoid a collision. Becau%ehe authors report an uncertainty in their predicted vehicl

arbitrary objects (e.g., other vehicles, small/tall husan ypotheses of 1 m with a coverage of 14 m due to the cameras

bicycles, or animals) should be recognized by the systenelf(mnSIC constraints.

size and shape constraints are ignored. Evans et al. presented a multicamera-based system for
To achieve these aims, we use surveillance cameras 8Riect detection by using a synergy map based on a defined

ready installed in the majority of the parking garages and eground plane and a pre-specified height [3]. In contrast
tend their purpose to an external vehicle localizationesyst O that, we avoid making any assumptions concerning the

Thus, the approach is inexpensive, does not require ad@Piects, the ground plane or the objects’ height.

tional hardware except the infrastructural car-to-envinent In [5] the authors present a comparative study for multiple
communication, and is transferable to other indoor scerari person tracking with overlapping camera views. Because any
e.g., tunnels, factories etc. object can occur in the parking garage, we concentrate on

Firstly, an overview of the related work is describedgeneral object detection and tracking. Another very valid
in Sec. Il. The developed system is presented in Sec. léipproach is presented in [4]. By the use of volumetric 3D
reconstruction the visual hulls of the objects were trans-
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image are called image background, and only minor image
regions contain objects of interest, defined as the image
foreground. In order to separate regions of interests (ROIls
of a single camera image, we decided to model the static
background appropriately.

We propose a pipelined approach for the separation of
those ROIs from the background (see Fig. 2): First, we
generate a representation of the background using the well-
established background subtraction method [6]. Then, the
difference between the current camera image and the back-

, , _ ground representation is calculated. The difference dumta
Fig. 1. The problem at hand: The installed surveillance caniem a . . .
parking garage captures several traffic participants. @uarisito make use moving objects, but also noise, e.g., caused by shadowsor th
of these images to measure their position and motion in ordertectt Vvehicle’s spotlights). Morphological operation©pening)
potentially dangerous situations. were used to reduce this kind of noise.

To minimize false segmentation caused by shadows or ac-
tive light sources, we apply the normalized cross-cori@tat
(NCC) method by identifying structurally constant image re

Our proposed system is based on video only and regions in combination with background subtraction presénte
ognizes objects and their position inside the coordinate [6]. Afterwards, the segmented regions are clustered to
system of a parking garage. A typical scenario captured gbtain connected regions, which are represented by single
a surveillance camera is shown in Fig. 1. ROls. A further prepossessing step is to merge overlapping

The following sections are structured analogously to thand adjacent ROIs. In order to establish a background rep-
system’s pipeline: At the beginning, each camera capturessentation, we use an exponentially smoothed mean-image:
images from its environment which are analyzed separately
(c.f.Sec. llI-A): Moving objects are segmented by a back-
ground subtraction approach (c. f. Sec. 11-B). Afterwaral B(w,y) = (B(x,y) * (1 —a)) + (I(z,y) xa) (1)
foreground objects are transformed into view rays insidWhereB(%y) represents the background imadéy, ) the
a common world coordinate system, wherefore an initiaturrent image with the same size &x,y) and a weight
calibration is required (c.f. Sec. IlI-C). Subsequenthede (0 < o < 1. To reduce the negative effects of active
rays are combined in an appropriate manner to receiight sources the background subtraction method ignores
plausible object hypotheses (c.f. Sec. IlI-D). Finallyrire-  overexposed pixels.
wise object hypotheses are tracked over time to guaranteeAn example of a typical parking garage scenario is shown
continuous object localization. in Fig. 2(b). The difference of the background imageér, )
and the current imagé(x, y) is stored in a binary segmen-
tation imageS(x, y) using threshold:

1 ) |B(£L’,y)—]($,y)|<t
0 , else

IIl. PROPOSED SYSTEM

A. Camera network

To demonstrate a garage parking scenario with a surveil-
lance camera system, we use multiple grayscale cameras S(z,y) :{ )
connected by a local area network (LAN).

