RUHR-UNIVERSITÄT BOCHUM

RUB

A Single Target Voting Scheme for Traffic Sign Detection

Sebastian Houben, sebastian.houben@ini.rub.de

1 What challenges does traffic sign detection provide?

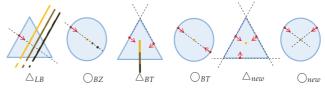
- Real-time constraints
- High reliability
- Natural environment
- Lighting conditions: time of day, artificial coloured light
 Weather: fog, dirt
- Suboptimal scene acquisition: motion blurr, sign occlusion

2 There are numerous detection methods

- Viola-Jones-like approaches
- Hough-like approaches (working on gradient images) 1
- Regular polygon detector, Loy and Barnes $riangle_{LB}$
- Radial symmetry detector, Barnes and Zelinsky \bigcirc_{BZ}
- Bilateral Chinese transform, Belaroussi and Tarel \triangle_{BT}
- Vertex Bisector transform, Belaroussi and Tarel \bigcirc_{BT}
- Here: Single Target Vote for Upright Triangles, \triangle_{new}
- Here: Single Target Vote for Upright Ellipses, \bigcirc_{new}

How does their performance compare? How can the gradient image be computed to facilitate the voting scheme? Are there ways to enhance the known voting schemes?

3 Looking at the preprocessing


- Conventional approaches filter interesting pixels by a fixed colour threshold (does not account for lighting and weather)
- Here: Introduce a pixel-wise likelihood to be part of a traffic sign based on colour representation in YUV space
- Learn colour from data set of traffic signs under various lighting and weather conditions
- -50 red and 54 blue traffic signs from the German Traffic Sign Recognition Benchmark (benchmark.ini.rub.de)
- Take the gradient of this measure
- Adjust vote according to estimated likelihood of the voting pixels

4 Looking at the voting schemes

- Applied voting schemes are general shape detectors and do not fit
 the special appearance of traffic signs
- Many votes are based on only one adequate gradient → cluttered voting space by vast number of false votes
 Here: Collect as many data as necessary to pinpoint sign's loca-
- Here: Collect as many data as necessary to pinpoint sign's loca tion

• Consider sign's usual orientations and ignore gradients with unsuited direction


5 Looking at the performance

- Analysis performed on Stereopolis database: 847 images with 251 traffic signs (www.itowns.fr)
- For each image we considered the 10 most salient vote points by each voting scheme
- · Consider it detected if
- the position does not deviate more than 20% of the true sign's radius
- the radius' relative error is below 45%
- Algorithms that take several data points into account perform significantly better
- Proposed preprocessing further enhances detection performance

	\triangle_{LB}	\bigcirc_{BZ}	\triangle_{BT}	\bigcirc_{BT}	\triangle_{new}	Onew
Classic gradient	11%	65%	15%	44%	26%	62%
Colour threshold	63%	56%	63%	45%	70%	72%
Learned colour gradient	52%	90%	74%	86%	78%	91%
with restricted orientations						
with constant vote	41%	90%	70%	83%	74%	84%

1 Fast shape-based road sign detection for a driver assistance system, IEEE/RSJ International Conference on Intelligent Robots and Systems 2004, Angle vertex and bisector geometric model for triangular road sign detection, IEEE Workshop on Applications of Computer Vision 2009, A real-time road sign detection using bilateral chinese transform, IEEE International Symposium on Visual Computing 2009, Regular polygon detection, International Conference on Computer Vision 2005

WWW.INI.RUB.DE