The cameras are mounted on high tripods to simulate To diminish weak or strong intensity changes, we extended
a typical surveillance system, where cameras are usuatlye expressiohB(x,y)—1I(x,y)| by clipping it to a minimum
installed below the ceiling. We ensure that each camesnd maximum, respectively. In Fig. 2(c) an example of a raw
shares its field of view with at least one of the other camerdbefore any preprocessing step) binary segmentation image
to handle occlusions and to enable multiple-view visiore This shown.
best case should be a complete coverage of a large area oThe background learning process takes place during an
the parking garage with only two cameras. initialization phase. To speed up the initial learning, ywelst

The cameras are synchronized by the IEEE1588 prote- parameterized decreasing @fstarting with valuel. For
col over the LAN to guarantee simultaneous exposure arah immediate initialization, the system is alternativeblea
processing of all images. Depending on its position in thto load a precalculated background image, e.g., if ther@is n
parking garage, we use different types of lenses to capturdime for a learning phase.
wide area with a minimum number of cameras (e.g., wide- Reflections of strong illumination sources cause false seg-
angle lenses in corners). In the evaluated setup, 4.8 mmentation. Discarding overexposed pixels does not eliteina

9mm, and 12.5mm lenses were used. all false positives. By applying the NCC method to the
) segmentation image we reduce these influences. We divide
B. Foreground Segmentation background imagé(z, y) and the current imaggx, y) into

Since a surveillance camera is embedded in a statamually sized grid cells. To minimize the workload, a grid
environment, most parts of the camera image are constdROIl is examined only if it contains a minimal number of
background, e.g. traffic signs, walls, etc. These regioranof segmented pixels.



The NCC calculates the degree of structural similarity
, lighting-independent, of these corresponding gi@$R

If the NCC is above a threshold the grid ROI of the
current imagel is similar to its corresponding ROI in the
background image3 and the complete ROI is discarded inf
the segmentation image, i.&(x,y) is set to 0. .

An exemplary NCC procedure is shown in Fig. 2(d). Eack
point of the grid represents the center of an ROI: greeneelat
to a not considered ROI, yellow to a maintained ROl and re
marks refused ROIs. The resulting enhanced segmentat|== W
image is shown in Fig. 2(e). S TR T

Afterwards our system calculates clusters based on the qu Original image section.
hanced segmentation image: The cluster algorithm operaig
by considering an 8-neighborhood of each pixel. An initi
cluster result is shown in Fig. 2(f). We substitute overiagp
and adjacent clusters for their aggregation and track thmem
subsequent images with an Alpha-beta-filter (c.f. Fig. 2(g
and Fig. 2(h)). Afterwards we process them to the ne
module.

C. System calibration

In order to interpret and combine detections from multiplg
cameras it is imperative to know their exact relative possi
and orientations, a.k.a. extrinsic calibration. Furthemm
an intrinsic calibration, i.e., a mapping between the carner(c) Binary image before (d) NCC grid. ROI colour:
frame and the world coordinate frame, encompassing the lepgprocessing. green= ignored, yellow=
distortion parameters of each camera, must be determined. retained, red= dropped.
For the latter part, we rely on the methods by [7] to obtai
vertical and horizontal focal lengths and radial distartio
parameters.

For the extrinsics, we measure the three-dimensional ¢
ordinates of distinct points in the depicted scene w.r.t.
chosen world origin along with the corresponding imag
coordinates in the respective camera frames. The goal
now to minimize the squared distances between the backp
jected scene points and the marked image coordinates.
backprojection computation includes the inverse distarti
function to directly compare distances within the raw im
ages. We follow a steepest-descent optimization techniqkjeg Binary image after ' (f') Initial clusters.
without known local gradients starting with several ifitia NCc.
solutions to avoid local minima. In order to guarantee for
numerical stability we initialize the camera center witke th
measurement of the camera position in the world coordinal
system and keep it fixed during the first iterations of the
optimization. In later optimization loops we optimize fdf a
parameters, the orientation and the translation. We refer
Sec. IV for a detailed evaluation of the calibration accyrac

D. Image-World Transform

In this section, we describe the processing steps thativoll
foreground segmentation to yield single-frame hypothéses
world objects. In principle, a single camera detection woul|
suffice to generate a world representation of the object via
projection onto the ground plane. However, depending on thg Merged (gfeen colour) (h) Same time and process-
camera geometry, this procedure can be unstable since sn?@rﬂ racked (yellow) clus- g Sep from the second
errors in the detected ROI lead to strong misestimations of
the points where the object touches the ground plane. ThRig- 2. Foreground segmentation pipeline for an image sectidfig 1.

B
k.




main idea to circumvent this problem is to fuse detected
regions from several camera images with overlapping field
of view. One has to carefully approach this problem because
the number of image regions in different cameras can be
different. We can regard this situation as a marriage proble
with symmetric distances. The image regions from different
cameras should be matched together by means of a distance
measure that is still to be defined. v
We make use of the fact that the cameras are all aligned e
upright w.r.t. the ground plane, thus, all detected regions
share the same vertical orientation. We propose the faligwi
ROI distance measure shown in Fig. 3. Let us regard a pair of
ROIs from two different cameras. In a first step we compute
the view rays emerging from the respective camera center gf;. 3. our object reconstruction method: Four view rays, eatiag from
all ROI corner points. The rays corresponding to the uppéhe origin of the camera (red dots), are projected througfoieROI corner
and lower ROI corners are intersected with those from th%nntsﬁ’ '* of a detected object in the left imade into the world scene.

. . . . gether with four other view rays corresponding to the ROintage I
respective other imageThe distance in 3D space would Dethey are generating eight 3D intersection poipts. s in the scene, i.e.

-----

a quality criterion on the matching ROIs. Since it dependgoints with minimal distance to the respective view rays, show blue.

; ; ; backprojected points are illustrated in the right canfeame by the
on perspective, we suggest to consider the baCkprOJeC%?éeen dashed line starting from the intersection point ® ithage plane

coordinates of the intersection points into the corresp@nd 7,. The green points22, (1), g22, (2) on the image plane represent the

camera frames. We arrive at four backprojected points fr theprojected points of the intersection point. The shortéstance between

upper two and four backprojected points for the lower twé reprojected and the next ROI corner is the reprojectioar.efihis error
. is used to match multiple detections from different cameras.

ROI corners. The average of the distance from each corner to

the closer of its two backprojections computed for both ROls
Formally, let 2y, R, be two ROIs in two camera frames, pjausible prediction and closes gaps where no valid hypothe

14 ra4 their respective corner points, and'"?  ggq are generated.
the two backprojected intersection pointsigf(c.f.Fig. 3).  we use an extended Kalman filter (see [8]) with a physical
The matching distancé( R, Rz) is then defined as motion model and reasonable observation noise.
4 We assign a previously unobserved hypothesis to a new
d(Ri, Ry) = EZ LS in {HQ?(I) —| @ = 7"5”} track, which becomes stable after receiving further simila
244 =1 hypothesis in the following time steps. It is eliminatedeaft

. . .__a certain period of predictions by the Kalman filter without
With the help of this measure we set up the marriage .
; . . measurement. The stable tracks are the final output of our
problem and compute an optimal matching via the well-
: . ) ystem.

known propose-and-reject-algorithm. Since not every R

pair corresponds to the same object we define a distance IV. EXPERIMENTS
threshold that leaves us with only those object detections In this section, we discuss the evaluation and comparison

that can reliably be assigned to one another. Those use[HI the presented system with a LIDAR-based reference

detection pairs yield two polygons in 3D space consistingystem both deployed in a parking garage that serves as
of the aforementioned intersection points, one for the ”pp‘f)roving ground for our experiments.

and one for the lower ROI corners. The polygons define the
detected world object contours. A. Reference System

Remaining ROlIs, that cannot be matched due to a too high\ye used the LIDAR system presented in [1] as a reference.
distance measure, are projected to the ground plane: TBgefly, an array of distributed LIDAR sensors is installed a
lower ROI corner of the remaining single camera detectiongy centimeters above the ground to detect and measure the
are projected to the ground plane and, thus, still define @stance to nearby obstacles. Learning to distinguish éetw
coarse approximate object contour. These unmatched ag@tic and dynamic, i.e., active points, the setup is thea us
ground-plane-projected ROls are later utilized to confirmgg recognize and accurately track the four wheels of a vehicl
stable tracks. and create a trajectory thereof.

This reference system was extended to detect general ob-
jects: We subtract the amount of active LIDAR measurements

The tracking module receives the hypotheses from thgijth the measurements of a final vehicle hypothesis to obtain
image-world-transformation and has to guarantee a compleply those points that are not related to a vehicle. These

1 N _ _ _ filtered active points are clustered locally. If they exceed

or the sake of simplicity we use the notion of intersecti@odbr skew . . . .
lines where it refers to computing the single point in spaeg thinimizes given size, clusters are regarded as general ObJeCt detecti
the distance to botintersetctinfines. (e.g. feet of a pedestrian).

E. Tracking
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Fig. 4. The experimental setup: Thed triangles represent the cameras,

the blue triangle their shared field of view, and tigeeen rectangles the rig 5 Both systems’ results within the experimental setugsédbed in
LIDAR sensors. The parking garag80gn x 15m) layout is taken from  pig ) It is the same scene as shown in Fig. 1 and in Fig. 2.vitlet
the aforementioned CAD representation. An image captured ff@ right - oints represent active LIDAR measurements tthe rectangle the vehicle
camera is shown in Fig. 1. The yellow rectangle (Coordinatigmer corner  pypothesis, thereen polygon the LIDAR-based system result of the above

left (28, 2_7), lower right corner(:_’)4, 30)) represents the observed area for jentioned cluster, and thred polygon our system’s final hypothesis.
the experiments. Fig. 6 plots this area left rotated throd@h

32

In [1] the LIDAR system’s results were compared to |
human-labeled ground-truth data. Based on this comparison a1l
the authors report a mean lateral and longitudinal error of
0.063m and0.085m for vehicle detection. Additionally, they
achieve a mean distance between the system’s result and 301
the reference data df.121m with a standard deviation of
0.051m. Thus, being highly accurate, these object detections ) ‘ ‘ ‘ ‘ ‘ ‘
are used as reference data in the following comparison. s woms om w5 om wms ow

B. Evaluation of the Reference System
P - ig. 6. The plots illustrates the world-trajectories of fretlestrian-centers
In order to generate a more objective evaluation of thl%side the yellow rectangle in Fig. 4: Reference data by tH2AR-based

LIDAR-based system than a human labeling approach, w§stem ingreen, camera hypothesis ired. At position32.5, 30 the vehicle
evaluate their system with our own precise reference systefiitches on its lighting and causes the aberration in ouesys result.

As recommended by the authors in their experiments section,

we used a setup with a precise Inertial Measurement Unit

(IMU) and a Differential-GPS (DGPS). Both results werevorld origin, measure it, and transfer the origin and all
transformed into the world coordinate system and comparégeasured calibration points into a CAD representation of
to the LIDAR-based system result. Within different testgunthe test environment. We used the same CAD representation
(parking manoeuvre, circle drive and half-circle-driveje Within the prgsented and the LIDAR reference system for a
determine the distances between the trajectories prodmcedVvalid comparison.

the LIDAR-based system and by the presented positionin

system with a mean euclidean distanceddfom. - Results

C. Setup For a demonstration of both systems’ trajectories we
choose a representative sequence of a pedestrian. The se-
guence is recorded with 15fps. A single frame result is
. . ) shown in Fig. 5, a camera image of this result in Fig. 1.
1024, equipped withdmm lenses mounted on 2m tripod. The origin of the coordinate system is in the left bottom

Eﬂtdh v]:/er_e povsvition_ei_d Visa—vissldeLEAr;arSeogr;(;g?ésectingof the image. Both trajectories are presented in Fig. 6. This
leld of view. We utilize two ) Pro 3S figure is an excerpt from the CAD representation located in

LIDAR sensors in the reference system. The setup is shovy e right part of the image from Fig. 4. The pedestrian starts

n E'g' 4, an examplg 'mggf Irt]' Fig. 1. | the | at position of31, 30, walks to34, 30 and back to31, 30.
_ or a more precise detection we only use the IoWer ¢, sequence exemplifies four difficult situations:
intersection pointgs . s (see Fig. 3) as the view rays of

the upper ROI corners; andr tend to intersect in a very ~* 1ime frame 0-250: Moving pedestrian in front of a

narrow angle. Thus, the localization of the reconstructed —Static background. _ _
s is numerically more stable than Time frame 251-500: Pedestrian overlaps with the ve-

hicle in one camera and creates a merged ROI.
o » Time frame 501-750: The vehicle switches on its light-
D. Calibration ing and the ROI with the pedestrian in overexposed.
For a precise determination of world calibration points, we « Time frame 750 — 850: The vehicle switches off the
used a Leica Builder 306 tachymeter. We define a distinct  lighting, similar scenario as in time step 0-250.

y (in m)

We installed two GigE-Vision Prosilica AVT GT 1380
monochrome cameras, with an image resolution 30 x

.....

for p1,...4.
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Fig. 7. The deviation of the LIDAR and the camera-based hygsith The
red vertical lines separate the above-named four diffictiaions.
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Fig. 8. The viewing angle over the examined sequence of thé&imwgal
pedestrian. The viewing angle represents the angle initiregtey between
both camera world-centers and the systems world-center.
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Fig. 9. The correlation between the positioning error of. Figand the
viewing angle of Fig. 8.

value is fairly high. Similar camera-based systems progpose
in the literature report higher deviations, e.g. [2], with a
positioning error of 1 m.

However, our system is indeed precise enough to locate
an object for applications like collision warning. We also
want to point out that the proposed system is based on
surveillance cameras, a majority of modern parking decks
are equipped with. Therefore, it does not require additiona
hardware expense.

In the future, we want to investigate refinements of the
image processing pipeline to handle remaining drawbacks
we have identified. The effect of strong light sources needs
to be reduced by further segmentation methods. The problem
of overlapping objects in a single ROl — which occurred in

This composition of different scenarios within the seOnly one camera image — has to be analyzed more deeply
quence is documented in Fig. 7 where the distances cdtd can be solved by extending the proposed triangulation

respond to these scenarios. The mean deviation between

LIDAR cluster center and the camera polygon center over

the entire sequence &37m with a standard deviation of
0.28m.

fRgthod.
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